
Model-Based Reinforcement Learning via Latent-Space Collocation

A. Model Architecture and Training Details
We use the latent dynamics and reward models from PlaNet
(Hafner et al., 2019) with default hyperparameters. We set
the image size to 64x64. For everyN = 1 episode collected,
we train for It = 15 iterations. All models are trained on a
single high-end GPU.

B. Planning Details

Algorithm 2 Gaussian LatCo

1: Start with any available data D
2: while not converged do
3: for each time step t = 1 . . . Ttot with step Tcache do
4: Infer latent state: zt ∼ q(zt|ot)
5: Define the Lagrangian:

L(µt+1:t+H , σt+1:t+H , at:t+H , λ) =
∑
t

[
Eq(zt) [r(zt)]

− λdyn
t (||mean[p(zt)]− µt||2 − ε)

− λdyn
t (||stddev[p(zt)]− σt||2 − ε)

− λact
t (max(0, |at| − am)2 − εact)]

.

(11)

6: for each optimization step k = 1 . . .K do
7: Update plan:

µt+1:t+H , σt+1:t+H , at:t+H += ∇̃L . Eq (9)
8: Update dual variables:

λt:t+H := UPDATE(L, λt:t+H) . Eq (10)
9: end for

10: Execute at:t+Tcache in environment:
ot:t+Tcache , rt:t+Tcache ∼ penv

11: end for
12: Add episode to replay buffer:

D := D ∪ (o1:Ttot , a1:Ttot , r1:Ttot)
13: for training iteration i = 1 . . . It do
14: Sample minibatch from replay buffer:

(o1:T , a1:T , r1:T)1:b ∼ D
15: Train dynamics model:

φ += α∇LELBO(o1:T , a1:T , r1:T)1:b . Eq (2)
16: end for
17: end while

CEM & MPPI. On Metaworld tasks, we optimize for 100
iterations, where in each iteration, 10000 action sequences
are sampled and the distribution is refit to the 100 best
samples. On DM Control tasks, we optimize for 10 steps,
where in each iteration, 1000 action sequences are sampled
and the distribution is refit to the 100 best samples. The
MPPI shares most hyperparameters with CEM, with the
additional parameter γ = 10. For MPPI, we observed that

Algorithm 3 Gaussian LatCo Lagrangian computation

1: Given: initialized plan µt+1:t+H , σt+1:t+H , at:t+H .
2: for time t within planning horizon do
3: Sample K = 50 latent states from the plan distribu-

tion: zkt ∼ q(zt)
4: Evaluate the reward term with samples:

Eq(zt)r(zt) ≈
∑
k r(z

k
t)

5: Approximate the one-step prediction distribution
with samples: p(zt) ≈ {zkt+1}k=1..K , where zkt+1 ∼
p(zt+1|zkt , at).

6: Evaluate the sample mean of the one-step prediction
distribution: mean[p(zt+1)] ≈ 1

K

∑
k z

k
t+1.

7: Evaluate the sample standard deviation of the one-
step prediction distribution: stddev[p(zt+1)] ≈√

1
K

∑
k(z

k
t+1 −mean[p(zt+1)])2.

8: end for
9: Define the Lagrangian:

L(µt+1:t+H , σt+1:t+H , at:t+H , λ) =
∑
t

[
Eq(zt) [r(zt)]

− λdyn
t (||mean[p(zt)]− µt||2 − ε)

− λdyn
t (||stddev[p(zt)]− σt||2 − ε)

− λact
t (max(0, |at| − am)2 − εact)]

.

(12)

both 10000 and 1000 action sequences yield similar results,
so we use 1000 in our final results. We have manually tuned
these hyperparameters, and we report the best results.

GD. On Metaworld tasks, we optimize for 500 iterations
using the Adam optimizer (Kingma & Ba, 2015) (which is a
modified version of momentum gradient descent) with learn-
ing rate 0.05. We use dual descent to penalize infeasible
action predictions. The Lagrange multipliers are updated
every 5 optimization steps. On DM Control tasks, all hyper-
parameters are the same except that we optimize for only
100 iterations. We have manually tuned the learning rate
and tried several first-order optimizers, and we report the
best results.

LatCo. On Metaworld tasks, we optimize for 200 itera-
tions using the Levenberg-Marquardt optimizer with damp-
ing 10−3. The damping parameter controls the trust region,
with smaller or zero damping speeding up convergence, but
potentially leading to numerical instability or divergence.
The Lagrange multipliers are updated every step using the
rule from Section 4, with εdyn = εact = 10−4 and η = 0.01.
The threshold ε directly controls the magnitude of the fi-
nal dynamics and action violations. In general, we found

Model-Based Reinforcement Learning via Latent-Space Collocation

1 2 3 4 5
1e5

0.0
0.2
0.4
0.6
0.8
1.0

Reach

1 2 3 4 5
1e5

0.0
0.2
0.4
0.6
0.8
1.0

Button

1 2 3 4 5
1e5

0.0
0.2
0.4
0.6
0.8
1.0

Window Close

1 2 3 4 5
1e5

0.0
0.2
0.4
0.6
0.8
1.0

Drawer Close

1 2 3 4 5
1e5

0.0
0.2
0.4
0.6
0.8
1.0

Push

2 4 6 8
1e5

0

200

400

600

800
Reacher Easy

2 4 6 8
1e5

0

100

200

300

400
Cheetah Run

2 4 6 8
1e5

0

50

100

150

200
Quadruped Walk

Shooting CEM LatCo (Ours) Shooting GD MPPI

Figure 8: Learning curves for online MBRL experiments.

1 2 3 4
1e5

0.000
0.025
0.050
0.075

Hammer

1 2 3 4
1e5

0.00

0.05

0.10

Push With Stick

Shooting CEM LatCo (Ours) Shooting GD MPPI

Figure 9: Learning curves for MBRL experiments with
offline and online data.

this parameter to be most important for good performance,
as a large threshold may cause infeasible plans, while low
threshold would make the initial relaxation of the dynamics
constraint less effective. We observed that a single threshold
of 10−4 works for all of our Metaworld environments. η
controls the update of the Lagrange multipliers. A larger
η makes the optimization more aggressive but less stable,
and a smaller η diminishes the effect of multiplier updates.
We initilalize λdyn

0 = 1, λact
0 = 1. On DM Control tasks, all

hyperparamers are the same except that we optimize for 100
iterations and set εdyn = εact = 10−2.

Gaussian LatCo. The hyperparameters for Gaussian
LatCo are largely the same to deterministic LatCo. However,
we observed that Gaussian LatCo requires less optimization
steps to converge and use 50 iterations. Further, since the
threshold εdyn is now used for both the mean and the vari-
ance, it is setto 10−2

LatCo no relaxation. We prevent the relaxation of dy-
namics constraint by initializing the Lagrange multipliers to

108.

LatCo no constrained optimization. We manually tune
the multiplier values and fix them to λdyn = 8, λact = 16
throughout optimization.

LatCo no second order. We use 5000 optimization steps
and update the Lagrange multipliers every 5 steps instead
of 1. Further, for this ablation we use the simple gradient
descent update rule for lagrange multipliers with learning
rate of 1.5.

Image Collocation. We use the same hyperparameters as
the no second-order opt ablation, except the learning rate,
which is set to 0.02.

These planning hyperparameters remain fixed across the
experiments as we observe that reward optimization con-
verges in all cases. Planning a 30-step trajectory takes 12,
14, and 14 seconds for CEM, GD, and LatCo respectively
on a single RTX 2080Ti graphics card. The action limits am
are set to the limits of the environment, in our case always
am = 1.

C. Gaussian LatCo details
We provide a detailed algorithm for Gausssian LatCo in
Algorithm 2 and a detailed algorithm for evaluating the
Lagrangian in Algorithm 2. The gradients are estimated with
reparametrization. We observed that optimization stability
is improved by only optimizing the variance σ with next
step gradients. That is, for each variance parameter σt we
only optimize it with respect to terms of the Lagrangian

Model-Based Reinforcement Learning via Latent-Space Collocation

0.0 0.5 1.0 1.5 2.0
0.0
0.2
0.4
0.6

Button

0.0 0.5 1.0 1.5 2.0

0.2
0.4
0.6
0.8

Drawer

0.0 0.5 1.0 1.5 2.0
0.0
0.1
0.2
0.3

Push

0.0 0.5 1.0 1.5 2.0
0.00
0.25
0.50
0.75
1.00

Reach

0.0 0.5 1.0 1.5 2.0
1e5

0.2
0.4
0.6
0.8

Window

Shooting CEM iLQR Gaussian LatCo (Ours) Shooting GN Shooting GD LatCo (Ours) MPPI

Figure 10: Online MBRL results on the Metaworld tasks with dense rewards. With dense reward, collocation still outperforms
shooting methods, however, shooting methods show more progress, especially on the reaching task. We include an additional
iLQR baseline implemented with our latent dynamics model. This method performs poorly, likely due to the extremely
non-linear and high-dimensional latent space. Further, we include a comparison against Gaussian LatCo. We observe that
Gaussian LatCo performs comparably to the deterministic version. We observed similar results from Gaussian LatCo on the
sparse reward tasks, but are unable to include the full experiment due to computational requirements.

Figure 11: Additional optimization curves. The dynamics coefficient (magnitude of Lagrange multipliers) increases
exponentially as the dynamics constraint is enforced, and eventually converges for LatCo. LatCo No Relax does not relax
the dynamics initially as the coefficient is initialized at a high value. We see that this leads to suboptimal reward optimization
as the found solution is not as good as with the full LatCo.

that also involve q(zt−1), but we set the gradient of any
term that involves q(zt+1) to zero. This is similar to the
approach of Patil et al. (2015) and corresponds to a more
shooting-like formulation since the variance information is
only propagated forward in the trajectory and not backward.
Even though this is not the full gradient of the Lagrangian,
we observed optimization still works well as the variance
can always flexibly match its target.

D. Compared Methods and Ablations Details
CEM. The Cross-Entropy Method (CEM) is a sampling-
based trajectory optimization technique. The method main-
tains a distribution of action sequence, initialized as an
isotropic unit Gaussian. In each iteration, the method sam-
ples n action sequences from the current distribution and
forwarded them through the model to obtain their predicted
rewards. It then re-fits the distribution to the top k trajecto-
ries with the highest rewards by computing their empirical
mean and standard deviation.

MPPI. MPPI is a variant of CEM where instead of taking
the average of the elite samples, it takes the weighted av-
erage when estimating the mean and variance of the new
distribution. The weights are computed by taking the Soft-
max of the rewards with a temperature parameter γ. The

temperature parameter effectively controls the width of the
distribution.

Shooting GD. This method optimizes a single action trajec-
tory. The trajectory is initialized from a uniform distribution
and optimized with gradient descent, with the objective
being negative reward.

Shooting GN. This method is similar to Shooting GD, but
it use a Gauss-Newton (GN) optimizer instead of gradient
descent. The Gauss-Newton optimizer in this case is easy
to implement and has fast runtime since the number of
optimized variables is small for shooting.

iLQR. We additionally implemented an iLQR baseline with
the same latent dynamics model as used in our method. We
largely follow Tassa et al. (2012) for our implementation.
Specifically, we implement line search on the optimization
step size, and multiply the trust-region regularizer by 2 when
the Quu matrix fails to be positive definite. We observed
that using feedback controllers leads for worse results and
only use the actions planned during optimization.

Image collocation. We directly optimize images instead
of latent states using the same RSSM model. Images do
not constitute a markov space, therefore we optimize them
recurrently. Specifically, we evaluate the reward of image

Model-Based Reinforcement Learning via Latent-Space Collocation

Figure 12: Visualization of the reward predictor for the
Sawyer Pushing task. The output of the reward predictor
is shown for each object position on the 2D table. We see
that the reward predictor correctly predicts a value of 1
at the goal, and low values otherwise. In addition, there
is a certain amount of smoothing induced by the reward
predictor, which creates a gradient from the start to the
goal position. This explains why gradient-based planning
is applicable even in this sparse reward task. We note that
this reward smoothing is caused simply by the fact we are
training a neural reward predictor, and does not require any
additional setup.

sequence by encoding them into the latent space and pre-
dicting the reward. We evaluate the dynamics constraint on
the frame It+1 by encoding the past sequence I1:t into the
latent space, rolling out a one-step prediction, and decoding
the images. Further, we observed poor optimization perfor-
mance when optimizing recurrent constraints. Instead, we
treat all constraints as pairwise by setting the gradients on
I1:t−1 to zero. We use gradient descent to optimize Image
Collocation.

E. Additional experimental results
E.1. Learning Curves

We provide the learning curves for results in Figures 8 and 9.
The online agents were trained for 500K environment steps
on the MetaWorld tasks and 800K environment steps on the
DM Control tasks. The hybrid agents were trained for 400K
environment steps.

E.2. Dense MetaWorld tasks and Gaussian LatCo
results

We additionally evaluated all methods on the MetaWorld
tasks with their original shaped rewards. We observed that
the softplus reward transformation used by LatCo tends
to squash large positive rewards, resulting in ineffective
optimization of the reward objective. Thus, we keep the
running mean and standard deviation of rewards during

training, and normalize the environment rewards with these
metrics. This keeps the reward magnitude in a reasonable
range and facilitates LatCo training. Learning curves for the
dense reward tasks are shown in Fig. 10.

E.3. Analysing optimization

We visualize the additional optimization curves in Fig 11.

E.4. Analysing sparse reward planning

We observed that our method is able to solve sparse reward
tasks using gradient-based planning. While this may be
surprising at first, similar observations were made by prior
work (Singh et al., 2019). We visualize the reward predictor
output on the Pushing task in Fig 12.

