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Appendix

A. Proofs of the technical results in Section 2
A.1. Proof of Proposition 1

Proposition 1 Given a fixed training set S, let µ = [µq]q∈[Q] be the Lagrangian multipliers for the constraints
{ 1
|Vq|
∑
j∈Vq

(yj − hw(xj))2 ≤ δ + ξq}q∈[Q] in the optimization problem (2) and F (w,µ,S) be defined as follows:

F (w,µ,S) =
∑
i∈S

[λ ‖w‖2 + (yi − hw(xi))2]

+
∑
q∈[Q]

µq

[∑
j∈Vq

(yj − hw(xj))2

|Vq|
− δ

]
(16)

Then, for the fixed set S , the dual of the optimization problem (2) for estimating w and {ξq} is given by,

maximize
0≤µ≤C1

minimize
w

F (w,µ,S) (17)

Proof The dual problem of our data selection problem (2) is given as:

maximize
µ≥0,ν

minimize
w,{ξq}q∈[Q]

∑
i∈S

[λ ‖w‖2+ (yi − hw(xi))2]+C
∑
q∈Vq

ξq +
∑
q∈[Q]

µq

[∑
j∈Vq

(yj − hw(xj))2

|Vq|
− δ − ξq

]
− νqξq

Differentiating with respect to ξ, we getµ+ν = C1, which proves the Proposition (giving us the constraint 0 ≤ µ ≤ C1).

A.2. Proof of Proposition 3

Proposition 3 Both the variants of the data selection problems (4) and (8) are NP-Hard.

Proof Consider our data selection problem as follows:

minimize
S⊂D,w,{ξq}q∈[Q]

∑
i∈S

[λ ‖w‖2+ (yi − hw(xi))2]+C
∑
q∈Vq

ξq,

such that,

∑
j∈Vq

(yj − hw(xj))2

|Vq|
≤ δ + ξq ∀q ∈ [Q],

ξq ≥ 0 ∀ q ∈ [Q] and, |S| = k (18)

We make C = 0 and hw(x) = w>x. Then the problem becomes equivalent to the robust regression problem (Bhatia et al.,
2017), i.e.,

minimize
S⊂D,w

∑
i∈S

[λ ‖w‖2+ (yi −w>x)2], such that, |S| = k, (19)

which is known to be NP-hard.
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B. Techninal results on Section 3 and their proofs
B.1. Proof of Proposition 5

Proposition 5 For any model hw, f(S) is monotone, i.e., f(S ∪ a)− f(S) ≥ 0 for all S ⊂ D and a ∈ D\S.

Proof We note that

f(S ∪ a)− f(S) = F (w∗(µ∗(S ∪ a),S ∪ a),µ∗(S ∪ a),S ∪ a)− F (w∗(µ∗(S),S),µ∗(S),S) (20)
= F (w∗(µ∗(S ∪ a),S ∪ a),µ∗(S ∪ a),S ∪ a)− F (w∗(µ∗(S),S ∪ a),µ∗(S),S ∪ a)︸ ︷︷ ︸

≥0

+ F (w∗(µ∗(S),S ∪ a),µ∗(S),S ∪ a)− F (w∗(µ∗(S),S),µ∗(S),S) (21)
(i)

≥ F (w∗(µ∗(S),S ∪ a),µ∗(S),S ∪ a)− F (w∗(µ∗(S),S),µ∗(S),S) (22)
= F (w∗(µ∗(S),S ∪ a),µ∗(S),S ∪ a)− F (w∗(µ∗(S),S ∪ a),µ∗(S),S)

+ F (w∗(µ∗(S),S ∪ a),µ∗(S),S)− F (w∗(µ∗(S),S),µ∗(S),S)︸ ︷︷ ︸
≥0

(23)

(ii)

≥ F (w∗(µ∗(S),S ∪ a),µ∗(S),S ∪ a)− F (w∗(µ∗(S),S ∪ a),µ∗(S),S)

=
∑
i∈S∪ a

[λ ‖w∗(µ∗(S),S ∪ a)‖2 + (yi − hw∗(µ∗(S),S∪ a)(xi))2]

+
∑
q∈[Q]

µ∗q(S)

[∑
j∈Vq

(yj − hw∗(µ∗(S),S∪ a)(xj))2

|Vq|
− δ

]
(24)

−
∑
i∈S

[λ ‖w∗(µ∗(S),S ∪ a)‖2 + (yi − hw∗(µ∗(S),S∪ a)(xi))2]

−
∑
q∈[Q]

µ∗q(S)

[∑
j∈Vq

(yj − hw∗(µ∗(S),S∪ a)(xj))2

|Vq|
− δ

]
(25)

= λ ‖w∗(µ∗(S),S ∪ a)‖2 + (ya − hw∗(µ∗(S),S∪ a)(xa))2 (26)

Here, inequality (i) is due to the fact that: µ∗(S ∪ a) = argmax0≤µ≤C F (w∗(µ,S ∪ a),µ,S ∪ a); and, inequality (ii) is
due to the fact that: w∗(µ∗(S),S) = argminw F (w,µ∗(S),S).

B.2. Proof of Theorem 6

Theorem 6 Assume that |y| ≤ ymax; hw(x) = 0 if w = 0, i.e., hw(x) has no bias term; hw is H-Lipschitz,
i.e., |hw(x)| ≤ H ‖w‖; the eigenvalues of the Hessian matrix of (y − hw(x))

2) have a finite upper bound, i.e.,
Eigenvalue(∇2

w(y − hw(x))
2) ≤ 2χ2

max; and, define `∗ = mina∈Dminw χ2
max · ‖w‖

2
+ (ya − hw(xa))

2 > 0.
Then, for λ ≥ max

{
χ2
max, 32(1 + CQ)2y2maxH

2/`∗
}

, f(S) is a α-submodular set function, where

α ≥ α̂f = 1− 32(1 + CQ)2y2maxH
2

λ`∗
, (27)

Proof We assume that: S ⊂ T . Hence, |T | > 0. Let us define: `a(w) = λ ‖w‖2 + (ya − hw(xa))2,w = argminw`a(w).
Finally, we denote `∗ = mina∈Dminwχ

2
max ‖w‖

2
+ (ya − hw(xa))2. Next, we have that:

f(S ∪ a)− f(S)
f(T ∪ a)− f(T )

≥ `a (w
∗(µ∗(S),S ∪ a))

`a (w∗(µ∗(T ∪ a), T ))
(Due to Lemma 12)

≥ `a (w)

`a (w∗(µ∗(T ∪ a), T ))
(Since `a (w∗(µ∗(S),S ∪ a)) ≥ `a (w))
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(i)

≥ `a (w
∗(µ∗(T ), T ∪ a))− (λ+ χ2

max) ‖w −w∗(µ∗(T ∪ a), T )‖
2

`a (w∗(µ∗(T ∪ a), T ))

≥ 1− (λ+ χ2
max) ‖w −w∗(µ∗(T ∪ a), T )‖

2

`a (w∗(µ∗(T ∪ a), T ))

≥ 1− (λ+ χ2
max)

`a(w)
‖w −w∗(µ∗(T ∪ a), T )‖2 (Since `a (w∗(µ∗(S),S ∪ a)) ≥ `a (w))

(ii)

≥ 1− 32λ

`∗
(1 + CQ)2y2maxH

2

λ2

= 1− 32(1 + CQ)2y2maxH
2

λ`∗
, (28)

Inequality (i) is due to the following:

`a(w
∗(µ∗(T ∪ a), T )) (29)

= `a(w) +∇`a(w)>(w∗(µ∗(T ∪ a), T )−w) + (w∗(µ∗(T ∪ a), T )−w)>∇2`a(w
′)(w −w)> (30)

≤ `a(w) +
max{eig(∇2`a)}

2
‖w∗(µ∗(T ∪ a), T )−w‖2 (∇`a(w) = 0) (31)

≤ `a(w) + (λ+ χ2
max) ‖w∗(µ∗(T ∪ a), T )−w‖

2
; (32)

and inequality (ii) follows from

(1) `a(w) = λ ‖w‖2 + (ya − hw(xa))2 ≥ χ2
max ‖w‖

2
+ (ya − hw(xa))2 ≥ min

w
χ2
max ‖w‖

2
+ (ya − hw(xa))2 = `∗,

(2) ‖w∗(µ∗(T ∪ a), T )−w‖ ≤ 2wmax =
4(1 + CQ)ymaxH

λ
(Due to Lemma 13) ,

(3) λ ≥ χ2
max. (33)

B.3. Proof of Proposition 7
Proposition 7 Given 0 < ymin ≤ |y| ≤ ymax, hw(x) = w>x, ‖x‖ ≤ xmax, we set the regularizing coefficient as
λ ≥ max

{
x2max, 16(1 + CQ)2y2maxx

2
max/y

2
min.

}
. Then f(S) is a α-submodular set function, where

α ≥ α̂f = 1− 16(1 + CQ)2y2maxx
2
max

λy2min

. (34)

Proof The proof exactly follows the previous proof, except in the highlighted part. We assume that: S ⊂ T . Hence, |T | > 0

and define `a(w) = λ ‖w‖2 + (ya − hw(xa))2,w = argminw`a(w); `∗ = mina∈Dminwχ
2
max ‖w‖

2
+ (ya − hw(xa))2.

Then, we have that:

f(S ∪ a)− f(S)
f(T ∪ a)− f(T )

≥ `a (w
∗(µ∗(S),S ∪ a))

`a (w∗(µ∗(T ∪ a), T ))

≥ `a (w)

`a (w∗(µ∗(T ∪ a), T ))

≥`a (w
∗(µ∗(T ), T ∪ a))− (λ+ χ2

max) ‖w −w∗(µ∗(T ∪ a), T )‖
2

`a (w∗(µ∗(T ∪ a), T ))

≥1− (λ+ χ2
max) ‖w −w∗(µ∗(T ∪ a), T )‖

2

`a (w∗(µ∗(T ∪ a), T ))

≥1− (λ+ χ2
max)

`a(w)
‖w −w∗(µ∗(T ∪ a), T )‖2

≥1−
8 λ
`∗

(1 + CQ)2y2maxx
2
max

λ2
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= 1−
8 (1 + CQ)2y2maxx

2
max

λ`∗

≥ 1−
16 (1 + CQ)2y2maxx

2
max

λ y2min

(35)

where the highlighted part is due to second part of Lemma 13 which gives:

‖w∗(µ∗(T ∪ a), T )−w‖ ≤ 2wmax =
2(1 + CQ)ymaxxmax

λ
; (36)

and, Claim 1 which shows that `∗ = λy2min

λ+x2
max
≥ y2min/2.

B.4. Proof of Proposition 8
Proposition 8 Given the assumptions stated in Theorem 6. the generalized curvature kf (S) for any set S satisfies

κf (S) ≤ κ̂f = 1− `∗

(CQ+ 1)y2max

.

Proof Let us define: `a(w) = λ ‖w‖2 + (ya − hw(xa))
2, w = argminw`a(w). Finally, we denote `∗ =

mina∈Dminwχ
2
max ‖w‖

2
+ (ya − hw(xa))2. By definition, we have 1 − κf (S) = mina∈D

f(a|S\ a)
f(a|∅) . We show that,

from Lemma 12, we have that:
f(a|S\ a) ≥ λ ‖w∗(µ∗(S\ a),S)‖2 + (ya − hw∗(µ∗(S\ a),S)(xa))2 ≥ `a(w) ≥ `∗ (37)

Next, we note that:
f(a|∅) = f( a)− f(∅) (38)

= λ ‖w∗(µ∗( a), a)‖2 + (ya − hw∗(µ∗( a), a)(xa))2

+
∑
q∈[Q]

µ∗q( a)
∑
j∈Vq

[
(yj − hw∗(µ∗( a), a)(xj))2

|Vq|
− δ
]
−
∑
q∈[Q]

µ∗q(∅)
∑
j∈Vq

[
(yj − hw∗(µ∗(∅),∅)(xj))2

|Vq|
− δ
]

(i)

≤ λ ‖w∗(µ∗( a), a)‖2 + (ya − hw∗(µ∗( a), a)(xa))2

+
∑
q∈[Q]

µ∗q( a)
∑
j∈Vq

[
(yj − hw∗(µ∗( a), a)(xj))2

|Vq|
− δ
]
−
∑
q∈[Q]

µ∗q( a)
∑
j∈Vq

[
(yj − hw∗(µ∗(∅),∅)(xj))2

|Vq|
− δ
]

=λ ‖w∗(µ∗( a), a)‖2 + (ya − hw∗(µ∗( a), a)(xa))2

+
∑
q∈[Q]

µ∗q( a)
∑
j∈Vq

[
(yj − hw∗(µ∗( a), a)(xj))2

|Vq|

]
−
∑
q∈[Q]

µ∗q( a)
∑
j∈Vq

[
(yj − hw∗(µ∗(∅),∅)(xj))2

|Vq|

]
≤λ ‖w∗(µ∗( a), a)‖2 + (ya − hw∗(µ∗( a), a)(xa))2

+
∑
q∈[Q]

µ∗q( a)
∑
j∈Vq

[
(yj − hw∗(µ∗( a), a)(xj))2

|Vq|

]
(39)

(ii)

≤ (CQ+ 1) y2max (40)

Here, (i) is because µ∗(∅) = argmaxµ
∑
q∈[Q] µq

∑
j∈Vq

[
(yj − hw∗(µ,∅)(xj))2

|Vq|
− δ
]

, (ii) is obtained by putting w = 0

in Eq. (39) which is now at the minimum, i.e.,

w∗(µ∗( a), a) = argmin
w

λ ‖w‖2 + (ya − hw(xa))2 +
∑
q∈[Q]

µ∗q( a)
∑
j∈Vq

[
(yj − hw(xj))2

|Vq|

]
(41)

Hence, Eqs. (37) and (40) show that, κf (S) ≤ 1− `∗

(CQ+ 1) y2max

.
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B.5. Auxiliary Lemmas

Lemma 12 If f(·) defined in Eq. (7), we have that

f(S ∪ a)− f(S) ≥ λ ‖w∗(µ∗(S),S ∪ a)‖2 + (ya − hw∗(µ∗(S),S∪ a)(xa))2. (42)
and,

f(S ∪ a)− f(S) ≤ λ ‖w∗(µ∗(S ∪ a),S)‖2 + (ya − hw∗(µ∗(S∪ a),S)(xa))2. (43)

Proof The proof of the lower bound of the marginal gain
f(S ∪ a)− f(S) ≥ λ ‖w∗(µ∗(S),S ∪ a)‖2 + (ya − hw∗(µ∗(S),S∪ a)(xa))2. (44)

follows from the proof of Proposition 5.

Next we prove that
f(S ∪ a)− f(S) ≤ λ ‖w∗(µ∗(S ∪ a),S)‖2 + (ya − hw∗(µ∗(S∪ a),S)(xa))2. (45)

To show this, we prove that:
f(S∪ a)− f(S)

= F (w∗(µ∗(S ∪ a),S ∪ a),µ∗(S ∪ a),S ∪ a)− F (w∗(µ∗(S),S),µ∗(S),S) (46)
= F (w∗(µ∗(S ∪ a),S ∪ a),µ∗(S ∪ a),S ∪ a)− F (w∗(µ∗(S ∪ a),S),µ∗(S ∪ a),S)
+ F (w∗(µ∗(S ∪ a),S),µ∗(S ∪ a),S)− F (w∗(µ∗(S),S),µ∗(S),S)︸ ︷︷ ︸

≤0

(47)

(i)

≤ F (w∗(µ∗(S ∪ a),S ∪ a),µ∗(S ∪ a),S ∪ a)− F (w∗(µ∗(S ∪ a),S),µ∗(S ∪ a),S) (48)
= F (w∗(µ∗(S ∪ a),S ∪ a),µ∗(S ∪ a),S ∪ a)− F (w∗(µ∗(S ∪ a),S),µ∗(S ∪ a),S ∪ a)︸ ︷︷ ︸

≤0

+ F (w∗(µ∗(S ∪ a),S),µ∗(S ∪ a),S ∪ a)− F (w∗(µ∗(S ∪ a),S),µ∗(S ∪ a),S)
(ii)

≤ F (w∗(µ∗(S ∪ a),S),µ∗(S ∪ a),S ∪ a)− F (w∗(µ∗(S ∪ a),S),µ∗(S ∪ a),S)

=
∑
i∈S∪ a

[λ ‖w∗(µ∗(S ∪ a),S)‖2 + (yi − hw∗(µ∗(S∪ a),S)(xi))2]

+
∑
q∈[Q]

µ∗q(S ∪ a)

[∑
j∈Vq

(yj − hw∗(µ∗(S∪ a),S)(xj))2

|Vq|
− δ

]
(49)

−
∑
i∈S

[λ ‖w∗(µ∗(S ∪ a),S)‖2 + (yi − hw∗(µ∗(S∪ a),S)(xi))2]

−
∑
q∈[Q]

µ∗q(S ∪ a)

[∑
j∈Vq

(yj − hw∗(µ∗(S∪ a),S)(xj))2

|Vq|
− δ

]
(50)

= λ ‖w∗(µ∗(S ∪ a),S)‖2 + (ya − hw∗(µ∗(S∪ a),S)(xa))2. (51)
Here (i) is due to the fact that,

µ∗(S) = argmax
µ

F (w∗(µ,S),µ,S) (52)

and (ii) is due to the fact that:
w∗(µ∗(S ∪ a),S ∪ a) = argmin

w
F (w,µ∗(S ∪ a),S ∪ a) (53)
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Lemma 13 Given that S 6= ∅; hw(x) = 0 forw = 0; and, hw(x) is H-Lipschitz, i.e., |hw(x)| ≤ H ‖w‖. Then, we have

‖w∗(µ,S)‖ ≤ 2(1 + CQ)ymaxH

λ
. Moreover, if hw(x) = w>x, we have that ‖w∗(µ,S)‖ ≤ (1 + CQ)ymaxxmax

λ
. Note

that, for the linear model, we are able to exploit the structure of the model much better and therefore the bound is tighter.

Proof First we define∇h0(x) = ∇whw(x)|w=0.

F (w∗(µ,S),µ,S)

= λ ‖w∗(µ,S)‖2 |S|+
∑
i∈S

(yi − hw∗(µ,S)(xi))2 +
∑
q∈[Q]

µq
|Vq|

∑
j∈Vq

[
(yj − hw∗(µ,S)(xj))2 − δ

]
= λ ‖w∗(µ,S)‖2 |S|+

∑
i∈S

y2i +
∑
q∈[Q]

µq
Vq

∑
j∈Vq

y2j −
∑
q∈[Q]

µq
|Vq|

∑
j∈Vq

δ

− 2
∑
i∈S

yihw∗(µ,S)(xi)− 2
∑
q∈[Q]

µq
|Vq|

∑
j∈Vq

yjhw∗(µ,S)(xj) +
∑
i∈S

h2w∗(µ,S)(xi) +
∑
q∈[Q]

µq
|Vq|

∑
j∈Vq

h2w∗(µ,S)(xj)︸ ︷︷ ︸
≥0

(i)

≥ λ ‖w∗(µ,S)‖2 |S|+

F (0,µ,S)︷ ︸︸ ︷∑
i∈S

y2i +
∑
q∈[Q]

µq
Vq

∑
j∈Vq

y2j −
∑
q∈[Q]

µq
|Vq|

∑
j∈Vq

δ

− 2
∑
i∈S

yihw∗(µ,S)(xi)− 2
∑
q∈[Q]

µq
|Vq|

∑
j∈Vq

yjhw∗(µ,S)(xj). (54)

Here (i) is due to
∑
i∈S

h2w∗(µ,S)(xi) +
∑
q∈[Q]

µq
|Vq|

∑
j∈Vq

h2w∗(µ,S)(xj) ≥ 0. Now since F (0, µ,S) =
∑
i∈S

y2i +∑
q∈[Q]

µq
Vq

∑
j∈Vq

y2j −
∑
q∈[Q]

µq
|Vq|

∑
j∈Vq

δ, Eq. (54) gives us:

F (w∗(µ,S),µ,S)− F (0, µ,S) ≥ λ ‖w∗(µ,S)‖2 |S|

− 2
∑
i∈S

yihw∗(µ,S)(xi)− 2
∑
q∈[Q]

µq
|Vq|

∑
j∈Vq

yjhw∗(µ,S)(xj) (55)

Now since w∗(µ,S) = argminw F (w,µ,S), we have that F (w∗(µ,S),µ,S) ≤ F (0, µ,S). Then, Eq. (55) implies that

λ ‖w∗(µ,S)‖2 |S| − 2
∑
i∈S

yihw∗(µ,S)(xi)− 2
∑
q∈[Q]

µq
|Vq|

∑
j∈Vq

yjhw∗(µ,S)(xj) ≤ 0

(i)
=⇒ λ ‖w∗(µ,S)‖2 |S| ≤ 2|S| ymaxH ‖w∗(µ,S)‖+ 2

∑
q∈[Q]

µq
|Vq|

∑
j∈Vq

ymaxH ‖w∗(µ,S)‖

≤ 2(|S|+ CQ)ymaxH ‖w∗(µ,S)‖

=⇒ ‖w∗(µ,S)‖ ≤ 2(|S|+ CQ)ymaxH

λ|S|
≤ 2(1 + CQ)ymaxH

λ
(56)

Here (i) is due to H-Lipschitzness of hw∗(µ,S)(x). For linear model, we have H = xmax. However, we use the structure
of the model to obtain a better bound. More specifically, for linear model, we have:

w∗(µ,S) =

λ|S|I+∑
i∈S

xix
>
i +

∑
q∈[Q]

µq
|Vq|

∑
j∈Vq

xjx
>
j

−1∑
i∈S

yixi +
∑
q∈[Q]

µq
|Vq|

∑
j∈Vq

yjxj


=⇒ ‖w∗(µ,S)‖ ≤ (|S|+ CQ)xmaxymax

Eigmin

(
λ|S|I+

∑
i∈S xix

>
i +

∑
q∈[Q]

µq

|Vq|
∑
j∈Vq

xjx>j

)
≤ (|S|+ CQ)xmaxymax

λ|S|

≤ (1 + CQ)xmaxymax

λ
. (57)
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Claim 1 minw[λ ‖w‖2 + (ya −w>xa)2] = λy2a
λ+‖xa‖2

Proof We note that:
w = ya(λ+ xax

>
a )
−1xa (58)

Hence, we have that:
λ ‖w‖2 + (ya −w>xa)2 = y2a − 2yaw

>xa +w
>(λI+ xax>a )w (59)

= y2a − yaw>xa (60)

= y2a − y2ax>a (λ+ xax
>
a )
−1xa (61)

= y2a − y2ax>a
[
1

λ
− xax

>
a /λ

2

1 + x>a xa/λ

]
xa (Due to Sherman Morrison formula) (62)

=
λy2a

λ+ ‖xa‖2

≥ λy2min

λ+ x2max

(63)
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C. Proofs of the technical results in Section 4
C.1. Proof of Lemma 9

Lemma 9 Given a fixed set Ŝ and an α-submodular function f(S), let the modular function mf

Ŝ
[S] be defined as follows:

mf

Ŝ
[S] =f(Ŝ)−

∑
i∈Ŝ

αf(i|Ŝ\{i})

+
∑
i∈Ŝ∩S

αf(i|Ŝ\{i}) +
∑
i∈S\Ŝ

f(i|∅)
α

. (64)

Then, f(S) ≤ mf

Ŝ
[S] for all S ⊆ D.

Proof Recall that f is α-submodular with coefficient α̂f if f(a|S) ≥ α̂ff(a|T ), a /∈ T ,S ⊆ T . Given this, the following
inequalities follow directly from:

α̂f [f(S)− f(Ŝ ∩ S)] ≤
∑
i∈S\Ŝ

f(i|∅) (65)

and similarly,

[f(Ŝ)− f(Ŝ ∩ S)] ≥ α̂f
∑
i∈Ŝ\S

f(i|Ŝ\i) (66)

The inequalities above hold by considering a chain of sets from Ŝ ∩ S to either Ŝ or S and applying the weak-submodularity
definition by considering sets S and T appropriately. We then multiply−1 to inequality (66), multiply 1/α̂f to equation (65)
and add both of them together. We then achieve:

f(S) ≤ f(Ŝ)− α̂f
∑
i∈Ŝ\S

f(i|Ŝ\i) + 1

α̂f

∑
i∈S\Ŝ

f(i|∅) (67)

Rearranging this, we get the expression for the Lemma.

C.2. Proof of Theorem 10

Theorem 10 If the training algorithm in Algorithm 1 (lines 3, 6, 8) provides perfect estimates of the model parameters, it
obtains a set Ŝ which satisfies:

f(Ŝ) ≤ k

α̂f (1 + (k − 1)(1− κ̂f )α̂f )
f(S∗) (68)

where α̂f and κ̂f are as stated in Theorem 6 and Proposition 8 respectively.

Proof From the definition of α-submodularity, note that α̂ff(S) ≤
∑
i∈S f(i). Next, we can obtain the following inequality

for any k ∈ S using weak submodularity:

f(S)− f(k) ≥ α̂f
∑
j∈S\k

(f(j|S\j) (69)

We can add this up for all k ∈ S and obtain:

|S|f(S)−
∑
k∈S

f(k) ≥ α̂f
∑
k∈S

∑
j∈S\k

(f(j|S\j)

≥ α̂f (|S| − 1)
∑
k∈S

f(k|S\k) (70)

Finally, from the definition of curvature, note that f(k|S\k) ≤ (1− κ̂f )f(k). Combining all this together, we obtain:

|S|f(S) ≥ (1 + α̂f (1− κ̂f )(|S| − 1))
∑
j∈S

f(j) (71)
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which implies: ∑
j∈S

f(j) ≤ |S|
1 + α̂f (1− κ̂f )(|S| − 1)

f(S) (72)

Combining this with the fact that α̂ff(S) ≤
∑
i∈S f(i), we obtain that:

f(S) ≤ 1

α̂f

∑
i∈S

f(i) ≤ |S|
α̂f (1 + α̂f (1− κ̂f )(|S| − 1))

f(S) (73)

The approximation guarantee then follows from some simple observations. In particular, given an approximation

mf (S) = 1

α̂f

∑
i∈S

f(i) (74)

which satisfies f(S) ≤ mf (S) ≤ βff(S), we claim that optimizing mf essentially gives a βf approximation factor.
To prove this, let S∗ be the optimal subset, and Ŝ be the subset obtained after optimizing mf . The following chain of
inequalities holds:

f(Ŝ) ≤ mf (Ŝ) ≤ mf (S∗) ≤ βff(S∗) (75)

This shows that Ŝ is a βf approximation of S∗. Finally, note that this is just the first iteration of SELCON, and with
subsequent iterations, SELCON is guaranteed to reduce the objective value (see Appendix C.4).

C.3. Proof of Theorem 11

Theorem 11 If the training algorithm (lines 3, 6, 8) in Algorithm 1 provides imperfect estimates, so that
‖F (ŵ, µ̂,S)− F (w∗(µ∗(S),S),µ∗(S),S)‖ ≤ ε for any S, then Algorithm 1 obtains a set Ŝ that satisfies:

f(Ŝ) ≤
(

k

α̂f (1 + (k − 1)(1− κ̂f )α̂f )
+

2kε

`

)
f(S∗),

where ` = mina∈Dminw λ||w||2 + (yi − hw(xi))2, α̂f and κ̂f are obtained in Theorem 6 and Proposition 8, respectively.

Proof Define:

βf =
k

(1 + (k − 1)(1− κ̂f )α̂f )
(76)

and also define, f̂(S) = F (ŵ, µ̂,S) and f(S) = F (w∗(µ∗(S),S),µ∗(S),S). Note that instead of having access to f , the
algorithm has access to f̂ which satisfies:

|f(S)− f̂(S)| ≤ ε, ∀S (77)

Let us assume that f̂ is always smaller compared to f , i.e. in other words,

f(S) ≤ f̂(S) ≤ f(S) + ε (78)

Combining this with the fact that:

f(S) ≤ 1

α̂f

∑
j∈S

f(j) ≤ βf
α̂f
f(S) (79)

we obtain the following chain of inequalities:

f(S) ≤ 1

α̂f

∑
j∈S

f(j) ≤ 1

α̂f

∑
j∈S

[f̂(j)] ≤ 1

α̂f

∑
j∈S

[f(j) + ε] ≤ βf
α̂f
f(S) + kε

α̂f
(80)

where |S| = k. Finally, we get the approximation factor by dividing by a lower bound of l = minS:|S|=k f(S) which can
be obtained via a very similar proof technique to the weak submodularity and curvature results. Hence we get the final
approximation factor as βf

α̂f
+ kε

lα̂f
.

We end by pointing out that we can get a similar result even if we do not assume that f̂ is always smaller compared to f and
in fact, assume the more general condition:

f(S)− ε ≤ f̂(S) ≤ f(S) + ε (81)
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The only difference is we have an additional factor of 2 in the additive bound. In particular, we get the following chain of
inequalities:

f(S) ≤ 1

α̂f

∑
j∈S

f(j) ≤ 1

α̂f

∑
j∈S

[f̂(j) + ε] ≤ 1

α̂f

∑
j∈S

[f(j) + 2ε] ≤ βf
α̂f
f(S) + 2kε

α̂f
(82)

The chain of inequalities holds because f(j) ≤ f̂(j) + ε and f̂(j) ≤ f(j) + ε.

C.4. Convergence property

We begin this section by showing that SELCON is guaranteed to reduce the objective value at every iteration as long as we
obtain perfect solutions from the training algorithm (lines 3, 6, 8 in Algorithm 1).

Lemma 14 SELCON (Algorithm 1) is guaranteed to reduce the objective value of f at every iteration as long as we obtain
perfect solutions from the training sub-routine.

Proof SELCON essentially uses modular upper bounds mf of f at every iteration. Denote Sl as the set obtained in the lth
iteration and let Sl+1 be the one from the l + 1th iteration. Then the following chain of inequalities hold:

f(Sl+1) ≤ mf (Sl+1) ≤ mf (Sl) = f(Sl) (83)

The first inequality holds because mf is a modular upper bound, the second inequality holds because Sl+1 is the solution
of minimizing mf (and hence mf (Sl=1) is lower in value compared to mf (Sl)). The last equality holds because mf is a
modular upper bound which is tight at Sl and hence mf (Sl) = f(Sl). This shows that f(Sl+1) ≤ f(Sl).

We end this section by pointing out that this chain of inequalities does not hold if we get inexact or approximation solutions
to the training sub-routine. In practice, we observe that the objective value of f still reduces even though we obtain only
inexact solutions since the inexact solutions are often close to the true solutions of the training step.
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D. Additional details about experimental setup
D.1. Dataset details

• Cadata: California housing dataset is obtained from the LIBSVM package 6. This spatial dataset contains 20,640
observations on housing prices with 9 economic covariates. As described in (Pace & Barry, 1997), here x are
information about households in a block, say median age, median income, total rooms/population, bedrooms/population,
population/households,households etc. and y is median price in median housing prices by all California census blocks.
It has dimension(x) = 8.

• Law: This refers to the dataset on Law School Admissions Council’s National Longitudinal Bar Passage Study (Wight-
man, 1998). Here x is information about a law student, including information on gender, race, family income, age,
etc. and y indicates GPA normalised to [0, 1] . We use race as a protected attribute for the fairness experiments. It has
dimension(x) = 10.

• NYSE-High: This dataset is obtained from the New York stock exchange (NYSE) 7 dataset as follows. Given the set
{si} with si corresponding to the the highest stock price of the ith day, we define sk+1 =

∑
i∈[100] wisk+1−i. Here

yk = sk+1 and xk = [sk, sk−1, ..., sk−99]. This dataset has dimension(x) = 100.
• NYSE-close: This dataset is obtained from the New York stock exchange (NYSE) 8 dataset as follows. Given the set
{si} with si corresponding to the the closing stock price of the ith day, we define sk+1 =

∑
i∈[100] wisk+1−i. Here

yk = sk+1 and xk = [sk, sk−1, ..., sk−99]. This dataset has dimension(x) = 100.

D.2. Implementation details

Our models. We use two models— a simple linear regression model and a two layer neural network that consists of a linear
layer of 5 hidden nodes and a ReLU activation unit. In all our experiments, we use a learning rate of 0.01. We choose the
value of δ as the 30% of the mean validation error obtained using Full-selection.

Implementation of CRAIG. CRAIG (Mirzasoleiman et al., 2020) requires computing a D × D matrix with similarity
measure for each pair of points in the training set. For the larger datasets, i.e., NYSE-close and NYSE-high, such a
computation requires a large amount of memory. Hence, we use a stochastic version where we randomly select R points
and build R×R matrix and select kRD each time and repeat the process DR times. We use R = 50000. Note that, for other
datasets, since |D| < 50000 the stochastic version is same as the original version.

CRAIG requires us to select the subset only once, since features will not change even as the training proceeds. However,
since CRAIG is an adaptive method, for the non-linear setting, we need to run CRAIG every epoch. Despite using the
stochastic version, we found CRAIG to be very slow in the non-linear setting and therefore we don’t report it.

Implementation of GLISTER. GLISTER (Killamsetty et al., 2021b), an another adaptive subset selection method where
we select a new subset every 35th epoch to help make a fair comparison against SELCON. We update the model parameters
after every selection step.

Machine configuration. We performed our experiments on a computer system with Ubuntu 16.04.6 LTS, an i-7 with 6
cores CPU and a total RAM of 125 GBs. The system had a single GeForce GTX 1080 GPU which was employed in our
experiments.

E. Additional experiments
E.1. Discussion on adding offsets to the response variable y

The approximation ratio of SELCON is f(Ŝ)/f(S∗) ≤ k

α̂f (1 + (k − 1)(1− κ̂f )α̂f )
when the training method is accurate.

A trite calculation shows that this quantity is O(y4max/y
4
min). If ymax/ymin is very high, the approximation ratio is affected.

Such a problem can be easily overcome by adding an offset to y and then augmenting the feature x with an additional term
1— which incorporates the effect of the added offset. We summarize the effect of this offset on the approximation ratio (for
different datasets) in Figure 5 which shows that adding an offset improves the approximation factor. Note that in the case of

6https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/regression.html
7https://www.kaggle.com/dgawlik/nyse
8https://www.kaggle.com/dgawlik/nyse

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/regression.html
https://www.kaggle.com/dgawlik/nyse
https://www.kaggle.com/dgawlik/nyse
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Figure 5. Variation in the approximation ratio with respect to the offset added to the response variables y.

Cadata, y indicates the house price; whereas in the case of Law, y indicates student GPA. Therefore, the approximation
factor of these datasets is reasonable even without adding an offset. Whereas, for NYSE-High and NYSE-Clone, the
approximation factor is somewhat poorer at lower values of the offset (not shown in the plot).

E.2. Significance Tests
RANDOM-SELECTION

RANDOM-WITH-CONSTRAINTS 0.000089
CRAIG 0.00012 0.50159

GLISTER 0.040043 0.00014 0.00078
SELCON-WITHOUT-CONSTRAINTS 0.001713 0.601212 0.88129 0.00803

SELCON 0.0001 0.00014 0.00059 0.0001 0.0001
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Table 6. Pairwise significance p-values using Wilcoxon signed rank test.

In Table 6, we show the p-values of two-tailed Wilcoxon signed-rank test (Wilcoxon, 1992) performed on every possible
pair of data selection strategies to determine whether there is a significant statistical difference between the strategies in
each pair, across all datasets. Our null hypothesis is that there is no difference between each pair of data selection strategies.
From the results, it is evident that SELCON significantly outperforms other baselines at p < 0.01.


