
Stochastic Sign Descent Methods: New Algorithms and Better Theory

Mher Safaryan 1 Peter Richtárik 1 2

Abstract
Various gradient compression schemes have been
proposed to mitigate the communication cost
in distributed training of large scale machine
learning models. Sign-based methods, such as
signSGD (Bernstein et al., 2018), have recently
been gaining popularity because of their simple
compression rule and connection to adaptive gra-
dient methods, like ADAM. In this paper, we ana-
lyze sign-based methods for non-convex optimiza-
tion in three key settings: (i) standard single node,
(ii) parallel with shared data and (iii) distributed
with partitioned data. For single machine case,
we generalize the previous analysis of signSGD
relying on intuitive bounds on success probabili-
ties and allowing even biased estimators. Further-
more, we extend the analysis to parallel setting
within a parameter server framework, where expo-
nentially fast noise reduction is guaranteed with
respect to number of nodes, maintaining 1-bit
compression in both directions and using small
mini-batch sizes. Next, we identify a fundamen-
tal issue with signSGD to converge in distributed
environment. To resolve this issue, we propose a
new sign-based method, Stochastic Sign Descent
with Momentum (SSDM), which converges under
standard bounded variance assumption with the
optimal asymptotic rate. We validate several as-
pects of our theoretical findings with numerical
experiments.

1. Introduction
One of the key factors behind the success of modern ma-
chine learning models is the availability of large amounts
of training data (Bottou & Le Cun, 2003; Krizhevsky et al.,
2012; Schmidhuber, 2015). However, the state-of-the-art
deep learning models deployed in industry typically rely on
datasets too large to fit the memory of a single computer, and
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hence the training data is typically split and stored across
a number of compute nodes capable of working in parallel.
Training such models then amounts to solving optimization
problems of the form

min
x∈Rd

f(x) := 1
M

M∑
n=1

fn(x), (1)

where fn : Rd → R represents the non-convex loss of
a deep learning model parameterized by x ∈ Rd associ-
ated with data stored on node n. Arguably, stochastic gra-
dient descent (SGD) (Robbins & Monro, 1951; Vaswani
et al., 2019; Qian et al., 2019) in of its many variants
(Kingma & Ba, 2015; Duchi et al., 2011; Schmidt et al.,
2017; Zeiler, 2012; Ghadimi & Lan, 2013) is the most pop-
ular algorithm for solving (1). In its basic implementa-
tion, all workers n ∈ {1, 2, . . . ,M} in parallel compute
a random approximation ĝn(xk) of ∇fn(xk), known as
the stochastic gradient. These approximations are then
sent to a master node which performs the aggregation
ĝ(xk) := 1

M

∑M
n=1 ĝ

n(xk). The aggregated vector is subse-
quently broadcast back to the nodes, each of which performs
an update of the form

xk+1 = xk − γkĝ(xk),

updating their local copies of the parameters of the model.

1.1. Gradient Compression

Typically, communication of the local gradient estimators
ĝn(xk) to the master forms the bottleneck of such a system
(Seide et al., 2014; Zhang et al., 2017; Lin et al., 2018). In an
attempt to alleviate this communication bottleneck, a num-
ber of compression schemes for gradient updates have been
proposed and analyzed (Alistarh et al., 2017; Wang et al.,
2018; Wen et al., 2017; Khirirat et al., 2018; Mishchenko
et al., 2019). A compression scheme is a (possibly ran-
domized) mapping Q : Rd → Rd, applied by the nodes
to ĝn(xk) (and possibly also by the master to aggregated
update in situations when broadcasting is expensive as well)
in order to reduce the number of bits of the communicated
message.

Sign-based compression. Although most of the existing
theory is limited to unbiased compression schemes, i.e.,
EQ(x) = x, biased schemes such as those based on com-
municating signs of the update entries only often perform
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Table 1. Summary of main theoretical results obtained in this work.

Convergence
rate

Gradient
norm used
in theory

Weak noise
assumptions

Weak
dependence

on smoothness

Can handle
biased

estimator?

Can work
with small
minibatch?

Can handle
partitioned
train data?

SGD
(Ghadimi & Lan, 2013) O

(
1√
K

)
l2 norm
squared Var[ĝ] ≤ σ2 7

d
max
i=1

Li NO YES YES

signSGD
(Bernstein et al., 2019) O

(
1√
K

) a mix of
l1 and l2

squared

7
unimodal,

symmetric &
Var[ĝi] ≤ σ2

i

3 1
d

d∑
i=1

Li NO YES NO

signSGD
with M Maj.Vote

(Bernstein et al., 2019)

O
(

1

K1/4

)
(speedup∼ 1√

M
)

l1 norm

7
unimodal,

symmetric &
Var[ĝi] ≤ σ2

i

3 1
d

d∑
i=1

Li NO NO NO

Signum
(Bernstein et al., 2018) O

(
logK

K1/4

)
l1 norm

7
unimodal,

symmetric &
Var[ĝi] ≤ σ2

i

3 1
d

d∑
i=1

Li NO NO NO

signSGD
This work (Thm. 1, 2)

O
(

1√
K

)
ρ-norm

3

ρi >
1
2

3 1
d

d∑
i=1

Li YES YES NO

signSGD
with M Maj.Vote

This work (Thm. 3)

O
(

1√
K

)
(speedup∼ e−M )

ρM -norm
3

ρi >
1
2

3 1
d

d∑
i=1

Li YES YES NO

SSDM (ALG. 3)
This work (Thm. 4)

O
(

1

K1/4

)
l1 norm Var[ĝ] ≤ σ2 3 1

M

M∑
n=1

Ln NO YES YES

much better (Seide et al., 2014; Strom, 2015; Wen et al.,
2017; Carlson et al., 2015; Balles & Hennig, 2018; Bern-
stein et al., 2018; 2019; Zaheer et al., 2018; Liu et al., 2019).
The simplest among these sign-based methods is signSGD
(see Algorithm 1), whose update direction is assembled
from the component-wise signs of the stochastic gradient.

Adaptive methods. While ADAM is one of the most pop-
ular adaptive optimization methods used in deep learning
(Kingma & Ba, 2015), there are issues with its convergence
(Reddi et al., 2019) and generalization (Wilson et al., 2017)
properties. It was noted by Balles & Hennig (2018) that
the behaviour of ADAM is similar to a momentum version
of signSGD. Connection between sign-based and adaptive
methods has long history, originating at least in Rprop (Ried-
miller & Braun, 1993) and RMSprop (Tieleman & Hinton,
2012). Therefore, investigating the behavior of signSGD
can improve our understanding on the convergence of adap-
tive methods such as ADAM.

2. Contributions
We now present the main contributions of this work. Our
key results are summarized in Table 1.

2.1. Single Machine Setup

• 2 methods for 1-node setup. In the M = 1 case, we
study two general classes of sign based methods for mini-

mizing a smooth non-convex function f . The first method
has the standard form1

xk+1 = xk − γk sign ĝ(xk), (2)

while the second has a new form not considered in the
literature before:

xk+1 = arg min{f(xk), f(xk − γk sign ĝ(xk))}. (3)

• Key novelty. The key novelty of our methods is in a
substantial relaxation of the requirements that need to be
imposed on the gradient estimator ĝ(xk) of the true gradient
∇f(xk). In sharp contrast with existing approaches, we
allow ĝ(xk) to be biased. Remarkably, we only need one
additional and rather weak assumption on ĝ(xk) for the
methods to provably converge: we require the signs of the
entries of ĝ(xk) to be equal to the signs of the entries of
g(xk) := ∇f(xk) with a probability strictly larger than 1/2
(see Assumption 1). Formally, we assume the following
bounds on success probabilities:

Prob(sign ĝi(xk) = sign gi(xk)) > 1
2 (SPB)

for all i ∈ {1, 2, . . . , d} with gi(xk) 6= 0.

1sign g is applied element-wise to the entries g1, g2, . . . , gd of
g ∈ Rd. For t ∈ R we define sign t = 1 if t > 0, sign t = 0 if
t = 0, and sign t = −1 if t < 0.
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We provide three necessary conditions for our assumption
to hold (see Lemma 1, 2 and 3) and show through a coun-
terexample that a slight violation of this assumption breaks
the convergence.

• Convergence theory. While our complexity bounds have
the same O(1/

√
K) dependence on the number of iterations,

they have a better dependence on the smoothness param-
eters associated with f . Theorem 1 is the first result on
signSGD for non-convex functions which does not rely on
mini-batching, and which allows for step sizes independent
of the total number of iterations K. Finally, Theorem 1 in
(Bernstein et al., 2019) can be recovered from our general
Theorem 1. Our bounds are cast in terms of a novel norm-
like function, which we call the ρ-norm, which is a weighted
l1 norm with positive variable weights.

2.2. Parallel Setting with Shared Data

• Noise reduction at exponential speed. Under the same
SPB assumption, we extend our results to the parallel setting
with arbitrary M nodes, where we also consider sign-based
compression of the aggregated gradients. Considering the
noise-free training as a baseline, we guarantee exponentially
fast noise reduction with respect to M (see Theorem 3).

2.3. Distributed Training with Partition Data

• New sign-based method for distributed training. We
describe a fundamental obstacle in distributed environment,
which prevents signSGD to converge. To resolve the is-
sue, we propose a new sign-based method–Stochastic Sign
Descent with Momentum (SSDM); see Algorithm 3.

• Key novelty. The key novelty in our SSDM method is the
notion of stochastic sign operator s̃ign : Rd → Rd defined
as follows:(

s̃ign g
)
i

=

{
+1, with probability 1

2 + 1
2
gi
‖g‖

−1, with probability 1
2 −

1
2
gi
‖g‖

for 1 ≤ i ≤ d and s̃ign0 = 0 with probability 1.

Unlike the deterministic sign operator, stochastic s̃ign natu-
rally satisfies the SPB assumption and it gives an unbiased
estimator with a proper scaling factor.

• Convergence theory. Under the standard bounded vari-
ance condition, our SSDM method guarantees the optimal
asymptotic rate O(ε−4) without error feedback trick and
communicating sign-bits only (see Theorem 4).

3. Success Probabilities and Gradient Noise
In this section we describe our key (and weak) assumption
on the gradient estimator ĝ(x), and show through a coun-
terexample that without this assumption, signSGD can fail

to converge. Then we provide several sufficient conditions
for our assumption to hold and define a new norm-like func-
tion for measuring the gradients.

3.1. Success Probability Bounds

First, we state our key assumption on the stochastic gradient.

Assumption 1 (SPB: Success Probability Bounds). For
any x ∈ Rd, we have access to an independent (and not
necessarily unbiased) estimator ĝ(x) of the true gradient
g(x) := ∇f(x) that if gi(x) 6= 0, then

ρi(x) := Prob (sign ĝi(x) = sign gi(x)) > 1
2 (4)

for all x ∈ Rd and all i ∈ {1, 2, . . . , d}.

We will refer to the probabilities ρi as success probabilities.
As we will see, they play a central role in the convergence
of sign based methods. Moreover, we argue that it is rea-
sonable to require from the sign of stochastic gradient to
show true gradient direction more likely than the opposite
one. Extreme cases of this assumption are the absence of
gradient noise, in which case ρi = 1, and an overly noisy
stochastic gradient, in which case ρi ≈ 1

2 .

Remark 1. Assumption 1 can be relaxed by replacing
bounds (4) with

E [sign (ĝi(x) · gi(x))] > 0, if gi(x) 6= 0.

However, if sign ĝi(x) 6= 0 almost surely (e.g. ĝi(x) is
continuous), then these bounds are identical.

Extension to stochastic sign oracle. Notice that we do not
require ĝ to be unbiased and we do not assume uniform
boundedness of the variance, or of the second moment. This
observation allows to extend existing theory to more general
sign-based methods with a stochastic sign oracle. By a
stochastic sign oracle we mean an oracle that takes xk ∈ Rd
as an input, and outputs a random vector ŝk ∈ Rd with
entries in ±1. However, for the sake of simplicity, in the
rest of the paper we will work with the signSGD formulation,
i.e., we let ŝk = sign ĝ(xk).

3.2. A Counterexample to SIGNSGD

Here we analyze a counterexample to signSGD discussed
in (Karimireddy et al., 2019). Consider the following least-
squares problem with unique minimizer x∗ = (0, 0):

min
x∈R2

{
f(x) = 1

2

[
〈a1, x〉2 + 〈a2, x〉2

]}
, (5)

a1 =
[

1+ε
−1+ε

]
, a2 =

[−1+ε
1+ε

]
, (6)

where ε ∈ (0, 1) and stochastic gradient ĝ(x) =
∇〈ai, x〉2 = 2〈ai, x〉ai with probabilities 1/2 for i = 1, 2.
Let us take any point from the line l = {(z1, z2) : z1 + z2 =
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2} as initial point x0 for the algorithm and notice that
sign ĝ(x) = ±(1,−1) for any x ∈ l. Hence, signSGD
with any step-size sequence remains stuck along the line l,
whereas the problem has a unique minimizer at the origin.

In this example, Assumption 1 is violated. Indeed, notice
that sign ĝ(x) = (−1)i sign〈ai, x〉

[−1
1

]
with probabilities

1/2 for i = 1, 2. By S := {x ∈ R2 : 〈a1, x〉·〈a2, x〉 > 0} 6=
∅ denote the open cone of points having either an acute or
an obtuse angle with both ai’s. Then for any x ∈ S, the sign
of the stochastic gradient is ±(1,−1) with probabilities 1/2.
Hence for any x ∈ S, we have low success probabilities:

ρi(x) = Prob (sign ĝi(x) = sign gi(x)) ≤ 1
2 , i = 1, 2.

So, in this case we have an entire conic region with low
success probabilities, which clearly violates (4). Further-
more, if we take a point from the complement open cone
S̄c, then the sign of stochastic gradient equals to the sign of
gradient, which is perpendicular to the axis of S (thus in the
next step of the iteration we get closer to S). For example,
if 〈a1, x〉 < 0 and 〈a2, x〉 > 0, then sign ĝ(x) = (1,−1)
with probability 1, in which case x−γ sign ĝ(x) gets closer
to low success probability region S.

3.3. Sufficient Conditions for SPB

To motivate our SPB assumption, we compare it with 4
different conditions commonly used in the literature and
show that it holds under general assumptions on gradient
noise. Below, we assume that for any point x ∈ Rd, we
have access to an independent and unbiased estimator ĝ(x)
of the true gradient g(x) = ∇f(x).

Lemma 1 (see C.1). If for each coordinate ĝi has a uni-
modal and symmetric distribution with variance σ2

i =
σ2
i (x), 1 ≤ i ≤ d and gi 6= 0, then

ρi ≥ 1
2 + 1

2
|gi|

|gi|+
√

3σi
> 1

2 .

This is the setup used in Theorem 1 of Bernstein et al. (2019).
We recover their result as a special case using Lemma 1 (see
Appendix D). Next, we replace the distribution condition by
coordinate-wise strong growth condition (SGC) (Schmidt &
Le Roux, 2013; Vaswani et al., 2019) and fixed mini-batch
size.

Lemma 2 (see C.2). Let coordinate-wise variances
σ2
i (x) ≤ ci g

2
i (x) are bounded for some constants ci.

Choose mini-batch size τ > 2 maxi ci. If further gi 6= 0,
then

ρi ≥ 1− ci
τ > 1

2 .

Now we remove SGC and give an adaptive condition on
mini-batch size for the SPB assumption to hold.

Lemma 3 (see C.3). Let σ2
i = σ2

i (x) be the variance and
ν3
i = ν3

i (x) be the 3th central moment of ĝi(x), 1 ≤ i ≤ d.

Then SPB assumption holds if mini-batch size

τ > 2 min
(
σ2
i

g2i
,

ν3
i

|gi|σ2
i

)
.

Finally, we compare SPB with the standard bounded vari-
ance assumption in the sense of differential entropy.
Lemma 4 (see C.4). Differential entropy of a probabil-
ity distribution under the bounded variance assumption is
bounded, while under the SPB assumption it could be arbi-
trarily large.
Remark 2. Note that SPB assumption describes the con-
vergence of sign descent methods, which is known to be
problem dependent (e.g. see (Balles & Hennig, 2018), sec-
tion 6.2 Results). One should view the SPB condition as a
criteria to problems where sign based methods are useful.
Remark 3. Differential entropy argument is an attempt to
bridge our new SPB assumption to one of the most basic
assumptions in the literature, bounded variance assumption.
Clearly, they are not comparable in the usual sense, and
neither one is implied by the other. Still, we propose another
viewpoint to the situation and compare such conditions
through the lens of information theory. Practical meaning
of such observation is that SPB handles a much broader
(though not necessarily more important) class of gradient
noise than bounded variance condition. In other words, this
gives an intuitive measure on how much restriction we put
on the noise.

3.4. A New “Norm” for Measuring the Gradients

We introduce a norm-like function ρ-norm, induced from
success probabilities and use it to measure gradients in our
convergence rates.
Definition 1 (ρ-norm). Let ρ := {ρi(x)}di=1 be the prob-
ability functions from the SPB assumption. We define the
ρ-norm of gradient g(x) via

‖g(x)‖ρ :=
∑d
i=1(2ρi(x)− 1)|gi(x)|.

Although, in general, ρ-norm is not a norm in classical
sense, it can be reduced to one in special cases. For example,
the setup of Lemma 1 allows to lower bound ρ-norm by a
mixture of l1 and squared l2 norms, denoted by l1,2:

‖g‖ρ =
d∑
i=1

(2ρi − 1)|gi| ≥
d∑
i=1

g2i
|gi|+

√
3σi

:= ‖g‖l1,2 . (7)

To understand the nature of the l1,2 norm, consider the fol-
lowing two cases when σi(x) ≤ c|gi(x)|+ c̃ for some con-
stants c, c̃ ≥ 0. If the iterations are in ε-neighbourhood
of a minimizer x∗ with respect to the l∞ norm (i.e.,
max1≤i≤d |gi| ≤ ε), then the l1,2 norm is equivalent to
scaled l2 norm squared:

1

(1+
√

3c)ε+
√

3c̃
‖g‖22 ≤ ‖g‖l1,2 ≤ 1√

3c̃
‖g‖22.



Stochastic Sign Descent Methods

Figure 1. Contour plots of the mixed l1,2 norm (7) at 4 different
scales with fixed noise σ = 1.

On the other hand, if iterations are away from a minimizer
(i.e., min1≤i≤d |gi| ≥ L), then the l1,2-norm is equivalent
to scaled l1 norm:

1
1+
√

3(c+c̃/L)
‖g‖1 ≤ ‖g‖l1,2 ≤ 1

1+
√

3c
‖g‖1.

These equivalences are visible in Figure 1, where we plot
the level sets of g 7→ ‖g‖l1,2 at various distances from the
origin. Similar mixed norm observation for signSGD was
also noted by Bernstein et al. (2019) and Chen et al. (2020).
Alternatively, under the setup of Lemma 2, ρ-norm reduces
to weighted l1 norm.

‖g‖ρ =
∑d
i=1(2ρi − 1)|gi| ≥

∑d
i=1(1− 2ci

τ )|gi|. (8)

4. Convergence Theory
Now we turn to our theoretical results of sign based methods.
First we give our general convergence rates under the SPB
assumption. Afterwards, we extend the theory to parallel
setting under the same SPB assumption with majority vote
aggregation. Finally, we explain the convergence issue of
signSGD in distributed training with partitioned data and
propose a new sign based method, SSDM, to resolve it.

Algorithm 1 SIGNSGD
1: Input: step size γk, current point xk
2: ĝk ← StochasticGradient(f, xk)
3: ŝk = sign ĝk
4: Option 1: xk+1 = xk − γkŝk
5: Option 2: xk+1 = arg min{f(xk), f(xk − γkŝk)}

Throughout the paper we assume that nonconvex f : Rd →
R is lower bounded, i.e., f(x) ≥ f∗ for all x ∈ Rd.

4.1. Convergence Analysis for M = 1

We start our convergence theory with single node set-
ting, where f is smooth with some non-negative constants
(L1, . . . , Ld), i.e.,

f(y) ≤ f(x) + 〈∇f(x), y − x〉+
∑d
i=1

Li

2 (yi − xi)2

for all x, y ∈ Rd. Denote L̄ := 1
d

∑
i Li.

Theorem 1 (see C.5). Under the SPB assumption, single
node signSGD (Algorithm 1) with Option 1 and with step
sizes γk = γ0/

√
k + 1 converges as follows

min
0≤k<K

E‖∇f(xk)‖ρ ≤ f(x0)−f∗

γ0
√
K

+ 3γ0dL̄
2

logK√
K

. (9)

If γk ≡ γ > 0, we get 1/K convergence to a neighbourhood:

1
K

∑K−1
k=0 E‖∇f(xk)‖ρ ≤ f(x0)−f∗

γK + γdL̄
2 . (10)

We now comment on the above result:

• Generalization. Theorem 1 is the first general result on
signSGD for non-convex functions without mini-batching,
and with step sizes independent of the total number of it-
erations K. Known convergence results (Bernstein et al.,
2018; 2019) on signSGD use mini-batches and/or step sizes
dependent on K. Moreover, they also use unbiasedness and
unimodal symmetric noise assumptions, which are stronger
assumptions than our SPB assumption (see Lemma 1). Fi-
nally, Theorem 1 in (Bernstein et al., 2019) can be recovered
from Theorem 1 (see Appendix D).

• Convergence rate. Rates (9) and (10) can be arbitrarily
slow, depending on the probabilities ρi. This is to be ex-
pected. At one extreme, if the gradient noise was completely
random, i.e., if ρi ≡ 1/2, then the ρ-norm would become
identical zero for any gradient vector and rates would be
trivial inequalities, leading to divergence as in the coun-
terexample. At other extreme, if there was no gradient noise,
i.e., if ρi ≡ 1, then the ρ-norm would be just the l1 norm
and we get the rate O(1/

√
K) with respect to the l1 norm.

However, if we know that ρi > 1/2, then we can ensure
that the method will eventually converge.

Theorem 1 can be further simplified under the setup of
Lemma 1 (see Corollary 1) and Lemma 2 (see Corollary 2).
We now state a general convergence rate for Algorithm 1
with Option 2.
Theorem 2 (see C.6). Under the SPB assumption, signSGD
(Algorithm 1) with Option 2 and with step sizes γk =
γ0/
√
k + 1 converges as follows:

1
K

K−1∑
k=0

E‖∇f(xk)‖ρ ≤ 1√
K

[
f(x0)−f∗

γ0
+ γ0dL̄

]
.

In the case of γk ≡ γ > 0, the same rate as (10) is achieved.

Comparing Theorem 2 with Theorem 1, notice that one can
remove the log factor from (9) and bound the average of past
gradient norms instead of the minimum. On the other hand,
in a big data regime, function evaluations in Algorithm 1
(Option 2, line 4) are infeasible. Clearly, Option 2 is useful
only in the setup when one can afford function evaluations
and has rough estimates about the gradients (i.e., signs of
stochastic gradients). This option should be considered
within the framework of derivative-free optimization.
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4.2. Convergence Analysis in Parallel Setting

In this part we present the convergence result of parallel
signSGD (Algorithm 2) with majority vote introduced by
Bernstein et al. (2018). Majority vote is considered within
a parameter server framework, where for each coordinate
parameter server receives one sign from each node and sends
back the sign sent by the majority of nodes. In parallel
setting, the training data is shared among the nodes.

Algorithm 2 PARALLEL SIGNSGD W/ MAJORITY VOTE

1: Input: step size γk, current point xk, # of nodes M
2: on each node n
3: ĝn(xk)← StochasticGradient(f, xk)
4: on server
5: get sign ĝn(xk) from all nodes
6: send sign

[∑M
n=1 sign ĝn(xk)

]
to all nodes

7: on each node n
8: xk+1 = xk − γk sign

[∑M
n=1 sign ĝn(xk)

]

Known convergence results (Bernstein et al., 2018; 2019)
use O(K) mini-batch size as well as O(1/K) constant step
size. In the sequel we remove this limitations extending
Theorem 1 to parallel training. In this case the number of
nodes M get involved in geometry introducing new ρM -
norm, which is defined by the regularized incomplete beta
function I (see Appendix C.7).
Definition 2 (ρM -norm). Let M be the number of nodes
and denote l := bM+1

2 c. Define ρM -norm of gradient g(x)
at x ∈ Rd via

‖g(x)‖ρM :=
∑d
i=1 (2I(ρi(x); l, l)− 1) |gi(x)|.

Clearly, ρ1-norm coincides with ρ-norm. Now we state the
convergence rate of parallel signSGD with majority vote.
Theorem 3 (see C.7). Under SPB assumption, parallel
signSGD (Algorithm 2) with step sizes γk = γ0/

√
k + 1

converges as follows

min
0≤k<K

E‖∇f(xk)‖ρM ≤
f(x0)−f∗

γ0
√
K

+ 3γ0dL̄
2

logK√
K
. (11)

For constant step sizes γk ≡ γ > 0, we have convergence
up to a level proportional to step size γ:

1
K

∑K−1
k=0 E‖∇f(xk)‖ρM ≤

f(x0)−f∗
γK + γdL̄

2 . (12)

• Speedup with respect to M . Note that, in parallel setting
with M nodes, the only difference in convergence rates
(11) and (12) is the modified ρM -norm measuring the size
of gradients. Using Hoeffding’s inequality, we show (see
Appendix C.8) that ‖g(x)‖ρM → ‖g(x)‖1 exponentially
fast as M →∞, namely(

1− e−(2ρ(x)−1)2l
)
‖g(x)‖1 ≤ ‖g(x)‖ρM ≤ ‖g(x)‖1,

where ρ(x) = min1≤i≤d ρi(x) > 1/2. To appreciate the
speedup with respect to M , consider the noise-free case
as a baseline, for which ρi ≡ 1 and ‖g(x)‖ρM ≡ ‖g(x)‖1.
Then, the above inequality implies thatM parallel machines
reduce the variance of gradient noise exponentially fast.

• Number of Nodes. Theoretically there is no difference
between 2l − 1 and 2l nodes, and this is not a limitation of
the analysis. Indeed, as it is shown in the proof, expected
sign vector at the master with M = 2l−1 nodes is the same
as with M = 2l nodes:

E sign(ĝ
(2l)
i · gi) = E sign(ĝ

(2l−1)
i · gi),

where ĝ(M) is the sum of stochastic sign vectors aggregated
from nodes. Intuitively, majority vote with even number of
nodes, e.g. M = 2l, fails to provide any sign with little
probability (it is the probability of half nodes voting for +1,
and half nodes voting for −1). However, if we remove one
node, e.g. M = 2l − 1, then master receives one sign-vote
less but gets rid of that little probability of failing the vote
(sum of odd number of ±1 cannot vanish).

4.3. Distributed Training with Partitioned Data

First, we briefly discuss the fundamental issue of signSGD
in distributed environment and then present our new sign
based method which resolves that issue.

The Issue with Distributed signSGD. Consider distributed
training where each machine n ∈ {1, 2, . . . ,M} has its
own loss function fn(x). We argue that in this setting even
signGD (with full-batch gradients and no noise) can fail to
converge. Indeed, let us multiply each loss function fn(x)
of nth node by an arbitrary positive scalars wn > 0. Then
the landscape (in particular, stationary points) of the overall
loss function

fw(x) := 1
M

∑M
n=1 wnfn(x)

can change arbitrarily while the iterates of signGD remain
the same as the master server aggregates the same signs
sign(wn∇fn(x)) = sign∇fn(x) regardless of the scalars
wn > 0. Thus, distributed signGD is unable to sense the
weights wn > 0 modifying total loss function fw and can-
not guarantee approximate stationary point unless loss func-
tions fn have some special structures.

Novel Sign-based Method for Distributed Training. The
above issue of distributed signSGD stems from the biased-
ness of the sign operator which completely ignores the mag-
nitudes of local gradients of all nodes. We resolve this
issue by designing a novel distributed sign-based method–
Stochastic Sign Descent with Momentum (SSDM)–including
two additional layers: stochastic sign and momentum.

Motivated by SPB assumption, we introduce our new notion
of stochastic sign to replace the usual deterministic sign.
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Figure 2. Convergence of signSGD and comparison with SGD on the MNIST dataset using the split batch construction strategy. The
budget of gradient communication (MB) is fixed and the network is a single hidden layer FNN. We first tuned the constant step size over
logarithmic scale {1, 0.1, 0.01, 0.001, 0.0001} and then fine tuned it. First column shows train and test accuracies with mini-batch size
128 and averaged over 3 repetitions. We chose two weights (empirically, most of the network biases would work) and plotted histograms
of stochastic gradients before epochs 5, 25 and 50. Dashed red lines on histograms indicate the average values.

Definition 3 (Stochastic Sign). We define the stochastic
sign operator s̃ign : Rd → Rd via

(
s̃ign g

)
i

=

{
+1, with probability 1

2 + 1
2
gi
‖g‖

−1, with probability 1
2 −

1
2
gi
‖g‖

for 1 ≤ i ≤ d and s̃ign0 = 0 with probability 1.

Technical importance of stochastic s̃ign is twofold. First, it
satisfies the SPB assumption automatically, that is

Prob((s̃ign g)i = sign gi) = 1
2 + 1

2
|gi|
‖g‖ >

1
2 ,

if gi 6= 0. Second, unlike the deterministic sign operator, it
is unbiased with scaling factor ‖g‖, namely E[‖g‖ s̃ign g] =
g. We describe our SSDM method formally in Algorithm 3.

Algorithm 3 SSDM
1: Input: step size parameter γ, momentum parameter β,

# of nodes M
2: Initialize: x0 ∈ Rd, mn

−1 = ĝn0
3: for k = 0, 1, . . . ,K − 1 do
4: on each node n
5: ĝnk ← StochasticGradient(fn, xk) Local sub-sampling

6: mn
k = βmn

k−1 + (1− β)ĝnk Update the momentum

7: send snk := s̃ign mn
k to the server

8: on server
9: send sk :=

∑M
n=1 s

n
k to all nodes

10: on each node n
11: xk+1 = xk − γ

M sk Main step: Update the global model

12: end for

Consider the optimization problem (1), where each node n
owns only the data associated with loss function fn : Rd →
R, which is non-convex and Ln-smooth. We model stochas-
tic gradient oracle using the standard bounded variance
condition defined below:

Assumption 2 (Bounded Variance). For any x ∈ Rd, each
node n has access to an unbiased estimator ĝn(x) with
bounded variance σ2

n ≥ 0, namely

E [ĝn(x)] = ∇fn(x), E
[
‖ĝn(x)−∇fn(x)‖2

]
≤ σ2

n.

Now, we present our convergence result for SSDM method.

Theorem 4 (see C.9). Under Assumption 2, K ≥ 1 iter-
ations of SSDM (Algorithm 3) with momentum parameter
β = 1− 1√

K
and step-size γ = 1

K3/4
guarantee

1

K

K−1∑
k=0

E‖∇f(xk)‖ ≤ 16

K1/4

[
δf + σ̃ + L̃

√
d+

L̃d√
K

]
,

where δf = f(x0)− f∗, σ̃ = 1
M

M∑
n=1

σn, L̃ = 1
M

M∑
n=1

Ln.

Let us comment on the above rate of SSDM.

• Optimal rate using sign bits only. Note that, for non-
convex distributed training, SSDM has the same optimal
asymptotic rate O(ε−4) as SGD. In contrast, signSGD and
its momentum version Signum (Bernstein et al., 2018; 2019)
were not analyzed in distributed setting where data is parti-
tioned between nodes and require increasingly larger mini-
batches over the course of training. A general approach
to handle biased compression operators, satisfying certain
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Figure 3. Comparison of signSGD and SGD on the MNIST dataset with a fixed budget of gradient communication (MB) using single
hidden layer FNN and the standard batch construction strategy. For each batch size, we first tune the constant step size over logarithmic
scale {10, 1, 0.1, 0.01, 0.001} and then fine tune it. Shaded area shows the standard deviation from 3 repetition.

contraction property, is the error feedback (EF) mechanism
proposed by Seide et al. (2014). In particular, EF-signSGD
method of Karimireddy et al. (2019) fixes the convergence
issues of signSGD in single node setup, overcoming SBP
assumption. Furthermore, for distributed training, Tang et al.
(2019) applied the error feedback trick both for the server
and nodes in their DoubleSqueeze method maintaining the
same asymptotic rate with bi-directional compression. How-
ever, in these methods, the contraction property of compres-
sion operator used by error feedback forces to communicate
the magnitudes of local stochastic gradients together with
the signs. This is not the case for sign-based methods con-
sidered in this work, where only sign bits are communicated
between nodes and server.

• Noisy signSGD. In some sense, stochastic sign operator
(see Definition 3) can be viewed as noisy version of stan-
dard deterministic sign operator and, similarly, our SSDM
method can be viewed as noisy variant of signSGD with
momentum. This observation reveals a connection to the
noisy signSGD method of Chen et al. (2020). Despite some
similarities between the two methods, there are several tech-
nical aspects that SSDM excels their noisy signSGD. First,
the noise they add is artificial and requires a special care:
too much noise blows the convergence, too little noise is un-
able to shrink the gap between median and mean. Moreover,
as it is discussed in their paper, the variance of the noise
must depend on K (total number of iterations) and tend to
∞ with K to guarantee convergence to stationary points in
the limit. Meanwhile, the noise of SSDM is natural and
does not need to be adjusted. Next, the convergence bound
(17) of (Chen et al., 2020) is harder to interpret than the
bound in our Theorem 4 involving l2 norms of the gradients
only. Besides, the convergence rate with respect to squared
l2 norm is O(d

3/4
/K1/4), while the rate of SSDM with re-

spect to squared l2 norm isO(d/
√
K), which isO(K

1/4
/d1/4)

times faster. Lastly, it is explicitly written before Theorem
5 that the analysis assumes full gradient computation for all
nodes. In contrast, SSDM is analyzed under a more general
stochastic gradient oracle.

• All-reduce compatible. In contrast to signSGD with
majority vote aggregation, SSDM supports partial aggre-
gation of compressed stochastic signs snk . In other words,
compressed signs snk can be directly summed without ad-
ditional decompression-compression steps. This allows
SSDM to be implemented with efficient all-reduce oper-
ation instead of slower all-gather operation. Besides SSDM,
only a few compression schemes in the literature satisfy this
property and can be implemented with all-reduce operation,
e.g., SGD with random sparsification (Wangni et al., 2018),
GradiVeQ (Yu et al., 2018), PowerSGD (Vogels et al., 2019).

Finally, we show that the improved convergence theory and
low communication cost of SSDM is due to the use of both
stochastic sign operator and momentum term.

• SSDM without stochastic sign. If we replace stochas-
tic sign by deterministic sign in SSDM, then the resulting
method can provably diverge even when full gradients are
computed by all nodes. In fact, the counterexample (5)-(6)
in Section 3.2 can be easily extended to distributed setting
and can handle momentum. Indeed, consider M = 2 nodes
owning functions fn(x) = 〈an, x〉2 , n = 1, 2 with a1, a2

as defined in (6) and initial point x0 ∈ l = {(z1, z2) : z1 +
z2 = 2}. Since ∇fn(x) = 2 〈an, x〉 an ∈ span(an),
we imply mn

k ∈ span(an) for any value of parameter
β and for all iterate k ≥ 0 (see lines 2 and 6 of Algo-
rithm 3). Hence, signmn

k = ± sign an = ±
[−1

1

]
. Since

sk = signm1
k + signm2

k ∈ span(
[−1

1

]
) (see line 9), this

means that the method is again stuck along the line l as
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γ
M sk ∈ span(

[−1
1

]
) (see line 11) for any value of γ.

• SSDM without momentum. It is possible to obtain the
same asymptotic convergence rate without the momentum
term (i.e., β = 0). In this case, if all nodes also send the
norms ‖ĝnk ‖ to the server then the method can be analyzed
by a standard analysis of distributed SGD with an unbiased
compression. However, the drawback of this approach is the
higher communication cost. While the overhead of worker-
to-server communication is negligible (one extra float), the
reverse server-to-worker communication becomes costly as
the aggregated updates are dense (all entries are floats) as
opposed to the original SSDM (all entries are integers).

5. Experiments
We verify several aspects of our theoretical results experi-
mentally using the MNIST dataset with feed-forward neu-
ral network (FNN) and the well known Rosenbrock (non-
convex) function with d = 10 variables:

f(x) =
∑d−1
i=1 fi(x) =

∑d−1
i=1 100(xi+1−x2

i )
2+(1−xi)2.

5.1. Minimizing the Rosenbrock Function

The Rosenbrock function is a classic example of non-convex
function, which is used to test the performance of optimiza-
tion methods. We chose this low dimensional function in
order to estimate the success probabilities effectively in a
reasonable time and to expose theoretical connection.

Stochastic formulation of the minimization problem for
Rosenbrock function is as follows: at any point x ∈ Rd
we have access to biased stochastic gradient ĝ(x) =
∇fi(x) + ξ, where index i is chosen uniformly at random
from {1, 2, . . . , d− 1} and ξ ∼ N (0, ν2I) with ν > 0.

Figure 4 illustrates the effect of multiple nodes in distributed
training with majority vote. As we see increasing the num-
ber of nodes improves the convergence rate. It also supports
the claim that in expectation there is no improvement from
2l − 1 nodes to 2l nodes. More experiments on the Rosen-
brock function are moved to Appendix A.

5.2. Training FNN on the MNIST Dataset

We trained a single layer feed-forward network on the
MNIST with two different batch construction strategies.
The first construction is the standard way of training net-
works: before each epoch we shuffle the training dataset
and choose batches sequentially. In the second construction,
first we split the training dataset into two parts, images with
labels 0, 1, 2, 3, 4 and images with labels 5, 6, 7, 8, 9. Then
each batch of images were chosen from one of these parts
with equal probabilities. We make the following observa-
tions based on our experiments depicted in Figure 2 and
Figure 3.

Figure 4. Experiments on distributed signSGD with majority vote
using Rosenbrock function. Plots show function values with re-
spect to iterations averaged over 10 repetitions. Left plot used
constant step size γ = 0.02, right plot used variable step size with
γ0 = 0.02. We set mini-batch size 1 and used the same initial
point. Dashed blue lines mark the minimum.

• Convergence with multi-modal and skewed gradient
distributions. Due to the split batch construction strategy
we unfold multi-modal and asymmetric distributions for
stochastic gradients in Figure 2. With this experiment we
conclude that sign based methods can converge under vari-
ous gradient distributions which is allowed from our theory.

• Effectiveness in the early stage of training. Both experi-
ments show that in the beginning of the training, signSGD is
more efficient than SGD when we compare accuracy against
communication. This observation is supported by the the-
ory as at the start of the training success probabilities are
bigger (see Lemma 1) and lower bound for mini-batch size
is smaller (see Lemma 3).

• Bigger batch size, better convergence. Figure 3 shows
that the training with larger batch size improves the conver-
gence as backed by the theory (see Lemmas 2 and 3).

• Generalization effect. Another aspect of sign based
methods which has been observed to be problematic, in
contrast to SGD, is the generalization ability of the model
(see also (Balles & Hennig, 2018), Section 6.2 Results). In
the experiment with standard batch construction (see Fig-
ure 3) we notice that test accuracy is growing with training
accuracy. However, in the other experiment with split batch
construction (see Figure 2), we found that test accuracy
does not get improved during the second half of the training
while train accuracy grows consistently with slow pace.
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