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Abstract
We introduce the problem of regret minimization
in Adversarial Dueling Bandits. As in classic
Dueling Bandits, the learner has to repeatedly
choose a pair of items and observe only a rela-
tive binary ‘win-loss’ feedback for this pair, but
here this feedback is generated from an arbitrary
preference matrix, possibly chosen adversarially.
Our main result is an algorithm whose T -round
regret compared to the Borda-winner from a set
of K items is Õ(K1/3T 2/3), as well as a match-
ing Ω(K1/3T 2/3) lower bound. We also prove a
similar high probability regret bound. We further
consider a simpler fixed-gap adversarial setup,
which bridges between two extreme preference
feedback models for dueling bandits: stationary
preferences and an arbitrary sequence of prefer-
ences. For the fixed-gap adversarial setup we give
an Õ((K/∆2) log T ) regret algorithm, where ∆
is the gap in Borda scores between the best item
and all other items, and show a lower bound of
Ω(K/∆2) indicating that our dependence on the
main problem parameters K and ∆ is tight (up to
logarithmic factors). Finally, we corroborate the
theoretical results with empirical evaluations.

1. Introduction
Dueling Bandits is an online decision making framework
similar to the well known (stochastic) multi-armed bandit
(MAB) problem (Auer et al., 2002a; Slivkins, 2019), that
has gained widespread attention in the machine learning
community over the past decade (Yue et al., 2012; Zoghi
et al., 2014b; 2015a). In Dueling Bandits, a learner repeat-
edly selects a pair of items to be compared to each other in
a “duel,” and consequently observe a binary stochastic pref-
erence feedback, which can be interpreted as the winning
item in this duel. The goal of the learner is to minimize the
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regret with respect to the best item in hindsight, according
to a certain score function.

Numerous real-world applications are naturally modelled as
dueling bandit problems, including movie recommendations,
tournament ranking, search engine optimization, retail man-
agement, etc. (see also Busa-Fekete & Hüllermeier, 2014;
Yue & Joachims, 2009). Indeed, in many of these scenar-
ios, users with whom the algorithm interacts with find it
more natural to provide binary feedback by comparing two
alternatives rather than giving an absolute score for a single
alternative. Over the years, several algorithms have been
proposed for addressing dueling bandit problems (Ailon
et al., 2014; Zoghi et al., 2014a; Komiyama et al., 2015;
Zoghi et al., 2014b) and there has been some work on ex-
tending the pairwise preference to more general subset-wise
preferences (Sui et al., 2017; Brost et al., 2016; Saha &
Gopalan, 2018; 2019; Ren et al., 2018).

While almost all of the existing literature on dueling ban-
dits focus on stochastic stationary preferences, in reality
preferences might vary significantly and unpredictably over
time. For example, in video recommendation systems, user
preferences may evolve according to daily and hourly view-
ing trends; in web-search optimization, relevance of various
websites may vary rather unpredictably. In other words,
many of the real-world applications of dueling bandits actu-
ally deviate from the stochastic feedback model, and would
more faithfully be modelled in a robust worse-case (adver-
sarial) model that alleviates the strong stochastic assumption
and allows for an arbitrary sequence of preferences over
time. For similar reasons, the MAB problem, and more
generally, online learning, are frequently studied in a non-
stochastic adversarial setup (Lattimore & Szepesvári, 2018;
Bubeck & Cesa-Bianchi, 2012; Cesa-Bianchi & Lugosi,
2006; Seldin & Slivkins, 2014; Seldin & Lugosi, 2017; Neu,
2015; Bubeck & Slivkins, 2012).

Surprisingly, however, a non-stochastic version of dueling
bandits has not been well studied (with the only exception
being Gajane et al., 2015, discussed below). The first chal-
lenge in eschewing stationarity in dueling bandits lies in
the performance benchmark compared to which regret is
defined. Indeed, most works on stochastic dueling bandits
rely on the existence of a Condorcet winner: an item be-
ing preferred (and often by a gap) when compared with
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any other item. In an adversarial environment, however,
assuming a Condorcet winner makes little sense as it would
constrain the adversary to consistently prefer a certain item
at all rounds, ultimately defeating the purpose of a non-
stationary model in the first place. Another main challenge
is the inherent disconnect between the feedback observed
by the learner and her payoff at any given round; while
this disparity already exists in stochastic models of dueling
bandits, in an adversarial setup it becomes more tricky to at-
tribute preferential information to the instantaneous quality
of items.

1.1. Our contributions

In this paper, we introduce and study an adversarial ver-
sion of dueling bandits. To mitigate the issues associated
with Condorcet winner assumptions, and following recent
literature on dueling bandits (e.g., Jamieson et al., 2015;
Ramamohan et al., 2016; Falahatgar et al., 2017), we focus
on the so-called Borda score criterion. The Borda score of
an item is the probability that it is preferred over another
item chosen uniformly at random. A Borda winner (i.e.,
an item with the highest Borda score) always exists for any
preference matrix, and more generally, this notion naturally
extends to any arbitrary sequence of preference matrices.
However, the second challenge from above remains: the
Borda score of an item is not directly related in nature to
the preferential feedback observed for this item on rounds
where it is chosen for a duel.

The main contributions of this paper can be summarized as
follows:

• We introduce and formalize an adversarial model for
K-armed dueling bandits with standard binary “win-
loss” preferential feedback (and where regret is mea-
sured with respect to Borda scores). To the best of our
knowledge, we are first to study such a setup.

• In the general adversarial model, where the sequence
of preference matrices is allowed to be entirely arbi-
trary, we present an algorithm with expected regret
bounded by Õ(K1/3T 2/3).1 We further demonstrate
how to modify our algorithm so as to guarantee a
similar bound with high probability. We also give a
lower bound of Ω(K1/3T 2/3), showing our algorithm
is nearly optimal.

• We consider a more specialized fixed-gap adversarial
model, that bridges between the two extreme prefer-
ence feedback models for dueling bandits: the well-
studied stationary stochastic preferences, and fully ad-
versarial preferences. Here, we assume that there is a
fixed item whose average Borda score at any point in

1Throughout, the notation Õ(·) hides logarithmic factors.

time exceeds that of any other item by at least ∆ > 0,
where ∆ is a gap parameter unknown to the learner.
(Other than constraining this fixed gap, the preference
assignment may change adversarially.) We present an
algorithm that achieves regret Õ(K/∆2), and show
that it is near-optimal by proving a regret lower bound
of Ω(K/∆2).

• Finally, we corroborate our theoretical findings with
an empirical evaluation.

Our results thus reveal an inherent gap in the achievable
regret between dueling bandits and standard multi-armed
bandits: in the adversarial model, the optimal regret in duel-
ing bandits grows like Θ(T 2/3) whereas in standard bandits
Θ(
√
T )-type bounds are possible; likewise, in the fixed-gap

model the optimal regret for dueling bandits is Θ̃(K/∆2),
versus the well-known Θ̃(K/∆) regret performance for
standard fixed-gap (stochastic) bandits.

The reason for this substantial gap, as we explain in more
detail in our discussion of lower bounds, is the following.
For gaining information about the identity of the best item
in terms of Borda scores, the learner might be forced to
choose items the scores of which are already (or even ini-
tially) known to be suboptimal, and for which she would
unavoidably suffer constant regret. Indeed, the Borda score
of an item inherently depends on its relative performance
compared to all other items, and it may be that the identity
of the Borda winner is determined solely by its comparison
to poorly-performing items.

1.2. Related work

Dueling bandits were investigated extensively in the stochas-
tic setting. The most frequently used performance objective
in this literature is the regret compared to the Condorcet Win-
ner (Yue et al., 2012; Zoghi et al., 2014a; 2015b; Komiyama
et al., 2015; Yue & Joachims, 2011). However, there are
quite a few well-established shortcomings of this objective;
most importantly, the Condorcet winner often fails to ex-
ist even for a fixed preference matrix. (See Jamieson et al.,
2015 for more detailed discussion.) In absence of Condorcet
winners, there are other preference notions studied in the
literature, most notably the Borda Winner (Busa-Fekete &
Hüllermeier, 2014; Jamieson et al., 2015; Ramamohan et al.,
2016; Falahatgar et al., 2017), Copeland Winner (Zoghi
et al., 2015a; Komiyama et al., 2016; Wu & Liu, 2016),2

and Von-Neumann Winner (Dudı́k et al., 2015; Balsubra-
mani et al., 2016). In this work, we focus on the Borda
Winner, which appears to be the most common alternative.

The only previous treatment of dueling bandits in an ad-

2It is worth noting that for the Copeland winner to be at all
learnable, a gap assumption is required.
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versarial setting is Gajane et al. (2015), which considers
utility-based preferences and thereby imposes a complete
ordering of the items in each time step rather than a general
preference matrix. Further, their feedback model includes
not only the winning item but also a transfer function which
is the difference in utilities between the compared items,
thus being more similar to standard MAB and largely de-
parts from the original motivation of dueling bandit. For
the identity transfer function, they show in their adversarial
utility-based dueling bandit model a tight regret bound of
Θ̃(
√
KT ). In contrast, we show for the adversarial dueling

bandit model a tight regret bound of Θ̃(K1/3T 2/3). This
shows that when one does not have a direct access to a
transfer function and is faced with arbitrary preferences, the
regret scales substantially different, i.e., Θ̃(T 2/3) versus
Θ̃(T 1/2).

Jamieson et al. (2015) show an instance dependent
Ω̃(K/∆2) sample complexity lower bound for the Borda-
winner identification problem in stochastic dueling bandits.
In contrast, our lower bound which is similar in magnitude,
applies to the regret which is always smaller (and often
strictly smaller) than the sample complexity.

2. Problem Setup
We consider an online decision task over a finite set of
items [K] := {1, 2, . . . ,K} which spans over T decision
rounds. Initially, and obliviously, the environment fixes
a sequence of T preference matrices P1, . . . , PT , where
each Pt ∈ [0, 1]K×K satisfies Pt(i, j) = 1 − Pt(j, i), and
Pt(i, i) = 1

2 for all i, j ∈ [K]. The value of Pt(i, j) is
interpreted as the probability that item i wins when matched
against item j at time t. Then, at each round t the learner
selects, possibly at random, two items xt, yt ∈ [K] and
a feedback ot ∼ Ber(Pt(xt, yt)) for the selected pair is
revealed, where Ber(p) denotes a Bernoulli random variable
with parameter p. Here, feedback of ot = 1 implies that
item xt wins the duel, while ot = 0 corresponds to yt being
the winner.

The Borda score of item i ∈ [K] with respect to the prefer-
ence matrix Pt at time t is defined as

∀ i ∈ [K] : bt(i) :=
1

K − 1

∑
j 6=i

Pt(i, j),

and i∗ := arg max
i∈[K]

T∑
t=1

bt(i),

i.e., i∗ is the item with the highest cumulative Borda score
at time T . The learner’s T -round regret RT is then defined

as follows:

RT :=

T∑
t=1

rt, where

rt := bt(i
∗)− 1

2 (bt(xt) + bt(yt)). (1)

We will consider two settings of preference assignments. In
the general adversarial setting, P1, . . . , PT is an arbitrary
sequence of preference matrices. In the fixed-gap setting,
preferences are set so that there is an item i∗ ∈ [K] for
which, at all rounds t ∈ [T ], we have b̄t(i∗) ≥ b̄t(j) + ∆
for any other j 6= i∗, where b̄t(j) := 1

t

∑t
τ=1 bτ (j) is the

average Borda score of item j ∈ [K] up to time t.

3. General Adversarial Dueling Bandits
We first consider the general adversarial setup for an arbi-
trary sequence of preference matrices. We give an algorithm,
called Dueling-EXP3 (D-EXP3), which has an expected re-
gret of O((K logK)1/3T 2/3). We also show how a simple
modification of the D-EXP3 algorithm guarantees regret
Õ(K1/3T 2/3

√
log(K/δ)) with probability at least 1− δ.

3.1. The Dueling-EXP3 Algorithm

Our algorithm, detailed in Algorithm 1, is motivated from
the classical EXP3 algorithm for adversarial MAB (Auer
et al., 2002a), and relies on constructing unbiased estimates
for scores of individual items at all rounds. However, in
the dueling setup one has to establish such estimates using
only binary preference feedback corresponding to a choice
of a pair of items. Technically, the algorithm will estimate a
shifted version of the Borda score, defined as follows.
Definition 1. The shifted Borda score of item i ∈ [K]
at time t ∈ [T ] is st(i) := 1

K

∑
j∈[K] Pt(i, j). The

shifted regret is then defined as RsT :=
∑T
t=1[st(i

∗) −
1
2 (st(xt) + st(yt))].

Since all scored are “shifted” by the same value, this
will not have any impact and the differences between
Borda scores will be maintained (albeit multiplied by
K
K−1 ). In particular, the best item is unchanged, i.e., i∗ =

arg maxi∈[K]

∑T
t=1 bt(i) = arg maxi∈[K]

∑T
t=1 st(i),

and for any K ≥ 2 and T > 0 we have RT = K
K−1R

s
T .

At every round t, D-EXP3 maintains a weight distribution
qt ∈ ∆[K] (∆[K] is the K-simplex), and compute a score
estimate s̃t(i) for each item i, being an unbiased estimate
of st(i) (Lemma 4). Thus, the cumulative estimated score∑t
τ=1 s̃t(i) can be seen as the estimated cumulative reward

of item i at round t, and hence qt+1 is simply updated
running an exponential weight update on these estimated
cumulative scores along with an γ-uniform exploration.

We now state the expected regret guarantee we establish for
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Algorithm 1 Dueling-EXP3 (D-EXP3)
1: Input: Item set indexed by [K], learning rate η > 0,

parameters γ ∈ (0, 1)
2: Initialize: Initial probability distribution
q1(i) = 1/K, ∀i ∈ [K]

3: for t = 1, . . . , T do
4: Sample xt, yt ∼ qt i.i.d. (with replacement)
5: Receive preference ot(xt, yt) ∼ Ber(Pt(xt, yt))
6: Estimate scores, for all i ∈ [K]:

s̃t(i) =
1(xt = i)

Kqt(i)

∑
j∈[K]

1(yt = j)ot(xt, yt)

qt(j)

7: Update, for all i ∈ [K]:

q̃t+1(i) =
exp(η

∑t
τ=1 s̃τ (i))∑K

j=1 exp(η
∑t
τ=1 s̃τ (j))

qt+1(i) = (1− γ)q̃t+1(i) +
γ

K

8: end for

Algorithm 1.
Theorem 2. Let η = ((logK)/(T

√
K))2/3 and γ =√

ηK. For any T , the expected regret of Algorithm 1 satis-
fies E[RT ] ≤ 6(K logK)1/3T 2/3.

The proof of the expected regret bound crucially relies on
the the following key lemmas regarding the estimates for
the shifted Borda scores. We bound their magnitude, show
that they are unbiased estimates, bound their instantaneous
regret, and bound their second moment.

We first bound the magnitude of the estimates s̃t(i), using
the fact that qt(j) ≥ γ/K.
Lemma 3. For all t ∈ [T ] and i ∈ [K] it holds that s̃t(i) ≤
K/γ2.

Next, we show that s̃t(i) is an unbiased estimate of the
shifted Borda score st(i).
Lemma 4. For all t ∈ [T ] and i ∈ [K] it holds that
E[s̃t(i)] = st(i).

Let Ht−1 := (q1, P1, (x1, y1), o1, . . . qt, Pt) denotes the
history up to time t. We compute the expected instantaneous
regret at time t as a function of the true shifted Borsda scores
at time t.
Lemma 5. For all t ∈ [T ] it holds that EHt [q

>
t s̃t] =

EHt−1

[
Ex∼qt [st(x) | Ht−1]

]
.

Finally, We bound the second moment of our estimates.
Lemma 6. For all t ∈ [T ] it holds that
E
[∑K

i=1 qt(i)s̃t(i)
2
]
≤ K/γ.

Proof overview. We upper bound RsT , the shifted Borda
score regret, and recall that RT = K

K−1R
s
T . Note that

EHT [st(xt) + st(yt)] = EHt−1

[
Ex∼qt [2st(x) | Ht−1]

]
,

since xt and yt are i.i.d. Further note that we can write

EHT [RsT ] = EHT

[
T∑
t=1

[st(i
∗)− 1

2 (st(xt) + st(yt))]

]

= max
k∈[K]

EHT

[
T∑
t=1

[st(k)− 1
2 (st(xt) + st(yt))]

]
,

where the last equality holds since we assume the Pt are
chosen obliviously and so i∗ does not depend on the learning
algorithm. Thus we can rewrite:

EHT [RsT ] =

max
k∈[K]

[
T∑
t=1

st(k)−
T∑
t=1

EHt−1
[Ex∼qt [st(x) | Ht−1]]

]
.

Now, as ηs̃t(i) ≤ ηK/γ2 (from Lemma 3), for any
γ ≥

√
ηK and η > 0 we have ηs̃t(i) ∈ [0, 1]. From

the regret guarantee of standard Multiplicative Weights algo-
rithm (Bubeck & Cesa-Bianchi, 2012) over the completely
observed fixed sequence of reward vectors s̃1, s̃2, . . . s̃T we
have for any k ∈ [K]:

T∑
t=1

s̃t(k)−
T∑
t=1

q̃>t s̃t ≤
logK

η
+ η

T∑
t=1

K∑
i=1

q̃t(i)s̃t(i)
2.

Note that q̃t := (qt − γ
K )/(1 − γ). Let i∗ =

arg maxk∈[K]

∑T
t=1 st(k) = arg maxk∈[K]

∑T
t=1 bt(k).

Taking expectation on both sides of the above inequality
for k = i∗, we get:

(1− γ)

T∑
t=1

EHT [s̃t(i
∗)]−

T∑
t=1

EHT [q>t s̃t]

≤ logK

η
+ EHT

[
η

T∑
t=1

K∑
i=1

qt(i)s̃t(i)
2

]
,

which by applying Lemma 4, Lemma 5 and Lemma 6 and
the fact that st(k∗) ≤ 1, γ =

√
ηK, we have

EHT [RsT ] ≤ 2T
√
ηK +

logK

η

≤ 3(K logK)1/3T 2/3,

where the second inequality follows by optimizing over
η. The theorem follows since RT = K

K−1R
s
T ≤ 2RsT . A

complete proof is given in the supplementary material.

3.2. High Probability Regret Analysis

We can show that a slightly modified version of Dueling-
EXP3 can lead to a high probability regret bound for
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the same setup. (This is inspired by the EXP3.P algo-
rithm (Auer et al., 2002b).) The modified algorithm runs
almost identically to that of Algorithm 1, except we now
use a different score estimate s′t(i) in place of s̃t(i), where
s′t(i) = s̃t(i) + β/qt(i), where β ∈ (0, 1) is a tuning pa-
rameter. The items weights qt ∈ ∆[K] are now similarly
updated using an exponential weight update on these mod-
ified score estimates along with an γ-uniform exploration.
The complete algorithm is described in Algorithm 2.

Algorithm 2 Dueling-EXP3 (High Probability)
1: Input: Item set: [K], learning rate η > 0, parameters
β ∈ (0, 1), γ ∈ (0, 1)

2: Initialize: Initial distribution q1(i) = 1
K , ∀i ∈ [K]

3: while t = 1, 2, . . . do
4: Sample xt, yt ∼ qt (i.i.d., with replacement)
5: Receive preference ot(xt, yt) ∼ Ber(Pt(xt, yt))
6: Compute ∀ i ∈ [K]:

s′t(i) =
1(xt = i)

Kqt(i)

∑
j∈[K]

1(yt = j)ot(xt, yt)

qt(j)
+

β

qt(i)

7: Update ∀ i ∈ [K]:

q̃t+1(i) =
exp(η

∑t
τ=1 s

′
τ (i))∑K

j=1 exp(η
∑t
τ=1 s

′
τ (j))

qt+1(i) = (1− γ)q̃t+1(i) +
γ

K

8: end while

We now prove a high probability regret bound for Algo-
rithm 2:
Theorem 7. Given any T and δ > 0, there exists a setting of
γ, β and η, such that with probability at least 1−δ, the regret
of the modified D-EXP3 algorithm is RT = Õ(K1/3T 2/3),

The proof builds on the following steps. Similarly to our
estimates s̃t(i) above, we can show the following properties.
Lemma 8. For any item i and round t ∈ [T ], we have
s′t(i) ≤ K/γ2 +Kβ/γ.

Lemma 9. For any item i and round t ∈ [T ], it holds that
E[s′t(i) | Ht−1] = st(i) + β/qt(i).

However, unlike s̃t(i), the adjusted score estimates s′t(i) are
no longer unbiased for the true scores st(i), and are larger
in expectation by β. Nevertheless, this does not hurt the
regret analysis as its key element lies in showing that for any
item i ∈ [K], the cumulative estimated scores are not too far
from the accumulated true scores. Precisely, the next lemma
ensures a high confidence upper bound on the cumulative
scores

∑T
t=1 st(i) and thus we can upper bound the learners

performance in terms of estimated scores s′t (instead of st).

Lemma 10. For any i ∈ [K], δ ∈ (0, 1) and β, γ ∈ (0, 1),
with probability at least 1− δ, we have

T∑
t=1

s′t(i) ≥
T∑
t=1

st(i)−
1

γβ
log

1

δ
.

Incorporating this idea, the rest of the analysis closely fol-
lows that of Theorem 2. See complete proof in the supple-
mentary material.

4. Fixed-Gap Adversarial Dueling Bandits
In this section we study an adversarial setting with a
fixed-gap of ∆ > 0, and give an algorithm with regret
O((K log(KT ))/∆2). In this case, our algorithm is based
on using confidence intervals of the estimated average
Borda-scores. The algorithm has two phases. In the first
phase, it samples uniformly at random two different items,
and observes the outcome of their duel; in the second phase,
it has a specific single item î, which it uses in all rounds (for
both items). The algorithm moves to its second phase when
it detects an item î whose lower confidence bound (LCB) is
larger than the upper confidence bound (UCB) of any other
item j. The complete description is given in Algorithm 3.

Because of the non-stationary nature of the item preferences,
and unlike classical action-elimination algorithms (Auer,
2000; Even-Dar et al., 2006), we still need to maintain an
unbiased estimate of the Borda-score for every item at ev-
ery round. (In contrast, in the stochastic dueling bandit
problem (Zoghi et al., 2014a), for any fixed item i ∈ [K],
the unbiased estimate of its Borda score at round t is also
an unbiased estimate for any other round s 6= t; this sim-
plifying condition does not hold in our fixed-gap adver-
sarial model.) Towards this, we maintain an estimate of
the Borda score of any item i ∈ [K] at any round t as
b̂i(t) := K1(xt = i)ot(xt, yt), and show that it is an unbi-
ased estimator.

Lemma 11. At any round t, we have EHt [b̂t(i)] = bt(i)
for all i ∈ [K].

Thus, an unbiased estimate for the t-step average Borda
score b̄t(i), is b̃t(i) := 1

t

∑t
τ=1 b̂τ (i). We further maintain

confidence intervals [LCB(i; t), UCB(i; t)] around each
b̃t(i), within which the means b̄i(t) lie with high probability.

Lemma 12. With probability ≥ 1 − δ, we have b̄i(t) ∈
[LCB(i; t), UCB(i; t)] for all i ∈ [K] and t ∈ [T ].

The proof uses Bernstein’s inequality to show that the es-
timates b̄i(t) are concentrated around their means b̃t(i),
within the respective confidence intervals. Assuming these
confidence bounds hold, as soon as we find an item î ∈ [K]
such that LCB(̂i; t) > UCB(j; t) for any other item j 6= î,
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we are guaranteed that î is the best item (in hindsight), i.e.,
î = i∗. In the remaining rounds, t+ 1, . . . , T , we play only
item î (for both items) and suffer no regret. This results with
the algorithm detailed in Algorithm 3

Theorem 13. Given any δ > 0, with probability at least
1− δ, the regret of Algorithm 3 (with parameter δ) is upper
bounded by 64(K/∆2) log(2KT/δ).

We remark that unlike most MAB algorithms, we do not
gain by incremental elimination. The reason is that we need
to sample a second random item, yt, which would have an
expected Borda score which equals the average Borda score.
This random item implies a constant regret per round until
we identify î. After we identify î, with high probability, we
do not incur any regret.

Algorithm 3 Borda-Confidence-Bound (BCB)
1: Input: item set indexed by [K], confidence δ > 0
2: for t = 1, . . . , T do
3: Select xt, yt ∈ [K], xt 6= yt uniformly at random
4: Receive preference ot(xt, yt) ∼ Ber(Pt(xt, yt))
5: Estimate: b̂i(t) = K ot(xt, yt)1(xt = i), ∀i ∈ [K]

6: Compute: b̃t(i)← 1
t

∑t
τ=1 b̂τ (i), ∀i ∈ [K]

7: Compute:

LCB(i; t) = b̃t(i)− 2

√
K

t
log

2KT

δ
,

UCB(i; t) = b̃t(i) + 2

√
K

t
log

2KT

δ

8: if ∃ î ∈ [K] s.t. LCB(̂i; t) > UCB(j; t) ∀j 6= î,
then break

9: end for
10: Play (̂i, î) for rest of the rounds t+ 1, . . . , T .

5. Lower Bounds
This section derives lower bounds for the adversarial dueling
bandit settings. Theorem 15 and Theorem 16 respectively
give the regret lower bound for fixed gap and general ad-
versarial setting. We first prove the following key lemma
before proceeding to the individual lower bounds:

Lemma 14. For the problem of Adversarial Dueling Ban-
dits with Borda Score objective, for any learning algorithm
A and any ε ∈ (0, 0.1], there exists a problem instance
(sequence of preference matrices P1, P2, . . . , PT ) such that
the expected regret incurred byA on that instance is at least
Ω(min(εT,K/ε2)), for any K ≥ 4.

Proof outline. The proof of the lemma has the following
outline. We initially construct a stochastic preference matrix
P0, and later we consider perturbations of it. We start by
describing P0. We split the items to two equal size subsets

Kg and Kb. For any two items i, j ∈ Kg, they are equally
likely to win or lose in P0, i.e., P0(i, j) = 1/2. Similarly,
for any i, j ∈ Kb we have P0(i, j) = 1/2. When we
pick item i ∈ Kg and item j ∈ Kb then item i wins with
probability 0.9, i.e., P0(i, j) = 0.9. This implies that the
Borda score of any i ∈ Kg is s(i) = 0.7 and for any j ∈ Kb

it is s(j) = 0.3. Note that in P0 all the items in Kg have the
highest Borda score.

The main idea of the proof is that we will introduce a pertur-
bation that will make one item i∗ ∈ Kg to have the highest
Borda score. Formally, for each i ∈ Kg we have a prefer-
ence matrix Pi. The only difference between Pi and P0 is
in the entries of i ∈ Kg, where for any j ∈ Kb we have
Pi(i, j) = 0.9 + ε. We select our stochastic preference
matrix at random from all the Pi where i ∈ Kg , and denote
by i∗ the selected index. More explicitly following shows
the form of P1:

P1 =



0.5 ... 0.5 0.9 + ε ... 0.9 + ε
. ... . . ... .
. ... . . ... .

0.5 ... 0.5 0.9 ... 0.9
0.1− ε ... 0.1 0.5 ... 0.5

. ... . . ... .

. ... . . ... .
0.1− ε ... 0.1 0.5 ... 0.5


.

A key observation is that in order to determine the best
Borda score item, we need to match items i ∈ Kg with items
j ∈ Kb, since the expected outcome of other comparisons
is known. However, each time we match an item i ∈ Kg

with an item j ∈ Kb we have a constant regret of about
0.2 − O(ε) = Θ(1). We will need to have Ω(|Kg|/ε2)
samples to distinguish a bias of ε in the Borda score of
i∗ ∈ Kg compared to other items i ∈ Kg. This leads to
a regret of Ω(K/ε2). If, with some constant probability,
we do not identify the item with the best Borda score, we
will have a regret of at least Ω(εT ). This follows since any
sub-optimal item has regret at least Ω(ε) per time step.

We remark that the lower bound holds for K = 3 with an
almost an identical proof. (Technically, our lower bound
requires that K is even, but this is only for ease of presenta-
tion.) On the other hand, for K = 2 the true regret bound
scales Θ(1/∆), since when we match the (only) two items
we have a regret of only ∆/2. Finally, there is an additional
logarithmic dependency on the time horizon, which our
lower bound does not capture.

Lower bound for the fixed-gap setting. In this case,
given any fixed ∆ > 0, Theorem 15 shows a lower bound
of Ω(K/∆2). The proof follows from Lemma 14 setting
ε = ∆.
Theorem 15. Fix any ∆ ∈ (0, 0.1) and K ≥ 4. For
the fixed gap setting, for any learning algorithm A, there
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exists an instance with fixed gap ∆, such that the ex-
pected regret incurred by A on that instance is at least
Ω(min(∆T,K/∆2)).

The regret bound in this scales as K/∆2 compared to K/∆
for MAB. The reason is that in order to distinguish between
near-optimal items, the learner must compare them to sig-
nificantly suboptimal items, which leads to the increase in
the regret. Essentially, the regret bound is identical to the
sample complexity bound in our lower bound instance.

Lower bound for the general adversarial setup. In this
general case, since {Pt}t∈[T ] could be any arbitrary se-
quence, the adversary has the provision to tune ε based
on T . Precisely, given any K and T , the adversary here can
set ε = Θ(K1/3/T 1/3). For any T ≥ K we guarantee that
ε ∈ (0, 0.1] and apply Lemma 14. For T < K we clearly
have a lower bound of Ω(T ), since we need to sample each
item at least once. Therefore, for this general setup, we
derive the following lower bound of Ω(K1/3T 2/3).

Theorem 16. For the problem of Adversarial Dueling Ban-
dits with Borda Score objective, for any learning algorithm
A, there exists a problem instance Adv-Borda(K,T ) with
T ≥ K, K ≥ 4, and sequence of preference matrices
P1, P2, . . . , PT , such that the expected regret incurred byA
on that Adv-Borda(K,T ) is atleast Ω(K1/3T 2/3).

Note that the lower bound of Ω(T 2/3) steams from the
fact that we can essentially cannot mix exploration and
exploitation, at least in our lower bound instance. Namely,
while we are searching for the best Borda score item, we
have a constant regret per time step. If we settle on any
sub-optimal item, we get a regret of Ω(εT ) = Ω(T 2/3), due
to the selection of ε.

6. Experiments
In this section we evaluate the empirical evaluation of our
proposed algorithm Dueling-EXP3 and compare its per-
formances with the only other existing adversarial dueling
bandit algorithm, REX3, although it is known to work only
under the restricted class of linear utility based preferences
(Gajane et al., 2015; Ailon et al., 2014).

In more detail, we run our experiments with the following
setup:

Algorithms. (1) Dueling-EXP3: As introduced in Sec-
tion 3 with parameters tuned according to Theorem 2. (2)
REX3: As introduced in Gajane et al. (2015). Note that
their suggested optimal tuning parameters, i.e., the uniform
exploration rate γ as well as the learning rate η requires
the knowledge of problem dependent parameters τ—the
algorithm’s expected loss regret with respect to a random
strategy (see Thm. 1 of Gajane et al., 2015), which is un-

known to the learner. We used T in place of τ henceforth.
However, other settings of τ give similar outcomes. (3)
Random: A naive baseline that draws any arbitrary duel at
each round.

Performance Measures. In all cases, we report the cumu-
lative regret of the algorithms averaged over 500 runs.

Environments: Adversarial preferences.

We consider K = 20 and generate the sequence of adversar-
ial probability matrices as follows:

(1) Switching Borda or SB(t). We generate the preference se-
quence such that the best performing Borda winner changes
after every t length epochs by appropriate tweaking of the
entries of the current preference matrix at time t: Precisely,
we manipulated the entries carefully to make sure the new
Borda winner is always selected from one of the first 10
arms and different from the latest Borda winner (of the
matrix Pt−1). Towards this, upon swapping the matrix en-
tries if needed, we randomly select a row i from [10] (such
that i 6= Borda-winner(Pt−1)), and iteratively increase the
row entries Pt(i, j) for all j 6= i in a round robin fash-
ion (up to a threshold of 1) with subsequently resetting
Pt(j, i) = 1 − Pt(i, j), until i becomes the new Borda
winner of Pt.

(2) Random-walk preferences or RW(ν). In the literature of
adversarial Multi-armed Bandits, one popular technique to
generate adversarial loss sequence is through random walk
(Neu & Valko, 2014; Saha et al., 2020). Taking cues, we
generate the sequence of preferences Pt(i, j) for each pair
of arm (i, j) as random walks with increments ν with some
randomly chosen probability q ∈ (0.2, 0.8), where each
P1(i, j) is initialized uniformly on [0, 1] for all i, j. Any
values that fall outside [0, 1] in the process are truncated
back to [0, 1].

(3) Lower Bound instance or LB(ε). Our lower bound pref-
erence instance P1 parameterized by ε ∈ (0, 0.5) (see Sec-
tion 5). The explicit values used for τ , ν, ε are specified in
the corresponding figures.

6.1. Cumulative regret over time

We first conduct a set of experiments to compare the regret
performance of the three algorithms over the two problem
instances, SB(500) and RW(0.01), as shown in Fig. 1.

Remark. As shown in Fig. 1, our algorithm Dueling-EXP3
outperforms REX3 in both the instances. This is expected
since the later is guaranteed to work only under linear utility
based adversarial preference models, whereas we have con-
structed completely adversarial preference matrices through
SB and RW instances. Also, both of the above algorithms
perform better than the naive Random duel selection base-
line.
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Figure 1. Averaged cumulative regret over time

6.2. Regret vs Varying Item-size (K)

We also conduct a set of experiment changing the item set
size K over a range (K = 10 to 100). We report the final
cumulative regret of all algorithms vs. K on the LB(0.1)
instance as specified in Fig. 2.

Figure 2. Final regret (at T = 10K) with increasing arm size K

Remark. In terms of the comparative regret performances
of three algorithms, Fig. 2 shows the same trend as reflected
in the first set of experiments (Fig. 1), where Dueling-EXP3
performs best, then REX3 and the worse is Random. Addi-
tionally Fig. 2 shows that with increasing K but fixed gap
(ε)—that we ensured with our LB(0.1) instance construc-
tion keeping the gap ε = 0.1 fixed for all K—we see the
regret of all the algorithms scales up with increasing K, as
expected and also justified by Theorem 2.

7. Conclusion and Future Scopes
We considered the problem of dueling bandits with any
adversarial preferences, i.e., adversarial dueling bandits. To
the best of our knowledge, this work is the first to consider
the dueling bandit problem for fully adversarial setup. (The
work of (Gajane et al., 2015) introduced adversarial utility-
based dueling bandits with a transfer function, which has
very different characteristics, as we discussed earlier.)

We proposed algorithms for online regret minimization with
Borda scores. We gave an Õ(K1/3T 2/3) regret algorithm
(Dueling-EXP3 ), for the problem, and also shown opti-
mality of our bounds with a matching Ω(K1/3T 2/3) lower
bound analysis. We also proved a similar high probability
regret bound. Finally, for an intermediate fixed-gap adver-
sarial setup—which bridges the gap between stochastic and
adversarial dueling bandits—we gave an Õ((K/∆2) log T )
regret algorithm, Borda-Confidence-Bound, and also a cor-
responding regret lower bound of Ω(K/∆2).

Moving forward, one can potentially address many open
threads along this direction; for example, considering other
general notions of regret performances, considering the
problem on larger (potentially infinite) arm-spaces, or even
analyzing dynamic regret for adversarial preferences (Bes-
bes et al., 2019; Luo et al., 2017). Few more open questions
to answer here are: In case of more strcutured utility based
preferences (e.g., Plackett-Luce preference model (Azari
et al., 2012), etc.), where the item utility scores are cho-
sen adversarially at every round, is it possible to show an
improved performance limit of Θ(

√
KT )? In such cases,

how does the learning rate varies with K and T for general
subsetwise preferences (i.e., where more than two items
can be compared at every round and the learner receives a
winner feedback of the subset played) (Brost et al., 2016;
Ren et al., 2018)? Another interesting direction would be to
understand the connection of this problem with other ban-
dit setups, e.g., learning with feedback graphs (Alon et al.,
2015; 2017) or other side information (Mannor & Shamir,
2011; Kocak et al., 2014).
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