Pseudo-1d Bandit Convex Optimization

Supplementary: Pseudo-1d Bandit Convex Optimization

A. Proofs
A.1. Proof of Theorem[I]

Proof. Problem instance construction. Divide the time interval [T'] into d equal length sub intervals (hence each of length
YTy, ..., Ty Assume Ty = 0.

For i € [d]: Choose o; ~ Ber(+1), and set x; = e;. Denote o = (01, ...,04).
AtanytimeteTi:{%(z—l)—&—l .. },ie[d],
1. Choose g;(w;x;) = w ' xy. Clearly Vi (g:(:;x¢)) = x4 € {0,1}? which is revealed to the learner at the beginning of
round ¢. We choose x; = x;.

2. Loss function fi(w) = {(w'x;) + & = poi(w'x;) + &, wheree, ~ N(0, %), for some constant >
0 (to be decided later), Vw € W.

3. Learner plays w; = [wy(1),...,wy(d)] € W.

Denote w; = T% > et Wi, where Ty = L.

Remark 10 (Optimum Point). Note for any fixed w € W, the total expected loss is E Z?Zl Y ver, fr(w)

% jzl(oixj)w = %(&Tw) where 5 (i) = po;, Vi € [d]. Thus clearly the best point (i.e. the minimizer) w* = —%.
Note w* € W.

The expected regret of any .A:

d
=33 llox] ywe — Zqu [0x] W;] — (0% )w*]

i=1teT;

d
= ZTdE po (1) [w; (i) — W*(l)]}
i1

T [ () ) w0l - S 1 V(w0 = wilw 0)]
1=1 o 1=1

d 1 ‘
- ZTdIE ;M&(g + Ulv_vi(i))}
= ZTd[ Pr(o;w;(i) > 0)] since w; (i) € {—1/Vd,1/Vd} (7)

Now for any i € [d]:

Pr(o;w;(i) > 0) = wi(i) > 0|0, = +1)+ Pr(wl( )< 0|0 =-1)

)
=

N =N =N =

( >O|02—+1)+17Pr(\7v1—(i)>O\0i:fl)>
(

1= |Pr(wi(i) > 0| oy = +1) — Pr(wi(i) > 0| 0; = —1)|),
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Assumption 1. For proving the lower bound we assume that w; (i) is a deterministic function of the observed function
values { fi }1er;, respectively at {w}icr,. Note that this assumption is without loss of generality, since any random querying
strategy can be seen as a randomization over deterministic querying strategies. Thus, a lower bound which holds uniformly
for any deterministic querying strategy would also hold over a randomization. Let us denote: f([T;]) = { ft }teT;-

Then since the randomness of w; (i) only depends on f([T;]), applying Pinsker’s inequality, we get:

%(1 — |Pr(ovw;(i) > 0| 0; = +1) — Pr(o;wy(i) < 0] 0, = —1)|)

v

PT’(O’i\TVi(i) > O)

;(1 - \/QKL(P(f([E]) |0y = +D|P(f(T3]) | 03 = 1)>

Y

and further applying the chain rule of KL-divergence, we have:

PT(UiWi(i) > 0) > ;(1 — \/2 Z KL(-P(ft | oi = +1,{fr}rep—ip\mo_ P (fi | 00 = _]-a{fT}TE[t—l]\Til))
teT;

4,uawt 1 64p2Ty\ . o 1 2
<1— 22 )—2<1— ¥ since wy () —aandai—l

teT;

where the last inequality follows by noting P(f; | o, {fr}re—1pn1i_1) ~ N (noiw(i), 4 ), and
KL(N (p1,02)||N (12, 0%)) = (‘“Qi (for bounding the each individual KL-divergence terms).

Case 1 (d < 16VT)
Combining the above claims with Eq. (7):

ZTdL/%Pr(UWZ >0} ZTd[ J;)},

1 Vd VdT
> T)j——— (1 — = settin = <1l)=——.
> d16\/Td< 2) ( e 6T, = ) 32

i=d

Note that for any ¢ € [T), f; s are 1-lipschitz for d < 16+/T, as desired to understand the dependency of lower bound to the
lipschitz constant.

Case 2 (d > 16\/7)

In this case T' < 256 Let us denote d’ = 16v/T < d, and let us use the above problem construction for dimension d’ (we
can simply ignore decision coordinates w(d’ + 1), ..., w(d), i.e. forany w € W C R?, denoting wig] = (W1,..., Wa'),
we can construct f;(w) = fi(Wq)).

Now for the above problem suppose there exists an algorithm A such that B[Ry (A)] < ¥ gl;T = %2/4, then this violates the

lower bound derived in Case 1. Thus the lower bound for Case 2 is must be at least %2/4

Combining the lower bounds of Case 1 and 2 concludes the proof. O

A.2. Proof of Lemma[5 and additional claims

Useful definitions and notation. Before proceeding to the proof, we define relevant notation that will be used throughout
this section. For the kernel K} (Definition , we define a linear operator K, on the space of functions G; — R as follows.

For any function £ : G; — R:
K, ((y) == / Uy )KLy, y)dy Yy € Gr, (®)
y' €T
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We also denote by P and Q; the set of all probability measures on WV and G, respectively; and by d,, € Q;, 0w € P the
dirac mass at y € G; and at w € W respectively. For q € Qy, define:

@)= [ tawi
e
As noted in (Bubeck et al.|[2017)), a useful observation on the operator (8] is that for any q € Q;:
(Kiq, ) = (K{"0;,q). ©)
Proof of Lemma 5

Proof. For ease, we abbreviate g;(w¢; x;) as g;(w;) throughout the proof. We start by analyzing the expected regret w.r.t.
the optimal point w* € W (denote yi = g;(w*) for all t € [T]). Define Vy € G;, {(y) := fi(w), for any w € W(y).
Also let Hy = o ({x+,pr, Wr, fr}-Z} U{x¢, p}) denote the sigma algebra generated by the history till time ¢. Then the
expected cumulative regret of Algorithm [2[over 7" time steps can be bounded as:

T T
Blftr(w)] = E| 30 (fw) = )| = X (6ot - et )|

t=1 t=1

Ce(ye) — ey )] [XT: Kiq; —d,;, >] [since y; ~ K;qq

t=1

[l
—
\TM%

—~

T
3eL 1
<E — + —(Ki(q [from Property#2 of L 11
< LZ; 3 +)\< ! ] rom Property#2 o emma
<6€LT+QZIE[ } wecanchoose)\zl/Z7 seeproofofLemma
t=1

T T
by:®66LT+2Z]E[Z (K’ (q y;)ﬂ
t=1 t=1
T
@ 6e LT+QZ]E[ZIEyt~Kfqt{ — 8y, 0 | HtH
t=1 t=1

T
_6eLT+QZ]E[Z ytNKtqt[ — 8y ,ft>7-ltH (10)
t=1 t=1

where the last equality follows by Lemma@, and by (8-, ft> fe(w*) = (y) = (8y: th>; the penultimate equality
(a) follows noting that for any ' € G;:

~ E y *
Ey,~kiq[0:(y)] = / Kiqt(yt)ﬂKi(yt,y’)dyt = / Ce(y) K (g v ) dye = Ky 4 ().
e Ktqt(yt) Y1 €G¢

Let us denote by p* a uniform measure on the set W, := {w | w = (1 — k)w* + xw’, forany w' € W} for some

1 .
——, IfwE W,
€ (0,1). Note, this implies p*(w) = ¢ #vlOV)”
0 otherwise

Then note that:

ZEyter’qt - w 7ft ZEytNKtqt pta.ft> - <6w*7ﬁ>]

w ZEwafqt [(pe, fi)] — K, C(ge(w™))
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—~
o
=

[M]=

T
EytNKth Pt, ft +Z[mLDW p ,Ki*ft(gt(-))ﬂ
t=1

o~
I

1

I
B

Ey,~kiq.[(Pt: i) — (P*, fi)] + KLDWT

t

Il
—

where (a) follows since Ey, wk/q, (dw=, ft) = Ey,~kiq [fi(W*)] = By, xiq, [0(ge(w*))] = K, 0, (ge(w*)) as shown
above; (b) follows since by assumption g; is D lipschitz and so by definition of W,i for any w € W,, we have |g¢(w) —
g (w*)| < DW (since W = Diam(W)). But from the Property #1 of Lemma we have that the function K} "¢, (-) is
L-lipschitz, which in turn implies for any w € W,, [K, ¢;(g:(w)) — K, ¢;(g:(w*))| < L|ge(w) — g:(w*)| < kLDW.
The last equality follows by applying the reverse logic used for (a).

Combining above claims with (T0) we further get:

T
E[Rp(w*)] < 6eLT + 2 <;<;LDWT +E {ZEwaiqt {<pt PR HtH ) (11)
t=1
From Lemma[I0] we get:
. Pllp1) 7 pllp)  n,
Z<pt* ,f><#1 <P ft>*%+§<%,5?>, (12)
t=1

where the equality (p¢, f2) = (q, £?) follows from a similar derivation as shown in Lemma@ Now, note that:

Ey,~K!q, [(qt, 5?}} = Kiq: (ye) {a, 7 Yy,

Y+ €Gt

= K;%(yt){/ q:(y) (gt(yt)y

Y+ €G €Gy (K;qt(yt>)2

/(2)
< 02/ Kt/ qt(yt)dyt < 302, (13)
veeg, Kiai(ye)

(K} (91 9)) dy | dye

where the last inequality follows from Property #3 of Lemmawith B=2 (1 +In % +In (BW - aw) )

Finally, by definition of p*, we can bound the KL divergence term as:
N 1
KL(p*|lp1) :dlog; (14)

Substituting (T3) and (T4) in (I2)), letting L' = LDW, and setting xk =

1 1 e
T € = 377 (1) yields:

KL(p*||p1) J 5
E[RT(W*)] < 242 <1 + #1 + gE |:Z]Ey"NK;q* <qt’€?> | H{l)
t=1

dlog I'T  nBC°T
_4+2< o8 +"§ )
n

=4+ 2[2<\/dBCZT1og(L/T)> ;

=

where the last equality follows by choosing n = (M)

Lo . This concludes the proof. O
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Statements and proofs of additional lemmas used above:
Lemma 8. In Algorithm at any round t, both q; € Q; and K;qt € Q.

Proof. Firstly note that, p; € P simply by its initialization, and for any subsequent iteration ¢t = 2,3,...,7T, p; € P by its
update rule.

Now for any t € [T] and y € G, by definition q;(y) > 0, as p; € P. The only remaining thing to prove is that
fgt dq;(y) = 1, which simply follows as:

/ qi(y)dy = / / pt(w)dw = / pi(w)dw =1 [since p; € P].
yEG: y€G: Wi (y) w

Now, consider K}q;. By deﬁnition Vy € Gi, Kiq:(y) fgt (y,v')dq:(y") > 0 since by construction K;(y, -) > 0 and
q: € Q;. Further, since fg +(y,y")dy = 1 forevery y' € G, (by construction), it is easy to show fg K:q:(y)dy =1 as

follows:
K;qt(y)dyz/ [

G L, K;(y7y')dqt(y’)}dy = / [ K;(y,y’)dy} dai(y') = [ da:(y’) = 1.

[en [en Gt
Lemma 9. Arany round t € [T ofAlgorithmE] (Pt ft> = <qt,17t>.

Proof. The claim follows from the straightforward analysis:

)= [ Pl = / . | o P

oL piw = [ G [ i
= [ Bty = (a7
O

Lemma 10. Consider any sequence of functions f1, fa, ... fr such that f; : D+ R forall t € [T), D C R? for some
d € Ny. Suppose P denotes the set of probability measure over D. Then for any p € P, and given any p1 € P, the

sequence T is defined as w) : P (W )eXp(_Wft( ))
! (Prficy i defined @5 Prea (w) 1= Jo Pe(W) exp (= nfi(W))dw

T || T
Z P,ft Lipllp,) gz ptaft

t=1

—, for all w € D. Then it can be shown that:

where K L(p||p1) denotes the KL-divergence between the two probability distributions p and p1.

Proof. We start by noting that by definition of KL-divergence:

pPirr1(w
KL(pllpr) = KE(lpen) = [ plw)in (22 )y,
w pt(W)
Moreover, by definition of 1, %(KL(pHpt) - KL(p||pt+1)) - }7( Jy P(w) In (W)) = —Eylfi(w)] —
LInE,, [e7t )] forany ¢ = 1,2,...,T. Then summing over T rounds,
n

>

t=1

w)) = - Inf, [e-"fw] = (KLl ~ KL(pllpra)).
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Now adding 23:1 fi(wy) to both sides, this further gives:

3 lft(wt) - Ep[ft(w)]] - %(KL(ple — KL(p||prs1) ) +3 (ft ) 71nEpt [e—nft<w>])

t=1 t=1

= > lft wi) — Eplfy (w)}] < KLl , 5~ (Fulwe) + %m Ep, [e109))

N t=1

o KL(pllp1) | 1«
— Y Ew,p, [ft(wt) - Ep[fxw)]] < % DL [nfxwt) +InEy,[e -W*W]
t=1 t=1
T T
-y <<ptp),ft>1 < KU p”pl +%2Ewwpf [nft wi) +Eyp [enft<w>]1]
t=1 t=1
T 2 £2
< P4 TS e, [nmwt) 1~ B, o) + B [LE) f;(w’ml
KL(p|lp1)  nw—
- n + 5 tz:; <ptaft2>7

which concludes the proof. The last two inequalities above follow fromlns < s—1, Vs >0ande™ <1—s+ 52 /2, Vs >
0. O

Lemma 11. For any convex and L-Lipschitz function,  : G, — R, such that G, = [o, ] C R, q € Q¢, and any y € Gy,
the kernel Kg 1 G X Gy — Ry satisfies:

1. The function K}"((-) is L-Lipschitz.
2. K, 0(y) < (1 — N){(Kiaq, £) + M(y) + 3L, where \ is a constant.

3. Forany q € Qy, define operator KQ(Q)q : Gy — Ras:

K q(y) = / (Ki(.y)da(y) ¥y €.
y' €Ge

K (2) aly)
then/ tidy<B whereB—2<1+ln —l—ln(ﬁ—a)).
YEG: K,qy

Proof. 1. For the first part, let us denote § = E,4[y]. Then note that:

Eyuitio, ) (UG + (1 = U)y)], ifly—gy|>e

_ . _ ; (15)
Eymuifo,) (L7 — €U)], ifly—g| <e

K = (K5 0) - {
which immediately implies the function K} ¢(-) has the same Lipschitz parameter that of £(-).
2. We prove this part considering two cases separately:

Case 1. |y —y| > e: By construction of K} (see Definition , we note that expectation of y w.r.t. q and K} q, i.e. respectively
y = Ey~q[y] and Eyk;q[y] can differ at most by 2¢, i.e. |[Ey~q[y] — Eyuk;q[y]| < 2¢ (Bubeck et al., 2017). We write,
Ey~k;qy] = Eyqly] + ¢, clearly ¢ € [2¢, 2¢]. Hence:

Uy) = UEy~kaly] —¥)
< €</ . yKQQ(y)dy) +yL g/ . ((y)K,q(y)dy + 2€L
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- <K2q, €> + 2¢L (16)

where the first inequality follows using the L-lipschitzness of ¢ and the second inequality follows using Jensen’s inequality
(since £ is convex). Now consider the case |y — §| > € in (T3):

(@) + Uy

K" ((y) = Ev ounitfo,1) [((UF + (1 = U)y)] < B

by@)< tqa >+€(y)+6L
2

This shows that for this case the claim of Part (2) holds for A = 1.
Case 2. |y — y| < e: Note §y — €U € [y — €, 9] in (T3). And in this case £(y) < £(y) + eL. Using the fact that £(-) is convex
and L-lipschitz, by similar arguments used to obtain (I6) above, we have:

K, U(y) < 0(y) + L =0(5)/2+ 0(5)/2 + L < (Kjq,£) /2 + (£(y) + €L) /2 + 2¢L

which implies for this case as well, the claim of Part (2) holds for A = 1/2.

3. For this part, note that:

K’ a) /
yEG: tq max |?J vl )
y—e yte 1 B 1
:/ _W/ o,
o max(ly —yle) g—c max(|y —yl,e) gte max(ly — g, €)
g—e 1 g+e 1 B 1
=/ _7dy+/ fdy—i—/ —dy
« y—y y—e € y+e y—y
1 [vte 1
:E/ dy+21ng+ln(ﬁ—gj)+ln(y—a)
Y
1 . _
2(1+ln+ln (Ba)) (since a < g < )
€

Vy,y' € G, which implies K, ¥ q(y) < 9w __ -

where (a) follows noting K (y,y’) < S max(y—3T0)

= maX(\y lse)?

A.3. Proof of Lemmal/6]

Proof. Forany /, : R — [0,C], t € [T], define ; : R + [0, C] such that /,(y) = E )ét(y + du), forany y € R.

u~tU(By (1
Let us also define f;(w) = £,(g,(w;x;)),Yw € W. Lety, = g,(wy; %), Vt € [T].

dét(y)
dy

Then given any fixed w € W and x € R?, by chain rule V, f,(w) = %jwvw(gt(w; Xt)) = Vi (gt (Wi x4t)).

Consider the RHS of the lemma equality:

1
Eu~u(s: (1) [5& (g (Wi xi) + 6u)u | wt] V(9 (We;%x4))

dé .
= Ctl:]gyt)vw(gt(wﬁxt)) = Vw/li(wt) = VwE, [€:( g (We; x¢) + 6u)],
t
where the first equality is due to Lemma 1 of (Flaxman et al.,|2005) applied to the 1-dimensional ball 31 (1). O
A.4. Proof of Lemmal(7l

Proof. We start by recalling Lemma 2 of (Flaxman et al.| [2005)) that uses the online gradient descent analysis by (Zinkevich|
2003) with unbiased random gradient estimates. We restate the result below for convenience:
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Lemma 12 (Lemma 2, (Flaxman et al., 2005)). Let S C By(R) C R? be a convex set, fi, fa,...,fr : S + R be a
sequence of convex, differentiable functions. Let W1, W, ..., wp € S be a sequence of predictions defined as w1 = 0
and w1 = Pg(wy — nhy), where n > 0, and hy, ha, . . ., hr are random variables such that E[h; |wt] =V fi(wy), and
[htll2 < G, for some G > 0 then, forn = G—% the expected regret incurred by above prediction sequence is:

E[éft(wt)] - gleigéft(w) < RGVT.

Coming back to our problem setup, let us first denote f;(w) = £;(g,(w;x;)), for all w € W, t € [T] (recall from
the proof of Lemma (6} we define £; : R ~— [0, C] such that £;(y) = E,wus,(1))¢(y + du), for any y € R). We can
now apply Lemma [12]in the setting of Algorithm [3] on the sequence of convex (by (A1) (ii)), differentiable functions
fis far o 1 i Wa = [0,C], with by = £ (€4(ag)u) Vg (we; x¢ ), with u ~ By (1) (note that Lemma@implies Elh|w] =
Vwft(We) = VwEy [£e(g:(Wes x¢) + 6u)]). We get:

T
E[Zf}(wt)} ~min 3 fuw) < YROVT (17)
t=1

W,
we C 1)

as in this case R < (1 — &)W < W, and, by (A3) (ii), [|7]| = [|3 (¢e(ar)u) V(g (wesxe))|| < BE, 50 G = 22, and
n= DVCV:;T' Further, since ¢;(-)s are assumed to be L-Lipschitz, yields:

B[ S (fw - o) - iy (i) + 1) < ROV
Li=1 =1
- t=1 - t=1
— K _zT: ft(wt)- - v{/rg/leT:ft(w) < %C\/T + 20LT + LT,
-t=1 - t=1
—F -ift(Wt)- — vlvréigvift(w) < 7WD§\/T +36LT,
-t=1 - t=1

1/2
setting @ = J. The claim follows minimizing the RHS above w.r.t. §. Setting § = (3‘:‘23%) gives:

T T
E[Rr(A)] =E { > 1 (wt)} — min > fi(w) < 2V3WLDCT/",
t=1 eI
which concludes the proof. O

B. Appendix for Simulations (Section |S)

Implementation details of Algorithm [2] The main challenge in implementing Kernelized Exponential Weights for
PBCO (Algorithm[2) is to handle the continuous ‘action space’ W; in particular, to maintain and update the probability
distribution p; over W, and to sample from p; given y; at round ¢. Towards this we use an epsilon-net trick to discretize W
into finitely many points—specifically, since we choose W = B;(1), we discretize the [0, 1] interval every d direction with
a grid size of O(1/ad), and consider only the points inside B,;(1). This reduces the action space V into finitely many points
(say V), and we now proceed by maintaining and updating probabilities on every such discrete point following the steps of
Algorithm (we initialize p; « 1/n for all N points in the epsilon net).
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