
Pseudo-1d Bandit Convex Optimization

Supplementary: Pseudo-1d Bandit Convex Optimization
A. Proofs
A.1. Proof of Theorem 1

Proof. Problem instance construction. Divide the time interval [T] into d equal length sub intervals (hence each of length
T
d) T1, . . . , Td. Assume T0 = ∅.

For i ∈ [d]: Choose σi ∼ Ber(±1), and set xi = ei. Denote σ = (σ1, . . . , σd).

At any time t ∈ Ti =
{
T
d (i− 1) + 1, . . . , Td i

}
, i ∈ [d],

1. Choose gt(w;xt) = w>xt. Clearly∇w(gt(·;xt)) = xt ∈ {0, 1}d which is revealed to the learner at the beginning of
round t. We choose xt = xi.

2. Loss function ft(w) = `t(w
>xt) + εt = µσi(w

>xi) + εt, where εt ∼ N (0, 1
16), for some constant µ >

0 (to be decided later), ∀w ∈ W .

3. Learner plays wt = [wt(1), . . . ,wt(d)] ∈ W .

Denote w̄i := 1
Td

∑
t∈Ti wt, where Td = T

d .

Remark 10 (Optimum Point). Note for any fixed w ∈ W , the total expected loss is E
[∑d

i=1

∑
t∈Ti ft(w)

]
=

µT
d

∑d
i=1(σix

>
i)w = T

d (σ̃>w), where σ̃(i) = µσi, ∀i ∈ [d]. Thus clearly the best point (i.e. the minimizer) w∗ = − σ√
d

.
Note w∗ ∈ W .

The expected regret of any A:

E[RT] =

d∑
i=1

∑
t∈Ti

µ[(σix
>
i)wt − (σix

>
i)w∗] =

d∑
i=1

µTd
[
E[σix

>
i w̄i]− (σix

>
i)w∗

]
=

d∑
i=1

TdE
[
µσ(i)[w̄i(i)−w∗(i)]

]

=

d∑
i=1

TdE
[
µ
√
dw∗(i)[w∗(i)− w̄i(i)]

]
=

d∑
i=1

TdE
[
µ
√
d
(

(w∗(i))2 − w̄i(i)w
∗(i)
)]

=

d∑
i=1

TdE
[
µ
√
d
(1

d
+

σi√
d
w̄i(i)

)]

=

d∑
i=1

Td

[
2µ√
d
Pr(σiw̄i(i) > 0)

]
since w̄i(i) ∈ {−1/

√
d, 1/
√
d} (7)

Now for any i ∈ [d]:

Pr
(
σiw̄i(i) > 0

)
=

1

2
Pr
(
w̄i(i) > 0 | σi = +1

)
+

1

2
Pr
(
w̄i(i) < 0 | σi = −1

)
=

1

2

(
Pr
(
w̄i(i) > 0 | σi = +1

)
+ 1− Pr

(
w̄i(i) > 0 | σi = −1

))
≥ 1

2

(
1− |Pr

(
w̄i(i) > 0 | σi = +1

)
− Pr

(
w̄i(i) > 0 | σi = −1

)
|
)
,

Pseudo-1d Bandit Convex Optimization

Assumption 1. For proving the lower bound we assume that w̄i(i) is a deterministic function of the observed function
values {ft}t∈Ti , respectively at {wt}t∈Ti . Note that this assumption is without loss of generality, since any random querying
strategy can be seen as a randomization over deterministic querying strategies. Thus, a lower bound which holds uniformly
for any deterministic querying strategy would also hold over a randomization. Let us denote: f([Ti]) = {ft}t∈Ti .

Then since the randomness of w̄i(i) only depends on f([Ti]), applying Pinsker’s inequality, we get:

Pr
(
σiw̄i(i) > 0

)
≥ 1

2

(
1−

∣∣Pr(σiw̄i(i) > 0 | σi = +1
)
− Pr

(
σiw̄i(i) < 0 | σi = −1

)∣∣)
≥ 1

2

(
1−

√
2KL

(
P (f([Ti]) | σi = +1)||P (f([Ti]) | σi = −1)

)
and further applying the chain rule of KL-divergence, we have:

Pr
(
σiw̄i(i) > 0

)
≥ 1

2

(
1−

√
2
∑
t∈Ti

KL
(
P (ft | σi = +1, {fτ}τ∈[t−1]\Ti−1

)||P (ft | σi = −1, {fτ}τ∈[t−1]\Ti−1
)

)

≥ 1

2

(
1−

√√√√2
∑
t∈Ti

4µ2σ2
iwt(i)2

2
16

)
=

1

2

(
1−

√
64µ2Td
d

)
since wt(i)

2 =
1

d
and σ2

i = 1

where the last inequality follows by noting P (ft | σi, {fτ}τ∈[t−1]\Ti−1
) ∼ N (µσiwt(i),

1
16), and

KL(N (µ1, σ
2)||N (µ2, σ

2)) = (µ1−µ2)2

2σ2 (for bounding the each individual KL-divergence terms).

Case 1 (d ≤ 16
√
T)

Combining the above claims with Eq. (7):

E[RT] =
∑
i=d

Td

[
2µ√
d
Pr(σiw̄i(i) > 0)

]
≥
∑
i=d

Td

[
µ√
d

(
1− 8µ

√
Td
d

)]
,

≥
∑
i=d

Td
1

16
√
T d

(
1− 1

2

) (
setting µ =

√
d

16
√
T d
≤ 1

)
=

√
dT

32
.

Note that for any t ∈ [T], ft s are 1-lipschitz for d ≤ 16
√
T , as desired to understand the dependency of lower bound to the

lipschitz constant.

Case 2 (d > 16
√
T)

In this case T < d2

256 . Let us denote d′ = 16
√
T < d, and let us use the above problem construction for dimension d′ (we

can simply ignore decision coordinates w(d′ + 1), . . . ,w(d), i.e. for any w ∈ W ⊆ Rd, denoting w[d′] = (w1, . . . ,wd′),
we can construct ft(w) = ft(w[d′])).

Now for the above problem suppose there exists an algorithm A such that E[RT (A)] ≤
√
d′T
32 = T 3/4

32 , then this violates the

lower bound derived in Case 1. Thus the lower bound for Case 2 is must be at least T
3/4

32 .

Combining the lower bounds of Case 1 and 2 concludes the proof.

A.2. Proof of Lemma 5 and additional claims

Useful definitions and notation. Before proceeding to the proof, we define relevant notation that will be used throughout
this section. For the kernel K′t (Definition 4), we define a linear operator K

′∗
t on the space of functions Gt 7→ R as follows.

For any function ` : Gt 7→ R:

K
′∗
t `(y) :=

∫
y′∈Gt

`(y′)K′t(y
′, y)dy ∀y ∈ Gt, (8)

Pseudo-1d Bandit Convex Optimization

We also denote by P and Qt the set of all probability measures onW and Gt respectively; and by δy ∈ Qt, δw ∈ P the
dirac mass at y ∈ Gt and at w ∈ W respectively. For q ∈ Qt, define:

〈
q, `
〉

=

∫
y∈Gt

`(y)q(y)dy

As noted in (Bubeck et al., 2017), a useful observation on the operator (8) is that for any q ∈ Qt:〈
K′tq, `t

〉
=
〈
K′t
∗
`t,q

〉
. (9)

Proof of Lemma 5.

Proof. For ease, we abbreviate gt(wt;xt) as gt(wt) throughout the proof. We start by analyzing the expected regret w.r.t.
the optimal point w∗ ∈ W (denote y∗t = gt(w

∗) for all t ∈ [T]). Define ∀y ∈ Gt, ˜̀
t(y) := f̃t(w), for any w ∈ W(y).

Also letHt = σ
(
{xτ ,pτ ,wτ , fτ}t−1

τ=1 ∪ {xt,pt}
)

denote the sigma algebra generated by the history till time t. Then the
expected cumulative regret of Algorithm 2 over T time steps can be bounded as:

E[RT (w∗)] := E
[T∑
t=1

(
ft(wt)− ft(w∗)

)]
= E

[T∑
t=1

(
`t(gt(wt))− `t(gt(w∗))

)]

= E
[T∑
t=1

(
`t(yt)− `t(y∗t)

)]
= E

[T∑
t=1

〈
K′tqt − δy∗t , `t

〉]
[since yt ∼ K ′tqt]

≤ E
[T∑
t=1

3εL

λ
+

1

λ

〈
K′t(qt − δy∗t), `t

〉] [
from Property#2 of Lemma 11

]
≤ 6εLT + 2

T∑
t=1

E
[〈

K′t(qt − δy∗t), `t
〉] [

we can choose λ = 1/2, see proof of Lemma 11
]

by (9)
= 6εLT + 2

T∑
t=1

E
[T∑
t=1

〈
K′∗t `t, (qt − δy∗t)

〉]
(a)
= 6εLT + 2

T∑
t=1

E
[T∑
t=1

Eyt∼K′tqt

[〈
qt − δy∗t ,

˜̀
t

〉
| Ht

]]

= 6εLT + 2

T∑
t=1

E
[T∑
t=1

Eyt∼K′tqt

[〈
pt − δw∗ , f̃t

〉
| Ht

]]
(10)

where the last equality follows by Lemma 9, and by
〈
δw∗ , f̃t

〉
= f̃t(w

∗) = ˜̀
t(y
∗
t) =

〈
δy∗t ,

˜̀
t

〉
; the penultimate equality

(a) follows noting that for any y′ ∈ Gt:

Eyt∼K′tqt [
˜̀
t(y
′)] =

∫
yt∈Gt

K′tqt(yt)
`t(yt)

K′tqt(yt)
K′t(yt, y

′)dyt =

∫
yt∈Gt

`t(yt)K′t(yt, y
′)dyt = K′t

∗
`t(y

′).

Let us denote by p∗ a uniform measure on the set Wκ := {w | w = (1 − κ)w∗ + κw′, for any w′ ∈ W} for some

κ ∈ (0, 1). Note, this implies p∗(w) =

{
1

κdvol(W)
, if w ∈ Wκ

0 otherwise
.

Then note that:

T∑
t=1

Eyt∼K′tqt
〈
pt − δw∗ , f̃t

〉
=

T∑
t=1

Eyt∼K′tqt [
〈
pt, f̃t

〉
−
〈
δw∗ , f̃t

〉
]

(a)
=

T∑
t=1

Eyt∼K′tqt [
〈
pt, f̃t

〉
]−K′t

∗
`t(gt(w

∗))

Pseudo-1d Bandit Convex Optimization

(b)

≤
T∑
t=1

Eyt∼K′tqt [
〈
pt, f̃t

〉
] +

T∑
t=1

[
κLDW −

〈
p∗,K′t

∗
`t(gt(·))

〉]
=

T∑
t=1

Eyt∼K′tqt [
〈
pt, f̃t

〉
−
〈
p∗, f̃t

〉
] + κLDWT

where (a) follows since Eyt∼K′tqt
〈
δw∗ , f̃t

〉
= Eyt∼K′tqt [f̃t(w

∗)] = Eyt∼K′tqt [
˜̀
t(gt(w

∗))] = K′t
∗
`t(gt(w

∗)) as shown
above; (b) follows since by assumption gt is D lipschitz and so by definition ofWκ for any w ∈ Wκ we have |gt(w)−
gt(w

∗)| ≤ DW (since W = Diam(W)). But from the Property #1 of Lemma 11 we have that the function K′t
∗
`t(·) is

L-lipschitz, which in turn implies for any w ∈ Wκ, |K′t
∗
`t(gt(w)) − K′t

∗
`t(gt(w

∗))| ≤ L|gt(w) − gt(w∗)| ≤ κLDW .
The last equality follows by applying the reverse logic used for (a).

Combining above claims with (10) we further get:

E[RT (w∗)] ≤ 6εLT + 2

(
κLDWT + E

[T∑
t=1

Eyt∼K′tqt

[〈
pt − p∗, f̃t

〉
| Ht

]])
. (11)

From Lemma 10 we get:

T∑
t=1

〈
pt − p∗, f̃t

〉
≤ KL(p∗||p1)

η
+
η

2

〈
pt, f̃

2
t

〉
=
KL(p∗||p1)

η
+
η

2

〈
qt, ˜̀2

t

〉
, (12)

where the equality
〈
pt, f̃

2
t

〉
=
〈
qt, ˜̀2

t

〉
follows from a similar derivation as shown in Lemma 9. Now, note that:

Eyt∼K′tqt

[〈
qt, ˜̀2

t

〉]
=

∫
yt∈Gt

K′tqt(yt)
〈
qt, ˜̀2

t

〉
dyt

=

∫
yt∈Gt

K′tqt(yt)
[∫

y∈Gt
qt(y)

(`t(yt))
2

(K′tqt(yt))2
(K′t(yt, y))2dy

]
dyt

≤ C2

∫
yt∈Gt

K′(2)
t qt(yt)

K′tqt(yt)
dyt ≤ BC2, (13)

where the last inequality follows from Property #3 of Lemma 11 with B = 2
(

1 + ln 1
ε + ln

(
βW − αW

))
.

Finally, by definition of p∗, we can bound the KL divergence term as:

KL(p∗||p1) = d log
1

κ
(14)

Substituting (13) and (14) in (12), letting L′ = LDW , and setting κ = 1
L′T , ε = 1

3LT , (11) yields:

E[RT (w∗)] ≤ 2 + 2

(
1 +

KL(p∗||p1)

η
+
η

2
E
[T∑
t=1

Eyt∼K′tqt
〈
qt, ˜̀2

t

〉
| Ht

])

= 4 + 2

(
d logL′T

η
+
ηBC2T

2

)

= 4 + 2
√

2

(√
dBC2T log(L′T)

)
,

where the last equality follows by choosing η =
(

2d log(L′T)
BC2T

) 1
2

. This concludes the proof.

Pseudo-1d Bandit Convex Optimization

Statements and proofs of additional lemmas used above:
Lemma 8. In Algorithm 2, at any round t, both qt ∈ Qt and K′tqt ∈ Qt.

Proof. Firstly note that, p1 ∈ P simply by its initialization, and for any subsequent iteration t = 2, 3, . . . , T , pt ∈ P by its
update rule.

Now for any t ∈ [T] and y ∈ Gt, by definition qt(y) > 0, as pt ∈ P . The only remaining thing to prove is that∫
Gt dqt(y) = 1, which simply follows as:∫

y∈Gt
qt(y)dy =

∫
y∈Gt

∫
Wt(y)

pt(w)dw =

∫
W

pt(w)dw = 1 [since pt ∈ P].

Now, consider K′tqt. By definition, ∀y ∈ Gt,K′tqt(y) =
∫
Gt K′t(y, y′)dqt(y′) > 0 since by construction K′t(y, ·) > 0 and

qt ∈ Qt. Further, since
∫
Gt K′t(y, y′)dy = 1 for every y′ ∈ Gt (by construction), it is easy to show

∫
Gt Ktqt(y)dy = 1 as

follows: ∫
Gt

K′tqt(y)dy =

∫
Gt

[∫
Gt

K′t(y, y
′)dqt(y

′)
]
dy =

∫
Gt

[∫
Gt

K′t(y, y
′)dy

]
dqt(y

′) =

∫
Gt
dqt(y

′) = 1.

Lemma 9. At any round t ∈ [T] of Algorithm 2,
〈
pt, f̃t

〉
=
〈
qt, ˜̀

t

〉
.

Proof. The claim follows from the straightforward analysis:〈
pt, f̃t

〉
=

∫
w∈W

pt(w)f̃t(w)dw =

∫
y∈Gt

∫
w∈Wt(y)

pt(w)f̃t(w)dw

=

∫
y∈Gt

∫
w∈Wt(y)

pt(w)˜̀
t(y)dw =

∫
y∈Gt

˜̀
t(y)

∫
w∈Wt(y)

pt(w)dw

=

∫
y∈Gt

˜̀
t(y)qt(y)dy =

〈
qt, ˜̀

t

〉
.

Lemma 10. Consider any sequence of functions f1, f2, . . . fT such that ft : D 7→ R for all t ∈ [T], D ⊂ Rd for some
d ∈ N+. Suppose P denotes the set of probability measure over D. Then for any p ∈ P , and given any p1 ∈ P , the

sequence {pt}Tt=2 is defined as pt+1(w) :=
pt(w) exp

(
− ηft(w)

)∫
w̃
pt(w̃) exp

(
− ηft(w̃)

)
dw̃

, for all w ∈ D. Then it can be shown that:

T∑
t=1

〈
pt − p, ft

〉
≤ KL(p||p1)

η
+
η

2

T∑
t=1

〈
pt, f

2
t

〉
,

where KL(p||p1) denotes the KL-divergence between the two probability distributions p and p1.

Proof. We start by noting that by definition of KL-divergence:

KL(p||pt)−KL(p||pt+1) =

∫
W

p(w) ln
(pt+1(w)

pt(w)

)
dw.

Moreover, by definition of pt+1, 1
η

(
KL(p||pt) − KL(p||pt+1)

)
= 1

η

(∫
W p(w) ln

(
pt+1(w)
pt(w)

))
= −Ep[ft(w)] −

1
η lnEpt [e

−ηft(w)] for any t = 1, 2, . . . , T . Then summing over T rounds,

T∑
t=1

[
− Ep[ft(w)]− 1

η
lnEpt [e

−ηft(w)]

]
=

1

η

(
KL(p||p1)−KL(p||pT+1)

)
.

Pseudo-1d Bandit Convex Optimization

Now adding
∑T
t=1 ft(wt) to both sides, this further gives:

T∑
t=1

[
ft(wt)− Ep[ft(w)]

]
=

1

η

(
KL(p||p1)−KL(p||pT+1)

)
+

T∑
t=1

(
ft(wt) +

1

η
lnEpt [e

−ηft(w)]
)

=⇒
T∑
t=1

[
ft(wt)− Ep[ft(w)]

]
≤ KL(p||p1)

η
+

T∑
t=1

(
ft(wt) +

1

η
lnEpt [e

−ηft(w)]
)

=⇒
T∑
t=1

Ewt∼pt

[
ft(wt)− Ep[ft(w)]

]
≤ KL(p||p1)

η
+

1

η

T∑
t=1

Ewt∼pt

[
ηft(wt) + lnEpt [e

−ηft(w)]

]

=⇒
T∑
t=1

[〈
(pt − p), ft

〉]
≤ KL(p||p1)

η
+

1

η

T∑
t=1

Ewt∼pt

[
ηft(wt) + Ept [e

−ηft(w)]− 1

]

≤ KL(p||p1)

η
+

1

η

T∑
t=1

Ewt∼pt

[
ηft(wt) + 1− ηEw∼pt [ft(w)] + Ew∼pt [

η2f2
t (w)

2
]− 1

]

=
KL(p||p1)

η
+
η

2

T∑
t=1

〈
pt, f

2
t

〉
,

which concludes the proof. The last two inequalities above follow from ln s ≤ s−1, ∀s > 0 and e−s ≤ 1−s+s2/2, ∀s >
0.

Lemma 11. For any convex and L-Lipschitz function, ` : Gt 7→ R+, such that Gt = [α, β] ⊆ R, q ∈ Qt, and any y ∈ Gt,
the kernel K′t : Gt × Gt 7→ R+ satisfies:

1. The function K′t
∗
`(·) is L-Lipschitz.

2. K′t
∗
`(y) ≤ (1− λ)

〈
K′tq, `

〉
+ λ`(y) + 3εL, where λ is a constant.

3. For any q ∈ Qt, define operator K′t
(2)

q : Gt 7→ R as:

K′t
(2)

q(y) :=

∫
y′∈Gt

(K′t(y, y
′))2dq(y′) ∀y ∈ Gt,

then
∫
y∈Gt

K′t
(2)

q(y)

K′tqy
dy ≤ B, where B = 2

(
1 + ln 1

ε + ln
(
β − α

))
.

Proof. 1. For the first part, let us denote ȳ = Ey∼q[y]. Then note that:

K′t
∗
`(y) =

〈
K′tδy, `

〉
=

{
EU∼unif[0,1]

[
`(Uȳ + (1− U)y)

]
, if |y − ȳ| ≥ ε

EU∼unif[0,1]

[
`(ȳ − εU)

]
, if |y − ȳ| < ε

, (15)

which immediately implies the function K′t
∗
`(·) has the same Lipschitz parameter that of `(·).

2. We prove this part considering two cases separately:

Case 1. |y− ȳ| ≥ ε: By construction of K′t (see Definition 4), we note that expectation of y w.r.t. q and K′tq, i.e. respectively
ȳ = Ey∼q[y] and Ey∼K′tq[y] can differ at most by 2ε, i.e. |Ey∼q[y] − Ey∼K′tq[y]| ≤ 2ε (Bubeck et al., 2017). We write,
Ey∼K′tq[y] = Ey∼q[y] + ψ, clearly ψ ∈ [−2ε, 2ε]. Hence:

`(ȳ) = `(Ey∼K′tq[y]− ψ)

≤ `
(∫

y∈Gt
yK′tq(y)dy

)
+ ψL ≤

∫
y∈Gt

`(y)K′tq(y)dy + 2εL

Pseudo-1d Bandit Convex Optimization

=
〈
K′tq, `

〉
+ 2εL (16)

where the first inequality follows using the L-lipschitzness of ` and the second inequality follows using Jensen’s inequality
(since ` is convex). Now consider the case |y − ȳ| ≥ ε in (15):

K′t
∗
`(y) = EU∼unif[0,1]

[
`(Uȳ + (1− U)y)

]
≤ `(ȳ) + `(y)

2
by (16)
≤

〈
K′tq, `

〉
+ `(y)

2
+ εL

This shows that for this case the claim of Part (2) holds for λ = 1
2 .

Case 2. |y − ȳ| < ε: Note ȳ − εU ∈ [ȳ − ε, ȳ] in (15). And in this case `(ȳ) ≤ `(y) + εL. Using the fact that `(·) is convex
and L-lipschitz, by similar arguments used to obtain (16) above, we have:

K′t
∗
`(y) ≤ `(ȳ) + εL = `(ȳ)/2 + `(ȳ)/2 + εL ≤ 〈K′tq, `〉/2 + (`(y) + εL)/2 + 2εL

which implies for this case as well, the claim of Part (2) holds for λ = 1/2.

3. For this part, note that:∫
y∈Gt

K′t
(2)

q(y)

K′tq(y)
dy

(a)

≤
∫ β

α

1

max(|y − ȳ|, ε)
dy

=

∫ ȳ−ε

α

1

max(|y − ȳ|, ε)
dy +

∫ ȳ+ε

ȳ−ε

1

max(|y − ȳ|, ε)
dy +

∫ β

ȳ+ε

1

max(|y − ȳ|, ε)
dy

=

∫ ȳ−ε

α

1

ȳ − y
dy +

∫ ȳ+ε

ȳ−ε

1

ε
dy +

∫ β

ȳ+ε

1

y − ȳ
dy

=
1

ε

∫ ȳ+ε

ȳ−ε
dy + 2 ln

1

ε
+ ln(β − ȳ) + ln(ȳ − α)

≤ 2

(
1 + ln

1

ε
+ ln

(
β − α

))
(since α ≤ ȳ ≤ β)

where (a) follows noting K′t(y, y′) ≤ 1
max(|y−ȳ|,ε) , ∀y, y

′ ∈ Gt which implies K′t
(2)

q(y) ≤ K′tq(y)
max(|y−ȳ|,ε) .

A.3. Proof of Lemma 6

Proof. For any `t : R→ [0, C], t ∈ [T], define ˆ̀
t : R 7→ [0, C] such that ˆ̀

t(y) = E
u∼U

(
B1(1)

)`t(y + δu), for any y ∈ R.

Let us also define f̂t(w) = ˆ̀
t(gt(w;xt)),∀w ∈ W . Let yt = gt(wt;xt), ∀t ∈ [T].

Then given any fixed w ∈ W and x ∈ Rd, by chain rule ∇wf̂t(w) = df̂t(y)
dy ∇w(gt(w;xt)) =

dˆ̀
t(y)

dy
∇w(gt(wt;xt)).

Consider the RHS of the lemma equality:

Eu∼U(S1(1))

[1

δ
`t
(
gt(wt;xt) + δu

)
u | wt

]
∇w(gt(wt;xt))

=
dˆ̀
t(yt)

dyt
∇w(gt(wt;xt)) = ∇w f̂t(wt) = ∇wEu

[
`t(gt(wt;xt) + δu)

]
,

where the first equality is due to Lemma 1 of (Flaxman et al., 2005) applied to the 1-dimensional ball B1(1).

A.4. Proof of Lemma 7

Proof. We start by recalling Lemma 2 of (Flaxman et al., 2005) that uses the online gradient descent analysis by (Zinkevich,
2003) with unbiased random gradient estimates. We restate the result below for convenience:

Pseudo-1d Bandit Convex Optimization

Lemma 12 (Lemma 2, (Flaxman et al., 2005)). Let S ⊂ Bd(R) ⊂ Rd be a convex set, f1, f2, . . . , fT : S 7→ R be a
sequence of convex, differentiable functions. Let w1,w2, . . . ,wT ∈ S be a sequence of predictions defined as w1 = 0
and wt+1 = PS(wt − ηht), where η > 0, and h1, h2, . . . , hT are random variables such that E[ht

∣∣wt] = ∇ft(wt), and
‖ht‖2 ≤ G, for some G > 0 then, for η = R

G
√
T

the expected regret incurred by above prediction sequence is:

E
[T∑
t=1

ft(wt)

]
− min

w∈S

T∑
t=1

ft(w) ≤ RG
√
T .

Coming back to our problem setup, let us first denote f̂t(w) = ˆ̀
t(gt(w;xt)), for all w ∈ W, t ∈ [T] (recall from

the proof of Lemma 6, we define ˆ̀
t : R 7→ [0, C] such that ˆ̀

t(y) = Eu∼U(B1(1))`t(y + δu), for any y ∈ R). We can
now apply Lemma 12 in the setting of Algorithm 3 on the sequence of convex (by (A1) (ii)), differentiable functions
f̂1, f̂2, . . . f̂T :Wα 7→ [0, C], with ht = 1

δ

(
`t(at)u

)
∇gt(wt;xt), with u ∼ B1(1) (note that Lemma 6 implies E[ht

∣∣wt] =

∇wf̂t(wt) = ∇wEu
[
`t(gt(wt;xt) + δu)

]
). We get:

E
[T∑
t=1

f̂t(wt)

]
− min

w∈Wα

T∑
t=1

f̂t(w) ≤ WDC
√
T

δ
, (17)

as in this case R ≤ (1 − α)W < W , and, by (A3) (ii), ‖ht‖ = ‖ 1
δ

(
`t(at)u

)
∇(gt(wt;xt))‖ ≤ DC

δ , so G = DC
δ , and

η = Wδ
DC
√
T

. Further, since `t(·)s are assumed to be L-Lipschitz, (17) yields:

E
[T∑
t=1

(ft(wt)− δL)

]
− min

w∈Wα

T∑
t=1

(ft(w) + δL) ≤ WDC
√
T

δ
,

=⇒ E
[T∑
t=1

ft(wt)

]
− min

w∈Wα

T∑
t=1

ft(w) ≤ WDC
√
T

δ
+ 2δLT

=⇒ E
[T∑
t=1

ft(wt)

]
− min

w∈W

T∑
t=1

ft(w) ≤ WDC
√
T

δ
+ 2δLT + αLT,

=⇒ E
[T∑
t=1

ft(wt)

]
− min

w∈W

T∑
t=1

ft(w) ≤ WDC
√
T

δ
+ 3δLT,

setting α = δ. The claim follows minimizing the RHS above w.r.t. δ. Setting δ =
(
WDC
3L
√
T

)1/2

gives:

E[RT (A)] = E
[T∑
t=1

ft(wt)

]
− min

w∈W

T∑
t=1

ft(w) ≤ 2
√

3WLDCT 3/4,

which concludes the proof.

B. Appendix for Simulations (Section 5)
Implementation details of Algorithm 2. The main challenge in implementing Kernelized Exponential Weights for
PBCO (Algorithm 2) is to handle the continuous ‘action space’W; in particular, to maintain and update the probability
distribution pt overW , and to sample from pt given yt at round t. Towards this we use an epsilon-net trick to discretizeW
into finitely many points—specifically, since we chooseW = Bd(1), we discretize the [0, 1] interval every d direction with
a grid size of O(1/d), and consider only the points inside Bd(1). This reduces the action spaceW into finitely many points
(say N), and we now proceed by maintaining and updating probabilities on every such discrete point following the steps of
Algorithm 2 (we initialize p1 ← 1/N for all N points in the epsilon net).

	Proofs
	Proof of Theorem 1
	Proof of Lemma 5 and additional claims
	Proof of Lemma 6
	Proof of Lemma 7

	Appendix for Simulations (Section 5)

