
Asymptotics of Ridge Regression in Convolutional Models

A. Complex Normal Distribution
Complex normal is the distribution of a complex random
variable whose imaginary and real parts are jointly Gaus-
sian.

Standard complex normal distribution. A random vari-
able Z = X + iY where X,Y ∈ R has standard complex
normal distribution represented by CN (0, 1) if

X,Y ∼ N (0, 1/2), X |= Y.

General complex Gaussian distribution. A random vec-
tor Z = X + iY where X,Y ∈ Rn has complex Gaussian
distribution CN (µ,Γ,C) if X and Y are jointly Gaussian
with

µ = E[Z], (42)

Γ = E[(Z− µ)(Z− µ)H], (43)

C = E[(Z− µ)(Z− µ)T]. (44)

The parameters µ,Γ, and C are called mean vector, covari-
ance matrix, and relation matrix respectively. Alternatively,
if we define

CXX = E[(X− µX)(X− µx)T], µX = E[X],

CY Y = E[(Y − µY )(Y − µY )T], µX = E[Y],

CXY = CT
Y X = E[(X− µX)(Y − µY )T],

then X,Y are jointly Gaussian with distribution

(X,Y) ∼ N
([
µX
µY

]
,

[
CXX CXY

CY X CY Y

])
.

The matrices Γ and C are related to covariance matrices of
X and Y through the following equations:

Γ = CXX + CY Y + i(CY X −CXY ),

Γ = CXX −CY Y + i(CY X + CXY ).

B. Empirical Convergence of Vector
Sequences

Here we review some definitions that are standard to in
papers that use approximate message passing.

Definition 1 (Pseudo Lipschitz Continuity). A function f is
called pseudo-Lipschitz continuous of order p with constant
C if for all x1,x2 ∈ dom(f)

‖f(x1)− f(x2)‖ ≤ C ‖x1 − x2‖ (1+‖x1‖p−1
+‖x2‖p−1

).
(45)

Note that for p = 1 this definition is a equivalent to the
definition of the standard Lipschitz-continuity.

Definition 2 (Uniform Lipschitz-continuity). A function f
on X ×W is uniformly Lipschitz-continuous in x at ω̄ if
there exists constants L1, L2 ≥ 0 and an open neighborhood
U of ω̄ such that for all x1,x2 ∈ X ,ω ∈ U

‖f(x1,ω)− f(x2,ω)‖ ≤ L1 ‖x1 − x2‖ , (46)

and for all x ∈ X ,ω1,ω2 ∈ W

‖f(x,ω1)− f(x,ω2)‖ ≤ L2(1 + ‖x‖) ‖ω1 − ω2‖ . (47)

Definition 3 (Empirical convergence of sequences). Con-
sider a sequence of vectors x(N) = {xn(N)}Nn=1 with
xn(N) ∈ Rd, i.e. each x(N) is a block vector with a total
of Nd components. For a finite p ≥ 1, we say that the
vector sequence x(N) converges empirically with pth order
moments if there exists a random variable X ∈ Rd such
that

• E ‖X‖pp <∞;

• for any f : Rd → R that is pseudo-Lipschitz of order
p,

lim
N→∞

1

N

N∑
n=1

f(xn(N)) = E[f(X)]. (48)

With some abuse of notation, we represent this with

lim
N→∞

xn
PL(p)

= X, (49)

where we have omitted the dependence on N to ease the
notation. In this definition the sequence {x(N)} can be
random or deterministic. If it is random we require the
equality in (48) to hold almost surely. In particular, if the
sequence {xn} is i.i.d. with xn ∼ pX(·), with E ‖X‖pp <
∞, then {xn} converges empirically to X with pth order.
The extension of this definition to sequence of matrices and
higher order tensors is straightforward.
Definition 4 (Convergence in distribution). A sequence of
random vectors xn ∈ Rd converges in distribution (also
known as weak convergence) to x if for all bounded func-
tions f : Rd → R

lim
n→∞

Ef(xn) = Ef(x). (50)

PL(p) convergence is equivalent to convergence in distri-
bution plus convergence of the pth moment (Bayati and
Montanari, 2011).
Definition 5 (Wasserstein-p distance). Wasserstein-p dis-
tance between two probability measures µ, ν on Euclidean
space Rd is

Wp(µ, ν) = inf
γ∈Γ

(
E(x,y)∼γ ‖x− y‖pp

) 1
p

, (51)

where Γ is the set of all probability measures on the product
space Rd × Rd with marginals µ and ν.



Asymptotics of Ridge Regression in Convolutional Models

PL(p) convergence is also equivalent to convergence the em-
pirical measure of the sequence xn to probability measure
of X in Wasserstein-p distance (Villani, 2008).

Definition 6. The empirical distribution of a sequence of
vectors {xi}Ni=1 with xi ∈ Rd (or Cd) is denoted by Pn and
is defined as

Pn(x) =
1

N

N∑
i=1

δ(x− xi),

where δ(·) is the Dirac measure.

Proposition 1 (Equivalence of PL(p) convergence and con-
vergence in Wasserstein-p metric (Villani, 2008)). The em-
pirical convergence defined in Definition 3 is equivalent to
the following convergence in Wasserstein-p metric

lim
N→∞

Wp(PN ,P) = 0,

where PN is the empirical distribution of x(N) and P is
the distribution of the random variable X in Definition 3 to
which the sequence is converging empirically.

C. 1D Convolution Operators in Matrix Form
In this section we derive the matrix form of 1D convolution
operators to show how these operators look like in time do-
main. As we will see, convolution operators in time domain
can be represented as a doubly block circulant matrix. Be-
cause of this structure, approximate message passing (AMP)
(discussed in Appendix D) cannot be directly used to obtain
estimation error of ridge regression for convolutional inverse
problem in time domain. This is due to the assumption in
AMP that the measurement matrix has i.i.d. entries. If this
assumption can be relaxed, we can analyze estimators other
than ridge, and compute error metrics other than MSE. We
hope to follow this direction in a future work.

First assume that in the convolutional model in (1), nx =
ny = 1, i.e. the input and output both have one channel.
Also for a matrix Z ∈ Rm×n, let ~(Z) ∈ Rnm represent
the vector constructed by stacking X in a vector row by
row. To simplify the notation, we zero pad the convolution
kernel which in this case is a vector of size k, so that it will
have size T and we still use K to represent the zero-padded
kernel to simplify the notation. In this case, the convolution
operator K : X 7→ K ∗X can be represented as a circulant
matrix C : vec(X) 7→ C vec(X)

C =


K1 K2 K3 . . . KT

KT K1 K2 . . . KT−1

KT−1 KT K1 . . . KT−3

...
...

...
. . .

...
K2 K3 K4 . . . K1

 (52)

When the number of input channels and output channels are
nx and ny respectively, the convolution can be represented
in matrix form as matrix with blocks of circulant matrices

C =


C11 C12 . . . C1, nx
C21 C22 . . . C2, nx

...
...

. . .
...

Cny,1 Cny,2 . . . Cny, nx

 , (53)

where each Cij is a circulant matrix of the form (52) con-
structed from Kij∗. Since the adjoint of a circulant matrix
is also a circulant matrix, one can see that the adjoint of a
1D convolution (with stride 1) is also a convolution with
respect to another kernel.

D. Approximate Message Passing
In this section we briefly describe the approximate mes-
sage passing (AMP) algorithm for linear inverse problems
(Bayati and Montanari, 2011). Consider the problem of
estimating x0 from linear observations

y = Ax0 + ξ, (54)

where A ∈ Rny×nx is a known matrix and ξ is i.i.d. zero-
mean Gaussian noise with variance σ2. Approximate mes-
sage passing is an iterative algorithm to solve this problem

xt+1 = ηt(A
Tzt + xt) (55)

zt = y −Axt +
1

δ
zt−1〈η′t−1(ATzt−1 + xt−1)〉︸ ︷︷ ︸

Onsager correction

,

(56)

where ηt(·) is a denoiser that acts component-wise, and 〈·〉
is the empirical averaging operator.

The key property of AMP algorithm is that when the sens-
ing matrix A is large with i.i.d. sub-Gaussian entries with
EA2

ij = 1/ny, the behavior of the algorithm at each iter-
ation can be exactly characterized via a scalar recursive
equation called the state evolution (SE)

τ2
t+1 = σ2 +

1

δ
E
[
(ηt(X0 + τtZ)−X0)2

]
, (57)

where X0 ∼ pX0 independent of Z ∼ N (0, 1). Here
pX0 is the distribution to which the components of x0 are
converging empirically. See Appendix B for background on
empirical convergence of sequences and some definitions we
would use throughout this paper. Given τt, as nx, ny →∞
with fixed ratio δ := ny/nx we have[

x0

xt

]
PL(2)

=

[
X0

ηt−1(X0 + τt−1Z)

]
, (58)

where as in SE we have X0 ∼ pX0 independent of Z ∼
N (0, 1).
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This convergence allows us to compute the estimation error.
If we define the mean squared error of the estimate at iter-
ation t to be MSE = 1/nx

∥∥x0 − xt
∥∥2

2
, then in the large

system limit almost surely

MSE = E
[
(ηt−1(X0 + τt−1Z)−X0)

2
]
, (59)

where the expectation is over X0 and Z.

D.1. AMP for ridge regression

In this section we show how AMP can be used to derive
asymptotic error of ridge regression

x̂ridge = arg min
x

‖y −Ax‖22 + λ ‖x‖22 . (60)

The solution to this optimization problem is

x̂ridge = (ATA + λI)−1ATy. (61)

Next, consider the AMP recursion in (55) and (56) with a
fixed denoiser ηt(x) = αx

xt+1 = α(ATzt + xt), (62)

zt = y −Axt +
α

δ
zt−1. (63)

The next lemma shows that this recursion solves the ridge
regression for a specific regularization parameter lambda.

Lemma 7. The fixed point of AMP algorithm with ηt(x) =
αx is the solution of ridge regression with

λ =
(1− α)(1− α/δ)

α
, (64)

where δ = ny/nx.

Proof. Let x∗ and y∗ denote the fixed points of the AMP
recursion. Then we have

x∗ = α(ATz∗ + x∗), (65)

z∗ = y −Ax∗ +
α

δ
z∗. (66)

Therefore,

z∗ =
1

1− α/δ
(y −Ax). (67)

Plugging this back to Equation (65) we get

x∗ =

(
ATA +

(1− α)(1− α/δ)
α

I

)−1

ATy. (68)

Comparing this to (61) proves the result. �

Given a λ, one can solve the quadratic equation (64) to find
the α that satisfies the equation. This is a quadratic equa-
tion that has two solutions. As we show in Section D.2, so

long as the regularization parameter λ is non-negative, this
quadratic equation always has two real and positive solu-
tions. But only for the smaller solution the AMP recursions
for solving ridge regression converges, and hence only the
smaller one is valid.

Having found the α we can use the state evolution (57) to
find its fixed point. For ridge regression, this can be done
in closed form. When EA2

ij = 1/ny the state evolution for
ridge regression can be written as

τ2
t+1 = σ2 +

1

δ
((1− α)2σ2

X + α2τ2
t ), (69)

If we define the fixed point value τ := limt→∞ τt we have
that it should satisfy

τ2 = σ2 +
1

δ
((1− α)2σ2

X + α2τ2), (70)

from which we obtain

τ2 =
σ2 + 1

δ (1− α2)σ2
X

1− α2

δ

. (71)

The mean squared error then can be obtained as

1

nx

∥∥x̂ridge − x0

∥∥2

2
= E

[
(α(X0 + τZ)−X0)

2
]

(72)

= (α− 1)2EX2
0 + α2τ2. (73)

Adjusting for variance of Aij . When Aij ∼
N (0, σ2

A/ny) instead of having EA2
ij = 1/ny, either we

have to slightly modify the state evolution or rescale the
inverse problem to adjust for the variance. Here we use
the latter approach. Assume that in Equation (54) we have
EA2

ij = σ2
A/ny . Then we can divide both sides by 1/σA to

correct for the variance. This rescales the noise variance and
the ridge regression parameter λ as well. Putting everything
together we get that the asymptotic error of ridge estimator
in (60) when EA2

ij = σ2
A/ny can be found as found as

follows:

1. Find the smaller solution of the quadratic equation

λ

σ2
A

=
(1− α)(1− α/δ)

α
. (74)

2. Find the fixed point of state evolution

τ2 ==

σ2

σ2
A

+ 1
δ (1− α2)σ2

X

1− α2

δ

.

3. The mean squared error would the same as in (73)

1

nx

∥∥x̂ridge − x0

∥∥2

2
= E

[
(α(X0 + τZ)−X0)

2
]

= (α− 1)2EX2
0 + α2τ2.
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D.2. Convergence of AMP

As mentioned in the previous section, when we use AMP
to find the solution of ridge regression, we first need to
find an α that satisfies Equation (64). This is a quadratic
equation that has two solutions. In theory, the solution of
ridge regression with a given λ is the fixed points of AMP
iterations for both values of α. However, we should also
note that the results of AMP are only valid if the iterations
converge to a fixed point. This is equivalent to stability of
the dynamics corresponding to AMP recursion. We saw in
Lemma 7 that a linear denoiser ηt(x) = αx can be used to
solve for a ridge regression with regularization parameter λ.
Recall that the AMP iterations for this denoiser are

xt+1 = α(ATzt + xt) (75)

zt = y −Axt +
α

δ
zt−1. (76)

Plugging Equation (76) in Equation (75) we get

xt+1 = α(I−ATA)xt +
α2

δ
zt−1 + αATy, (77)

zt = y −Axt +
α

δ
zt−1. (78)

These equations correspond to a linear time invariant system
with state matrix

A =

[
α(I−ATA) α2

δ AT

−A α
δ I

]
. (79)

The system is stable if and only if all the eigenvalues of
A lie inside the unit circle. We use results from random
matrix theory and classical control theory to show that as
nx →∞, this system is almost surely stable. Let [uT,vT]T

be an eigenvector of A corresponding to the eigenvalue ρ[
α(I−ATA) α2

δ AT

−A α
δ I

] [
u
v

]
= ρ

[
u
v

]
. (80)

From this we get

v =
1

α/δ − ρ
Au.

Plugging this back in (80) we obtain

ATAu =
(ρ− α)(α/δ − ρ)

αρ
u. (81)

Therefore, u should be an eigenvector of ATA. Large ran-
dom matrices of the form ATA are well studied objects in
random matrix theory and a lot of their properties are known.
In particular, the empirical distribution of the eigenvalues
this matrix converges to the Marchenko-Pastur distribution
(see (Chafaı et al., 2009) for a brief overview) and in the
limit of nx →∞ we have

λmax(ATA) =

(
1 +

1√
δ

)2

, almost surely, (82)

and

λmin(ATA) =


(

1− 1√
δ

)2

, δ ≥ 1

0, δ < 1
, almost surely.

(83)
Therefore, the question of convergence of AMP algorithm
reduces to showing that for all λmin(ATA) ≤ µ ≤
λmax(ATA), whether the ρ satisfying the equation

µ =
(ρ− α)(α/δ − ρ)

αρ

also satisfies |ρ| < 1. We can rearrange this equation to get

ρ2 + α(µ− 1/δ − 1) + α2/δ = 0.

Applying Jury stability criterion (Jury, 1963), we see that
roots of this quadratic equation lie inside the unit circle if
and only if the following two conditions are satisfied

1− α4

δ2
> 0, (Jury 1)(

1 +
α2

δ

)2

≥ α2 (µ− 1/δ − 1)
2
. (Jury 2)

If regularization parameter λ ≥ 0, solving the quadratic
equation (64) (or similarly (74)) for α, it is not hard to show
that it has two solutions α1, α2 that are always real and
satisfy

0 < α1 ≤ min(1, δ) ≤ max(1, δ) ≤ α2. (84)

Clearly, α1 satisfies the condition in (Jury 1) and α2 fails
this criterion. Therefore, for α2 the AMP recursion is always
unstable. It remains to show that α1 also satisfies (Jury 2)
and hence makes the AMP recursion for ridge regression
stable.

First observe that the condition in (Jury 2) can be rewritten
as

− 1

α
− α

δ
≤ µ− 1− 1

δ
≤ 1

α
+
α

δ
. (85)

The upper bound holds because using (82)

µ− 1− 1

δ
≤
(

1 +
1√
δ

)2

− 1− 1

δ

=
2√
δ

≤ 2√
δ

+

(
1√
α
−
√
α√
δ

)2

=
1

α
+
α

δ
,

where the first inequality holds almost surely. For δ ≥ 1,
the lower bound can also be shown to hold similarly. When
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δ < 1 we have λmin(ATA) = 0 almost surely. Therefore,
in this case we have to show that

0 ≤ 1

α
+
α

δ
− 1− 1

δ
.

The right hand side can be rewritten as

1

α
+
α

δ
− 1− 1

δ
=
α2 − α− αδ + δ

αδ
.

Since both α and δ are positive, we need to show that the
numerator is always positive. The numerator is a quadratic
function that attains its minimum at α = (δ + 1)/2. But
for δ < 1 from (84) we have α ≤ δ < 1. Therefore, the
minimum of the numerator for such α is attained at α = δ
which proves that

α2 − α− αδ + δ ≥ 0.

Hence, for α1, the AMP recursion is almost surely stable
and converges.

As a sanity check, we can also verify that if AMP iterations
for ridge regression in (75) and (76) are stable, so is the state
evolution recursion. The state evolution for ridge regression
is given in (69). This is a scalar linear time invariant system
that is stable if and only if

−1 ≤ α2

δ
≤ 1. (86)

This is similar to (Jury 1) and clearly (84) implies that α1

satisfies this inequality. Therefore, the stability of AMP
recursions for ridge regression also implies the stability of
the state evolution for ridge regression. As a result, the
smaller value of α that satisfies (64) should be used to get
the correct prediction of error.

D.3. AMP for complex ridge regression

Approximate message passing can also be used when the sig-
nals in (54) are complex valued. So long as the sensing ma-
trix has i.i.d. complex normal entries Aij ∼ CN (0, σ2

A/ny)
(see Appendix A for a brief overview of complex normal dis-
tribution), i.e. the real and imaginary parts of each entry are
i.i.d. Gaussian random variables with variance σ2

A/(2ny)
and independent of each other, the state evolution holds
(Maleki et al., 2013). Therefore, by changing all variables to
complex variables, we can use AMP exactly as in Appendix
D.1 and get the asymptotic error of complex ridge regression
using the state evolution almost without any changes.

E. Experiment with Gaussian AR(1) Process
As mentioned in the experiments, for an AR(1) process as
in (37), the auto-correlation function derived in Equation
(40) does not depend on the distribution of the noise ξt, but

Figure 3: Log of normalized error for the AR(1) features
with the process noiseN (0, s2), with respect to δ = ny/nx
for three different values of λ. The figure is almost indistin-
guishable from Figure 2.

only its second moment. This is true in general for an AR(p)
process that evolves as a linear time-invariant (LTI) system
driven with zero-mean i.i.d. noise. For such processes the
auto-correlation only depends on the second order statistics
of the noise as well parameters of the linear system. There-
fore, we expect to get identical results in the limit if the any
zero mean noise is driving the process so long as the vari-
ances match. In Figure 2, we showed the results for the case
where the noise was a scaled Rademacher random variable.
Figure 3 shows the same results for the case where the noise
is Gaussian with the matched variance. As expected, this
plot is almost indistinguishable from Figure 2.


