
Supplementary material for “Meta-Learning Bidirectional Update Rules”

Mark Sandler 1 Max Vladymyrov 1 Andrey Zhmoginov 1 Nolan Miller 1 Andrew Jackson 1 Tom Madams 1

Blaise Agüera y Arcas 1

1. Connection to Gradient Descent
Instead of verifying the equivalence of our update rule
∆w(w) to GD (with w including both forward and back-
ward weights), we may ask a more general question of
equivalence to a generalized gradient descent satisfying:

∆wj = −γ
∑
i

g−1ij

∂Lequiv

∂wi
, (1)

where gij are components of a Riemannian metric tensor
ĝ(w) and w are the model weights. Since Eq. (1) can
be rewritten as −γdLequiv = ĝ∆w, where dLequiv is the
exterior derivative of Lequiv, it follows that d(ĝ∆w) = 0,
or equivalently

∂

∂wr

∑
j

gij∆wj

 =
∂

∂wi

∑
j

grj∆wj

 . (2)

For contractible parameter spaces, this condition is also
sufficient for the existence of Lequiv (Lee, 2013).

Constant ĝ. Consider a special case where ĝ is constant,
i.e., independent of w. Then we can rewrite Eq. (2) as∑

j

gij
∂∆wj

∂wr
=
∑
j

grj
∂∆wj

∂wi
,

or introducing an n × n matrix Qij := ∂∆wi/∂wj with
n = dimw as:

Ẑ[ĝ, Q̂] := ĝQ̂− (ĝQ̂)> = 0. (3)

For ĝ to be a metric tensor, it has to be symmetric and posi-
tive definite and Eq. (3) should be satisfied for all possible
Q̂(w) calculated at all accessible states w.

In our numerical experiments, we studied a pre-trained two-
state model learning a 2-input Boolean task with a single
hidden layer of size 5. Finding a null space of the matrix

1Google Research. Correspondence to: Mark Sandler <san-
dler@google.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

corresponding to a linear system (3) for some Q̂(w∗), we
then checked the validity of Eq. (3) for the basis vectors of
this null space and 100 other Q̂(w) matrices calculated at
different other random statesw. Out of 265 basis vectors1,
4 solved Eq. (3) for all 100 of matrices Q̂, but as we verified
later, none of those 4 vectors (or ĝ candidates) were positive-
definite and actually had 0 eigenvalues. This shows that at
least in this particular case, our update rules ∆w(w) cannot
be represented as a generalized GD as shown in Eq. (1).

Equivalence to SGD and closed trajectories. Solving
Eq. (2) for a Riemannian metric ĝ in a more general case
is difficult. There are certain special cases, however, where
Eq. (2) does not have solutions. For example, if the vector
field defined by ∆w supports closed integral curves, there
are trivially no ĝ and Lequiv that would satisfy Eq. (1). In-
deed, if they existed, then parameterizing this closed integral
curve Γ by t ∈ [0, 1], we would obtain:

0 =

1∫
0

dLequiv(Γ(t))

dt
dt =

∫ 1

0

dLequiv(Γ̇) dt =

= −γ
∫ 1

0

ĝ−1dLequivdLequiv dt = 0,

which cannot hold for a Riemannian metric ĝ.

2. Modified Oja’s Rule
Oja’s rule is generally derived by augmenting weight update
with the normalization multiplier (Oja, 1982). Writing a
normalized weight update as:

w∗ij =
wij + γφ[wij , xi, yj][∑

i (wij + γφ[wij , xi, yj])
2
]1/2 , (4)

where x and y are pre-synaptic and post-synaptic activations,
and w∗ is the weight at the next iteration, we can see that in

1Found by performing SVD and taking vectors corresponding
to singular values below a 10−8 threshold.

Supplementary material for “Meta-Learning Bidirectional Update Rules”

EMNIST Subtasks (28x28) MNIST (28x28)

0-9 10-19 20-29 30-39 40-49 50-60
EMNIST Subtasks (Full resolution)

EMNIST Subtasks (10x10) Fashion MNIST (28x28)

0-9 10-19 20-29 30-39 40-49 50-60
EMNIST Subtasks (10x10 resolution)

Figure 1. Dataset subtasks at 10x10 and 28x28 resolution

the limit of γ → 0, this update rule can be rewritten as:

w∗ij = wij + γφ[wij , xi, yj]−

− γwij

∑
i

wijφ[wij , xi, yj] +O(γ2). (5)

For the Hebbian update φ = xiyj , the last O(γ) term in
Eq. (5) becomes a familiar Oja’s term:

−γwij

(∑
r

wrjxr

)
yj = −γwijy

2
j . (6)

For more complicated networks and families of update rules,
the canonical form of the Oja’s rule (6) is no longer appli-
cable. Let us derive a saturating term for the family of
update rules from Section 3.2, where the updated weight
now has the form ŵ∗ = f̃ŵ+ η̃φ̂. Expressing f̃ as 1 + η̃β,
we can rewrite the update rule as ŵ∗ = ŵ + η̃φ̂◦, where
φ̂◦ = φ̂+ βŵ and the corresponding saturating term in the
update rule then becomes

−(f̃ − 1)wc
ij

∑
r

(wc
rj)

2 − η̃wc
ij

∑
r

wc
rjφ[wrj ,ar,aj],

where both activations a and weights ŵ now also have
an additional “state” dimension. Substituting φ =∑

e,d a
e
i ν̃

ecµ̃cdadj here, we finally obtain the following in-
hibitory component of the update rule:

(∆wc
ij)

Oja = −(f̃ − 1)wc
ij

∑
r

(wc
rj)

2−

− η̃wc
ij

∑
r,e,d

wc
rja

e
rν̃

ecµ̃cdadj .

line
ar/

line
ar

rel
u/r

elu

rel
u/l

ine
ar

rel
uta

nh
/re

lut
an

h

rel
uta

nh
/lin

ea
r

sig
moid

/sig
moid

sig
moid

/lin
ea

r

tan
h/t

an
h

tan
h/l

ine
ar

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88 Different forward/backward non-linearities

8-state
4-state
2-state

Figure 2. Performance of different non-linearities. All models
were meta-trained with two hidden layers and use 2-8 states per
neuron.

3. Additional Experiments
3.1. Parameters

Meta optimizer Genome
Optimizer Adam States per neuron 2-8
LR 0.0005 Batch size 128
Gradient clip 10 Unroll length 10-50

Fig. 1 shows a sample from datasets used in the experiments.

3.2. Non-linearities

On Fig. 2 we show the performance of our meta-trained
while using different non-linearites. We explore using both
identical non-linearities on forward/backward pass as well
as not-using non-linearity in backward-ass at all at all. It can
be seen that we successfully meta-learned a configuration
for almost every combination of non-linearities. Also per-
haps not-surprisingly fully linear network while correctly
does not see any advantage of increasing number of states,

Supplementary material for “Meta-Learning Bidirectional Update Rules”

2 4 8 16
states per neuron

0.70

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

 a
fte

r 1
0

st
ep

s

Multiple meta-train runs

2 4 8 16
states per neuron

0.70

0.75

0.80

0.85

0.90

0.95 Best meta-training run
28x28 mnist after 10 unroll steps.

Figure 3. Performance after 10 unrolls with different number of
channels per neuron. All meta-trained runs were trained with the
same architecture.

0

20
k (

20
)

40
k (

30
)

60
k (

40
)

80
k (

50
)

10
0k

 (6
0)

Meta-training step (unroll length)

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Accuracy during curriculum meta-training

Figure 4. Trajectory of training evolution during curriculum train-
ing.

while networks with non-linearity improve with the number
of states.

3.3. Channels per neuron

As we mentioned using only 2-states per neuron provides
a slightly richer space than gradient descent. So what hap-
pens if we increase the number of states? Fig. 3 suggests
that merely increasing the number of states improves perfor-
mance, but fully capturing the power of multi-state neurons
is subject of future work.

3.4. Curriculum metatraining

Fig. 4 shows the accuracy of 8-identical randomly initialized
genomes trained for 10,000 steps with initial unroll length
of 10 steps. We then increase the length of unroll by 5 steps
for each consecutive 10,000 steps and synchronize genomes
across all runs.

3.5. Importance of Oja Rule

In our experiments using additional regularization Oja’s
term on synapse weights helps preventing synapse explosion.
For instance in Fig. 5 we show, that without modified Oja’s
rule the synapse weights tended to diverge, even though the
overall accuracy was not affected until overflow occurred.

0 50 100
Unroll steps

10−1

100

101

102

Synapse Std

0 50 100
Unroll steps

0.3

0.4

0.5

0.6

0.7 Activation Std
Oja rule
No oja rule

0 50 100
Unroll steps

0.5

0.6

0.7

0.8

0.9

1.0 Accuracy
Training trajectory of neurons and synapses

Figure 5. The impact of Oja’s rule on synapse amplitude.

0 100 200 300 400 500 600 700 800
Step

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Te
st

 a
cc

ur
ac

y

Long training trajectory

Oja
No Oja
Synapse norm, no Oja
Synapse norm, with Oja rule

Figure 6. MNIST test error measured in the process of train-
ing models with and without additional synapse normalization.
Synapse normalization (“Synapse norm” label) was only per-
formed when computing neuron activations and did not affect
the actual stored synapse values. Given stored synapse values wij

with i being the input dimension and j being the output dimension,
the effective weight used while computing the activations was
chosen as w′ij = wij/(

∑
i′ w

2
i′j)

1/2.

3.6. Synapse normalization

While reaching a high accuracy at unroll step ntarget used
as a target for meta-learning, the model performance fre-
quently degrades when it is trained beyond that point. One
technique that proved useful for solving this issue is to nor-
malize synapse values during the computation of activations
of individual layers. Fig. 6 shows evolution of the test accu-
racy for the best out of 10 runs in 4 different experiments:
with and without synapse normalization (and with or with-
out using Oja’s rule). Notice that while the peak accuracy
in experiments with normalization may be lower than in
those without normalization, it continues to grow well be-
yond ntarget. Furthermore, in models with Oja’s rule, the
synapses saturate during training and if we randomize the
labels after step 500, the model performance degrades soon
after, in other words, the model with synapse normalization
and Oja’s rule continue to learn. In contrast, synapses grow
exponentially in models without the Oja’s rule, which pre-
vents them from learning after a certain stage and later their
synapses overflow and they eventually diverge.

Supplementary material for “Meta-Learning Bidirectional Update Rules”

3.7. Ablation study

In Fig. 7 we show the ablation study for the following pa-
rameters:

• Type of the backward update: additive, multiplicative
or multiplicative second state only. This refers to the
states’ update on the backward pass.

• Forward and backward synapses: symmetric vs asym-
metric.

• Number of states in synapses: single state vs multi-
state.

• Initialization: random vs backprop genome initializa-
tion.

The backpropagation algorithm can be recovered as an ini-
tialization to “Multiplicative second state only, symmetric,
single state, backprop init” variant (dashed purple line). The
most general version of the algorithm that is used in most
experiments in the paper is “Additive, symmetric, multistate,
random init” variant (solid red line).

Depending on which backward update rule is chosen, differ-
ent combinations of parameters dominate over others. While
we couldn’t find a clear pattern to order the parameters by
their performance, surprisingly, most of the variants give
reasonable results, suggesting that the space of potentially
useful update rules is quite large.

References
Lee, J. M. Introduction to Smooth Manifolds. Springer,

2013.

Oja, E. Simplified neuron model as a principal component
analyzer. Journal of mathematical biology, 15(3):267–
273, 1982.

Supplementary material for “Meta-Learning Bidirectional Update Rules”

Meta-Train: MNIST Meta-Train: 10-way Omniglot
Meta-Eval: MNIST Meta-Eval: Omniglot Meta-Eval: MNIST Meta-Eval: Omniglot

Backward update: Additive

100 101

Unroll steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

100 101

Unroll steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
Backward update: Multiplicative

100 101

Unroll steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

100 101

Unroll steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Backward update: Multiplicative second state only

100 101

Unroll steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

100 101

Unroll steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Asymmetric, multistate, random init
Asymmetric, multistate, backprop init
Asymmetric, single state, random init
Asymmetric, single state, backprop init

Symmetric, multistate, random init

Symmetric, multistate, backprop init

Symmetric, single state, random init

Symmetric, single state, backprop init

Figure 7. Testing different variants of our proposed learning method. See text for the description of each parameter. All variants were
trained on MNIST or Omniglot to 10 unrolls and evaluated on MNIST and 10 classes from Omniglot. Errorbars show standard deviation
of the accuracy over 10 different subsets of Omniglot. Only the best result of 8 runs is plotted.

