
Recomposing the Reinforcement Learning Building-Blocks with
Hypernetworks: Supplementary Materials

A. Proof of Proposition 1
Proposition 1. Let π(a|s) = µφ(ε|s) be a stochastic parametric policy with ε ∼ pε and µφ(·|s) a transformation
with a Lipschitz continuous gradient and a Lipschitz constant κµ. Assume that its Q-function Qπ(s, a) has a Lipschitz
continuous gradient in a, i.e. |∇aQπ(s, a1) − ∇aQπ(s, a2)| ≤ κq‖a1 − a2‖. Define the average gradient operator
∇φf = Es∼D [Eε∼pε [∇φµφ(ε|s) · f(s, µφ(ε|s))]]. If there exists a gradient estimation g(s, a) and 0 < α < 1 s.t.

‖∇φ · g −∇φ · ∇aQπ‖ ≤ α‖∇φ · ∇aQπ‖ (1)

then the ascent step φ′ ← φ+ η∇φ · g with η ≤ 1
k̃

1−α
(1+α)2 yields a positive empirical advantage policy.

Proof. First, recall the objective to be optimized:

J(φ) = Es∼D [Eε∼pε [Qπ(s, µφ(ε; s))]]

∇φJ(φ) = Es∼D [Eε∼pε [∇φµφ(ε; s) · ∇aQπ(s, µφ(ε; s))]] = ∇φ · ∇aQπ
(2)

Notice that as Qπ is bounded by the maximal reward and its gradient is Lipschitz continuous, the gradient∇aQπ is therefore
bounded. Similarly, since the action space is bounded, and the terministic transformation µπ has a Lipschitz continuous
gradient, it follows that∇φµπ is also bounded. Define ‖∇aQπ‖ ≤ σq and ‖∇φµπ‖ ≤ σµ.

Lemma 1. LetA(x) : Rn →Mk×l s.t. ‖A(x)‖ ≤Ma and ‖A(x1)−A(x2)‖ ≤ α‖x1−x2‖ and ‖ ·‖ is the induced vector
norm. And let b(x) : Rn → Rl s.t. ‖b(x)‖ ≤Mb and ‖b(x1)− b(x2)‖ ≤ β‖x1 − x2‖. The operator c(x) = A(x) · b(x) :
Rn → Rk is Lipschitz with constant κc ≤ αMa + βMb.

Proof.
‖c(x1)− c(x2)‖ = ‖A(x1) · b(x1)−A(x2) · b(x2)‖

= ‖A(x1) · b(x1)−A(x1) · b(x2) +A(x1) · b(x2)−A(x2) · b(x2)‖
≤ ‖A(x1) · (b(x1)− b(x2))‖+ ‖(A(x1)−A(x2)) · b(x2)‖
≤ ‖A(x1)‖‖b(x1)− b(x2)‖+ ‖A(x1)−A(x2)‖‖b(x2)‖
≤ (βMa + αMb) ‖x1 − x2‖

The Lipschitz constant of the objective gradient is bounded by

‖∇φJ(φ1)−∇φJ(φ2)‖ = ‖E [∇φQπ(s, µφ1
(ε; s))−∇φQπ(s, µφ2

(ε; s))]‖ ≤
E [‖∇φµφ1

(ε; s) · ∇aQπ(s, µφ1
(ε; s))−∇φµφ2

(ε; s) · ∇aQπ(s, µφ2
(ε; s))‖]

Applying Lemma 1, we obtain

‖∇φJ(φ1)−∇φJ(φ2)‖ ≤ (κqσµ + κµσq)‖φ1 − φ2‖.

Therefore, J(φ1) is also Lipschitz. Hence, applying Taylor’s expansion around φ, we have that

J(φ′) ≥ J(φ) + (φ′ − φ) · ∇φJ(φ)− κ2J
2
‖φ′ − φ‖2 ≥ J(φ) + (φ′ − φ) · ∇φJ(φ)− (κqσµ + κµσq)

2

2
‖φ′ − φ‖2.
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Plugging in the iteration φ′ ← φ+ η∇φ · g we obtain

J(φ′) ≥ J(φ) + η
(
∇φ · g

)
·
(
∇φ ·Qπ

)
− η2(κqσµ + κµσq)

2

2
‖∇φ · g‖2. (3)

Taking the second term on the right-hand side,(
∇φ · g

)
·
(
∇φ ·Qπ

)
=
(
∇φ ·Qπ − (∇φ · g −∇φ ·Qπ)

)
·
(
∇φ ·Qπ

)
≥
∥∥∇φ ·Qπ∥∥2 − ∥∥(∇φ · g −∇φ ·Qπ) · (∇φ ·Qπ)∥∥

≥
∥∥∇φ ·Qπ∥∥2 − ∥∥∇φ · g −∇φ ·Qπ∥∥ · ∥∥∇φ ·Qπ∥∥

≥ (1− α)
∥∥∇φ ·Qπ∥∥2 .

For the last term we have∥∥∇φ · g∥∥2 =
∥∥∇φ ·Qπ − (∇φ · g −∇φ ·Qπ)

∥∥2
=
∥∥∇φ ·Qπ∥∥2 − 2

(
∇φ ·Qπ

)
· (∇φ · g −∇φ ·Qπ) +

∥∥∇φ · g −∇φ ·Qπ∥∥2
≤
∥∥∇φ ·Qπ∥∥2 + 2

∥∥∇φ ·Qπ∥∥ · ∥∥∇φ · g −∇φ ·Qπ∥∥+ α2
∥∥∇φ ·Qπ∥∥2

≤ (1 + 2α+ α2)
∥∥∇φ ·Qπ∥∥2 .

Plugging both terms together into Eq. (3) we get

J(φ′) ≥ J(φ) +
∥∥∇φ ·Qπ∥∥2(η(1− α)− 1

2
η2(κqσµ + κµσq)

2(1 + α)2
)
.

To obtain a positive empirical advantage we need

η(1− α)− 1

2
η2(κqσµ + κµσq)

2(1 + α)2 ≥ 0

Thus the sufficient requirement for the learning rate is

η ≤ 1

k̃

1− α
(1 + α)2

.

where k̃ = 1
2 (κqσµ + κµσq).
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B. Cosine Similarity Estimation
To evaluate the averaged Cosine Similarity (CS)

cs(Qπθ ) = Es∼D
[
∇aQπθ (s, aµ) · ∇aQπ(s, aµ)

‖∇aQπθ (s, aµ)‖ ‖∇aQπ(s, aµ)‖

]
, (4)

we need to estimate the local CS for each state. To that end, we estimate the “true” Q-function Qπ(s, a) at the vicinity of
a = aµ with a non-parametric local linear model

Qπ(s, a) ' fs,aµ(a) = a · g

where g ∈ RNa s.t. the Q-function gradient is constant ∇aQπ(s, a) ' g. To fit the linear model, we sample Nr unbiased
samples of the Q-function around aµ, i.e. qi = Q̂π(s, ai). These samples are the empirical discounted sum of rewards
following execution of action ai = aµ + ∆i at state s and then applying policy π.

To fit the linear model we directly fit the constant model g for the gradient. Recall that applying the Taylor’s expansion
around aµ gives

Qπ(s, a) = Qπ(s, aµ) + (a− aµ) · ∇aQπθ (s, aµ) +O
(
‖a− aµ‖2

)
, therefore

Qπ(s, a2)−Qπ(s, a1)− (a2 − a1) · ∇aQπθ (s, aµ) = O
(
‖a2 − a1‖2

)
for a1, a2 at the vicinity of aµ.

To find the best fit g ' ∇aQπθ (s, aµ) we minimize averaged the quadratic error term over all pairs of sampled trajectories

g∗ = arg min
g

Nr∑
i

Nr∑
j

|(aj − ai) · g − qj + qi|2.

This problem can be expressed in a matrix notation as

g∗ = arg min
g

∥∥∥X̃g − δ∥∥∥2 ,
where X̃ ∈ RN2

r×Na is a matrix with N2
r rows of all the vectors aj − ai and δ is a N2

r element vector of all the differences
qj − qi. Its minimization is the Least-Mean-Squared Estimator (LMSE)

g∗ = (X̃T X̃)−1X̃T δ.

In our experiments we evaluated the CS every K = 104 learning steps and used Ns = 15, Nr = 15 and ∆i ∼ N (0, 0.3) for
each evaluation. This choice trades off somewhat less accurate local estimators with more samples during training. To test
our gradient estimator, we first applied it to the outputs of the Q-function network (instead of the true returns) and calculated
the CS between a linear model based on the network outputs and the network parametric gradient. The results in Fig. 1 show
that our g∗ estimator obtains a high CS between the Q-net outputs of the SA-Hyper and MLP models and their respective
parametric gradients. This indicates that these networks are locally (∆ ∝ 0.3) linear. On the other hand, the CS between the
linear model based on the AS-Hyper outputs and its parametric gradient is lower, which indicates that the network is not
necessarily close to linear with ∆ ∝ 0.3. We assume that this may be because the action in the AS-Hyper configuration
plays the meta-variable role which increases the non-linearity of the model with respect to the action input. Importantly,
note that this does not indicate that the true Q-function of the AS-Hyper model is more non-linear than other models.

In Fig. 2 we plot the CS for 4 different environments averaged with a window size of W = 20. The results show that on
average the SA-Hyper configuration obtains a higher CS, which indicates that the policy optimization step is more accurate
s.t. the RL training process is more efficient.
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Figure 1. The Cosine-Similarity between the LMSE estimator of the Q-net outputs and the parametric gradient averaged with a window
size of W = 20.
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Figure 2. The Cosine-Similarity between the LMSE estimator of the empirical sum of rewards and the parametric gradient averaged with
a window size of W = 20.
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C. Gradient Step Noise Statistics in MAML
Hypernetworks disentangle the state-dependent gradient and the task-dependent gradient. As explained in the paper, we
hypothesized that these characteristics reduce the gradient ascent step noise during policy updates

φ← φ− η∇̂φJ

where ∇̂φJ is the gradient step estimation and η is the learning rate. It is not obvious how to define the gradient noise
properly as any norm-based measure depends on the network’s structure and size. Therefore, we take an alternative approach
and define the gradient noise as the performance statistics after applying a set of independent gradient steps. In simple
words, this definition essentially corresponds to how noisy the learning process is.

To estimate the performance statistics, we take N = 50 different independent policy gradients based on independent
trajectories at 4 different time steps during the training process. For each gradient step, we sampled 20 trajectories with a
maximal length of 200 steps (identical to a single policy update during the training process) out of 40 tasks. After each
gradient step, we evaluated the performance and restored the policy’s weights s.t. the gradient steps are independent.

We compared two different network architectures, both with access to an oracle context: (1) Hyper-MAML; and (2)
Context-MAML. We did not evaluate Vanilla-MAML as it has no context and the gradient noise, in this case, might also be
due to higher adaptation noise as the context must be recovered from the trajectories’ rewards. In the paper, we presented
the performance statistics after N = 50 different updates. In Table 1 we present the variance of those statistics.

Table 1. The gradient coefficient of variation σ
|µ| and the variance (in brackets) in MAML. Hyper-MAML refers to Hypernetwork policy

where the oracle-context is the meta-variable and the state features are the base-variable. Context-MAML refers to the MLP model policy
where the oracle-context is concatenated with the state features. To compare between different policies with different reward scales, we
report both the coefficient of variation and the variance in brackets.

Envrionment 50 iter 150 iter 300 iter 450 iter

HalfCheetah-Fwd-Back
Context-MAML 1.184 (774) 4.492 (2595) 2.590 (1891) 0.822 (3689)
Hyper MAML (Ours) 0.027 (26) 0.017 (43) 0.021 (96) 0.014 (53)

HalfCheetah-Vel
Context-MAML 0.035 (122) 0.050 (208) 0.093 (520) 0.066 (161)
Hyper MAML (Ours) 0.009 (5) 0.005 (1) 0.008 (2) 0.009 (2)

Ant-Fwd-Back
Context-MAML 0.274 (3) 0.199 (5) 0.400 (12) 0.285 (20)
Hyper MAML (Ours) 0.073 (1) 0.047 (2) 0.050 (6) 0.047 (11)

Ant-Vel
Context-MAML 0.379 (52) 0.377 (8) 0.628 (109) 0.418 (117)
Hyper MAML (Ours) 0.252 (5) 0.159 (2) 0.080 (2) 0.057 (2)
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D. Models Design
D.1. Hypernetwork Architecture

The Hypernetwork’s primary part is composed of three main blocks followed by a set of heads. Each block contains an
up-scaling linear layer followed by two pre-activation residual linear blocks (ReLU-linear-ReLU-linear). The first block
up-scales from the state’s dimension to 256 and the second and third blocks grow to 512 and 1024 neurons respectively. The
total number of learnable parameters in the three blocks is ∼ 6.5M . The last block is followed by the heads which are a set
of linear transformations that generate the ∼ 2K dynamic parameters (including weights, biases and gains). The heads have
∼ 2.5M learnable parameters s.t. the total number of parameters in the primary part is ∼ 9M .

D.2. Primary Model Design: Negative Results

In our search for a primary network that can learn to model the weights of a state-dependent dynamic Q-function, we
experimented with several different architectures. Here we outline a list of negative results, i.e. models that failed to learn
good primary networks.

1. we tried three network architecture: (1) MLP; (2) Dense Blocks (Huang et al., 2017); and (3) ResNet Blocks (He et al.,
2016). The MLP did not converge and the dense blocks were sensitive to the initialization with spikes in the policy’s
gradient which led to an unstable learning process.

2. We found that the head size (the last layer that outputs all the dynamic network weights) should not be smaller than
512 and the depth should be at least 5 blocks. Upsampling from the low state dimension can either be done gradually
or at the first layer.

3. We tried different normalization schemes: (1) weight normalization (Salimans and Kingma, 2016); (2) spectral
normalization (Miyato et al., 2018); and (3) batch normalization (Ioffe and Szegedy, 2015). All of them did not help
and slowed or stopped the learning.

4. For the non-linear activation functions, we tried RELU and ELU which we found to have similar performances.

D.3. Hypernetwork Initialization

A proper initialization for the Hypernetwork is crucial for the network’s numerical stability and its ability to learn. Common
initialization methods are not necessarily suited for Hypernetworks (Chang et al., 2019) since they fail to generate the
dynamic weights in the correct scale. We found that some RL algorithms are more affected than others by the initialization
scheme, e.g, SAC is more sensitive than TD3. However, we leave this question of why some RL algorithms are more
sensitive than others to the weight initialization for future research.

To improve the Hypernetwork weight initialization, we followed (Lior Deutsch, 2019) and initialized the primary weights
with smaller than usual values s.t. the initial dynamic weights were also relatively small compared to standard initialization
(Fig. 3). As is shown in Fig. 4, this enables the dynamic weights to converge during the training process to a relatively
similar distribution of a normal MLP network.

The residual blocks in the primary part were initialized with a fan-in Kaiming uniform initialization (He et al., 2015) with a
gain of 1√

12
(instead of the normal gain of

√
2 for the ReLU activation). We used fixed uniform distributions to initialize the

weights in the heads: U(−0.05, 0.05) for the first dynamic layer, U(−0.008, 0.008) for the second dynamic layer and for
the standard deviation output layer in the PEARL meta-policy we used the U(−0.001, 0.001) distribution.

In Fig. 3 and Fig. 4 we plot the histogram of the TD3 critic dynamic network weights with different primary initializations:
(1) our custom primary initialization; and (2) The default Pytorch initialization of the primary network. We compare the
dynamic weights to the weights of a standard MLP-Small network (the same size as the dynamic network). We take two
snapshots of the weight distribution: (1) in Fig. 3 before the start of the training process; and (2) after 100K training steps.
In Table 2 we also report the total-variation distance between each initialization and the MLP-Small weight distribution.
Interestingly, the results show that while the dynamic weight distribution with the Pytorch primary initialization is closer
to the MLP-Small distribution at the beginning of the training process, after 100K training steps our primary initialized
weights produce closer dynamic weight distribution to the MLP-Small network (also trained for 100K steps).
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Figure 3. Dynamic network weight distribution of different initialization schemes at the beginning of the training. The “Hyper init”
refers to a primary network initialized with our suggested initialization scheme. ’Pytorch Hyper init’ refers to the Pytorch default
initialization of the primary network and “Pytorch MLP init” refers to the Pytorch default initialization of the MLP-Small model (same
architecture as the dynamic network).
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Figure 4. Dynamic network weight distribution of different initialization schemes after 100K training steps. The “Hyper init” refers to a
primary network initialized with our suggested initialization scheme. ’Pytorch Hyper init’ refers to the Pytorch default initialization of the
primary network and ’Pytorch MLP init’ weight distribution of the MLP-Small model (same architecture as the dynamic network).

D.4. Baseline Models for the SAC and TD3 algorithms

In our TD3 and SAC experiments, we tested the Hypernetwork architecture with respect to 7 different baseline models.

D.4.1. MLP-STANDARD

A standard MLP architecture, which is used in many RL papers (e.g. SAC and TD3) with 2 hidden layers of 256 neurons
each with ReLU activation function.

D.4.2. MLP-SMALL

The MLP-Small model helps in understanding the gain of using context-dependent dynamic weights. It is an MLP network
with the same architecture as our dynamic network model, i.e. 1 hidden layer with 256 neurons followed by a ReLU
activation function. As expected, although the MLP-Small and MLP-Standard configurations are relatively similar with
only a different number of hidden layers (1 and 2 respectively), the MLP-Small achieved close to half the return of the
MLP-Standard. However, our experiments show that when using even a shallow MLP network with context-dependent
weights (i.e. our SA-Hyper model), it can significantly outperform both shallow and deeper standard MLP models.



Recomposing the Reinforcement Learning Building-Blocks with Hypernetworks

Table 2. Total-variation distance between the dynamic weight distribution and the “Pytorch MLP init” weight distribution: at the beginning
of the training process we find that ’Pytorch Hyper init’ is closer to the ’Pytorch MLP init’ weight distribution while after 100K training
steps we find that our initialization is closer to the ’Pytorch MLP init’ weights (also trained for 100K steps).

Primary Initialization Scheme Hopper Walker2d Ant HalfCheetah

First Layer
Ours Hyper init 31.4 23.9 13.6 29.4
Pytorch Hyprer init 16.3 20.5 9.2 8.8

Second Layer
Ours Hyper init 34.8 30.77 37.7 36.9
Pytorch Hyprer init 24.7 39.6 11.2 29.3

First Layer After 100K Steps
Ours Hyper init 14.4 19.6 29.9 16.4
Pytorch Hyprer init 24.9 22.6 34.0 22.4

Second Layer After 100K Steps
Ours Hyper init 31.2 28.5 30.6 21.1
Pytorch Hyprer init 32.11 20.8 30.7 31.1

D.4.3. MLP-LARGE

To make sure that the performance gain is not due to the large number of weights in the primary network, we evaluated
MLP-Large, an MLP network with 2 hidden layers as the MLP-Standard but with 2,900 neurons in each layer. This yields a
total number of ∼ 9M learnable parameters, as in our entire primary model. While this large network usually outperformed
other baselines, in almost all environments it still did not reach the Hypernetwork performance with one exception in the
Ant-v2 environment in the TD3 algorithm. This provides another empirical argument that Hypernetworks are more suited
for the RL problem and their performance gain is not only due to their larger parametric space.

D.4.4. RESNET FEATURES

To test whether the performance gain is due to the expressiveness of the ResNet model, we evaluated ResNet-Features: an
MLP-Small model but instead of plugging in the raw state features, we use the primary model configuration (with ResNet
blocks) to generate 10 learnable features of the state. Note that the feature extractor part of ResNet-Features has a similar
parameter space as the Hypernetwork’s primary model except for the head units. The ResNet-Features was unable to learn
on most environments in both algorithms, even though we tried several different initialization schemes. This shows that
the primary model is not suitable for a state’s features extraction, and while it may be possible to find other models with
ResNet that outperform this ResNet model, it is yet further evidence that the success of the Hypernetwork architecture is not
attributed solely to the ResNet expressiveness power in the primary network.

D.4.5. AS-HYPER

This is the reverse configuration of our SA-Hyper model. In this configuration, the action is the meta-variable and the state
serves as the base-variable. Its lower performance provides another empirical argument (alongside the lower CS, see Sec. B)
that the “correct” Hypernetwork composition is when the state plays the context role and the action is the base-variable.

D.4.6. EMB-HYPER

In this configuration, we replace the input of the primary network with a learnable embedding of size 5 (equal to the PEARL
context size) and the dynamic part gets both the state and the action as its input variables. This produces a learnable set of
weights that is constant for all states and actions. However, unlike MLP-Small, the weights are generated via the primary
model and are not independent as in normal neural network training. Note that we did not include this experiment in the
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main paper but we have added it to the results in the appendix. This is another configuration that aims to validate that the
Hypernetwork gain is not due to the over-parameterization of the primary model and that the disentanglement of the state
and action is an important ingredient of the Hypernetwork performance.

D.4.7. RESNET 35

To validate that the performance gain is not due to a large number of weights in the primary network combined with the
expressiveness of the residual blocks, we evaluated a full ResNet architecture: The state and actions are concatenated and
followed by 35 ResNet blocks. Each block contains two linear layers of 256 size (and an identity path). This yields a a total
number of ∼ 4.5M learnable parameters, which is half of the 9M parameters in the Hypernetwork model. In almost all
environments it underperformed both with respect to SA-Hyper and also with respect to the MLP-Standard baseline.

D.4.8. Q-D2RL

The Deep Dense architecture (D2RL) (Sinha et al., 2020) suggests to add skip connections from the input to each hidden
layer. In the original paper this applies both to the Q-net model, where states and actions are concatenated and added to each
hidden layer, and to policies where only states are added to each hidden layer. According to the paper, the best performing
model contains 4 hidden layers. Here, we compared to Q-D2RL which only modifies the Q-net as our SA-Hyper model
but does not alter the policy network. Q-D2RL shows an inconsistent performance between SAC and TD3. In the SAC
algorithm, it performs close to the SA-Hyper in all environments. On the other hand, in the TD3 algorithm, Q-D2RL was
unable to reach the SA-Hyper performance in any environment.

D.5. Complexity and Run Time Considerations

Modern deep learning packages such as Pytorch and Tensorflow currently do not have optimized implementation of
Hypernetworks as opposed to conventional neural architectures such as CNN or MLP. Therefore, it is not surprising that
the training of Hypernetwork can take a longer time than MLP models. However, remarkably, in MAML we were able
to reduce the training time as the primary weights and gradients are calculated only once for each task and the dynamic
network is smaller than the Vanilla-MAML MLP network. Therefore, within each task, both data collection and gradient
calculation with the dynamic model requires less time than the Vanilla-MAML network. In Table D.5 we summarize the
average training time of each algorithm and compare the Hyper and MLP configurations.

Table 3. Comparing the algorithms’ average running time between Hyper and MLP models: Single iteration training time for the MAML
algorithm and 5K steps training time for all other algorithms. Note that each agent was trained using a single NVIDIA® GeForce® RTX
2080 Ti GPU with a 11019 MiB memory.

Algorithm MLP Hyper

SAC 120s 200s
TD3 40s 140s
PEARL 450s 700s
MAML 150s 145s
Multi-Task MAML - 120s
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E. Experiments
In this section, we report the training results of all tested algorithms as well as the hyperparameters used in these experiments.
For each algorithm, we plot the mean reward and standard deviation over five different seeds. The evaluation procedure of
single task RL algorithms was done every 5K training steps, with a mean calculated over ten independent trajectory roll-outs,
without exploration, as described in (Fujimoto et al., 2018). The evaluation procedure of the Meta-RL algorithms was done
after every algorithm’s iteration, with a mean calculated over all test tasks’ roll-outs, as was done in (Rakelly et al., 2019).
In ’Velocity’ tasks in Meta-RL, we sample training and test tasks from [0, 3] except for the HalfCheetah-Vel-Medium(OOD)
environment which the training tasks sample from [0, 2.5] and the test tasks sample from [2.5, 3]. We used 100 training
tasks and 30 tests tasks for both algorithms (PEARL and MAML) on “Velocity” tasks and 2 tasks for the “Direction” tasks,
forward and backward.

E.1. TD3

(a) Hopper (b) Walker2d (d) HalfCheetah(c) Ant

Figure 5. TD3 performance of different MLP architectures compared to the SA-Hyper. SA-Hyper shows consistent high performance in
all environments and outperforms all other architectures except for the Ant environment.

(a) Hopper (b) Walker2d (c) Ant (d) HalfCheetah

Figure 6. TD3 Performance with Hypernetwork critic compared to MLP critic over different ’Mujoco’ environments. In all environments,
Hypernetwork outperforms all the baselines.
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Table 4. TD3 highest rewards.
Network Hopper Walker2D Ant HalfCheetah

MLP-Standard 3256± 211 3449± 730 3524± 617 10384± 923
MLP-Large 3156± 368 4527± 397 6042± 731 9467± 1978
MLP-Small 1756± 926 1799± 538m 3215± 267 6071± 256
ResNet-Features 307± 173 343± 349 1001± 1 2474± 2184
ResNet35 2213± 1431 4411± 703 4042± 215 9621± 1072
Q-D2RL 3347± 270 4408± 473 3736± 881 10023± 867
AS-Hyper 2633± 391 1905± 985 4513± 759 7669± 667
Emb-Hyper 2261± 728 2446± 676 2949± 741 6915± 374
SA-Hyper (Ours) 3418± 318 5412± 445 4660± 1194 11423± 560

Table 5. TD3 Hyper Parameters
Hyper-parameter TD3 Hyper TD3 (Ours)

Actor Learning Rate 3e−4 3e−4

Critic Learning Rate 3e−4 5e−5

Optimizer Adam Adam
Batch Size 100 100
Policy update frequency 2 2
Discount Factor 0.99 0.99
Target critic update 0.005 0.005
Target policy update 0.005 0.005
Reward Scaling 1 1
Exploration Policy N(0, 0.1) N(0, 0.1)
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E.2. SAC

(a) Hopper (b) Walker2d (d) HalfCheetah(c) Ant

Figure 7. SAC Performance of different critic models.

Table 6. SAC highest rewards.
Network Hopper Walker2D Ant HalfCheetah

MLP-Standard 3160± 327 4258± 413 3323± 389 10225± 324
MLP-Large 3549± 160 3550± 936 2100± 1322 8853± 1663
MLP-Small 2806± 425 2629± 804 2735± 589 6229± 475
ResNet-Features 3038± 1129 2936± 896 1002± 1 2755± 2114
ResNet35 3525± 40 2923± 1369 1138± 252 10096± 468
Q-D2RL 3612± 51 4638± 441 3684± 1207 10224± 1090
SA-Hyper (Ours) 3527± 40 4844± 254 3385± 983 10600± 950

Table 7. SAC Hyper Parameters
Hyper-parameter SAC Hyper SAC (Ours)

Actor Learning Rate 3e−4 2e−5, 1e−4 for ’HalfCheetah’
Critic Learning Rate 3e−4 5e−5

Optimizer Adam Adam
Batch Size 256 256
Discount Factor 0.99 0.99
Target critic update 0.005 0.005
Reward Scaling 5 5
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E.3. MAML
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Figure 8. MAML Performance over test tasks with a Hypernetwork policy compared to MLP policy with and without a given context
of the tasks by an oracle. The oracle-context improves the MAML performance but Hyper-MAML outperforms Context-MAML and,
importantly, it does not require an adaptation step.
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Figure 9. MAML Performance over training tasks with a Hypernetwork policy compared to MLP policy with and without a given context
of the tasks by an oracle. The oracle-context improves the MAML performance but Hyper-MAML outperforms Context-MAML and,
importantly, it does not require an adaptation step.
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E.3.1. ELIMINATING THE ADAPTATION STEP

Our experiments show that taking the MAML adaptation step is unnecessary when using the Hyper-MAML model with
an oracle-context (as opposed to Context-MAML which uses an oracle-context but still benefits from the adaptation step).
We further investigate whether we can also eliminate the adaptation step during training s.t. the gradient of each task is
calculated with the policy current weights as opposed to MAML which calculates the gradient at the policy’s adapted
weights. We term this method as Multi-Task Hyper-MAML (following (Fakoor et al., 2019) which termed the Meta-RL
objective without adaptation as a multi-task objective). In Fig. 10 we find that Multi-Task Hyper-MAML outperforms
the Hyper-MAML with adaptation. Moreover, Table D.5 shows that it also requires less training time as it removes the
unnecessary complexity of the MAML adaptation training.
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Figure 10. Multi-Task Hyper-MAML performance over the test tasks with a Hypernetwork policy and a multi-task objective. Using a
multi-task objective matches or outperforms the MAML objective without the need for the adaption step training.

Table 8. MAML highest rewards.
Algorithm Cheetah-Vel Cheetah-Fwd-Back Cheetah-Vel-Med Ant-Vel Ant-Fwd-Back

MAML −231± 40 183± 51 −423± 33 −8± 10 25± 13
Context MAML −207± 25 315± 93 −374± 79 6±19 41± 15
Hyper Multi-Task (Ours) −178± 21 539± 102 −332± 7 30± 13 72± 3
Hyper MAML (Ours) −182± 25 558± 49 −344± 10 27± 14 70± 5
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Table 9. MAML Hyperparameters
Hyperparameter MAML Hyper MAML (Ours)

Batch Size 20 20
Meta batch Size 40 40
Discount Factor 0.95 0.95
Num of Iterations 400 400
Max KL 1e−2 1e−2

LS Max Steps 20 20
Episode Max Steps 200 200
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E.4. PEARL
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Figure 11. PEARL Performance over the test tasks with policy and critic Hypernetworks compared to MLP policy and critic. Hypernet-
work outperforms or matches MLP in all environments.
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Figure 12. PEARL Performance over training tasks with policy and critic Hypernetworks compared to MLP policy and critic.
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Table 10. PEARL highest rewards.
Algorithm Cheetah-Vel Ant-Vel Cheetah-Vel-Med Cheetah-Fwd-Back Ant-Fwd-Back

PEARL −142± 82 1636± 210 −325± 109 93± 115 943± 146
Hyper PEARL (Ours) −119± 82 1828± 203 −206± 104 115± 54 1026± 62

Table 11. PEARL Hyperparameters
Hyperparameter PEARL Hyper PEARL

Actor Learning Rate 3e−4 1e−4

Critic Learning Rate 3e−4 5e−5

Context Learning Rate 3e−4 3e−4

Value Learning Rate 3e−4 5e−5

Optimizer Adam Adam
Batch Size 256 256
’Dir’ Tasks Meta batch Size 4 4
’Vel’ Tasks Meta batch Size 16 16
Target critic update 0.005 0.005
Discount Factor 0.99 0.99
Num of Iterations 400 400
Reward Scaling 5 5
Episode Max Steps 200 200
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