Towards Understanding Neural Networks with Linear Teachers
Supplementary Material

Here we provide proofs of the theorems stated in the paper, and additional empirical results.

1. Gradient Flow Definitions

We next formally define gradient flow. A function f : X — R is locally Lipschitz if for every x € X there exists a
neighborhood U of @ such that the restriction of f on U is Lipschitz continuous. For a locally Lipschitz function f : X — R,
the Clarke subdifferential at z € X is the convex set:

0° f(x) == conv {klim Vf(xy): xr — x, f is differentiable at wk} (1)
—00

As in (Lyu & Li, 2020) and (J1 & Telgarskyl 2020), a curve z from an interval I to a real space R™ is called an arc
if it is absolutely continuous on any compact subinterval of I. For an arc z we use z/(t) (or %(t)) to denote the
derivative at ¢ if it exists. We say that a locally Lipschitz function f : R¢ — R admits a chain rule if for any arc
2 :[0;+00) = R4, Vh € 0°f(2(t)) : (f 0 2)'(t) = (h, 2'(t)) holds for a.e. t > 0. It holds that an arc is a.e. differentiable,

and the composition of an arc and a locally Lipschitz function is still an arc.

Given the definitions above, we define gradient flow W : [0, 00) — R* to be an arc that satisfies the following differential

inclusion for a.e. ¢ > 0:
dW;

dt

€ —0°Ls(Wy) 2)

2. Proof of Theorem 4.1

Throughout this proof we will sometimes use the notation {x,y) as the dot product between two vectors  and y for
readability purposes.
k k
———
Let W* = (w* ... w", —w* - —w") € R,

Define the following two functions:

k k
FW,) = (W, W) =3 (!, w) - 3w, w)

i=1 i=1

and

k

k
GWy) = Wil = || S 1?12+ 3 [ful?]2
=1

i=1

Then, from Cauchy-Schwartz inequality we have:

FOW)l (W W9l _ |

< 3)
GOW,)|[WH]|  ||[W,[||[W]]

k k
Recall we define: Ny (z) =v > o(w?) -z) —v Y o(ul) - x).
j=1 j=1
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We consider minimizing the objective function:
1 n
L _ 1 (1 *%Nw(mb))
(W) = D lox (1+¢

using SGD on S where each point is sampled without replacement at each epoch. WLOG, we set o/(0) = «.

We first outline the proof structure. Let’s assume we run SGD for N, epochs and denote T' = nN,.. Furthermore, we assume
that for all epochs up to this point there is at least one point in the epoch s.t. £(y;Nw,_, (x:)) > & for some £y > 0 (recall
that n is the number of training points, and (y;, ;) is some training point selected during some epoch).

First, we will show that after at most 7' < M (n, €y) iterations, there exists an epoch 4, such that for each point (z,y:) € S
sampled in the epoch, it holds that:

Uy:Nw,_, (z1)) < €0 4

Next, using the Lipschitzness of ¢(x) we will show that the loss on points cannot change too much during an epoch.
Specifically, we will use this to show that at the end of epoch 4., which we denote by time 7™, it holds for all (x;,y;) € S:

U(y; Nw,.. (x:)) < (1 + 20°R2nkn)eg (5)

now by choosing ¢ =
required.

m we will get that V1 < ¢ < n ¢(y; Nw,.. (x;)) < ¢ which shows that Lg(Wrp-) < ¢ as

We start by showing Eq. ().

For the gradient of each neuron we have:

L@,y (W) _ evhwl@) 4, 0Nw ()
Ow () B 1+ e—YiNw (z:) ' Ow ()
_yie_yiNW(wi)

-7  szd (w9 .z,
1+ e~ ¥iNw (i) vzio (w i)

= —vyix; [ (yiNw ()| o’ (w) - ;)

and similarly:
aL{(wmyi)} (W)
ou)

where ¢/'(z) = —% = —H% and {(x) = log(1 + e~ 7).

= vyiw; | (y:Nw (@:))] o' (u - )

Optimizing by SGD yields the following update rule:

W, =W, - L, yoy(Wi-1)

_9_
Tow
where W, = (wgl), ...,wﬁk),uil), e uik))

For every neuron we get the following updates:

1w = wi?y + oy | (g Nw, , (@) pi,

2wl = u?) — oy |0 (1 Nw, ()] ¢

where pgj) = U’(w,gj) CTig1); qﬁj) = U’(ugj) CXpg1)-
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Next we will show recursive upper bounds for G(W;) and F(W3).

k
2=l +Z\|u§”||2
j:
k
< w2 +Z\|u§i>1||2
j=1 j=1

k k

+ 20yl (y: Nw,_, (24))| Z<w£])1’wt>p£ )1” Z<“§J)1th>q§])1”
j=1 j=1

+ 2k 0% |2 |21€ (e Nw,_, (24)) an‘” ||2+Z|\u<“ 12

+ 20| (y: Nw,_, (20)) [y: Nw, _, (1) + 2’4/‘772U2||30t|| W(Z/tNWH ()
= G(Wi—1)? + 2|0 (e Nw,_, (1)) |ye Nw,_, (@) + 2kn*v°||@| [0 (ye Nw,_, () *

On the other hand,

k
w*)
ut , W wt 1a ut 17

1 j=1 Jj=1

k
Wtzz

k
j=1 Jj=

k k
+ 0l (ye Nw, _, (x+) |Z Yt Ty, W pt 1’U+77|€ (yeNw,_, (x+) |Z Yt T, W qt(])ﬂ)
Jj=1 j=1

k k
>3 (wi? wty = S (W w*) + 2knvall (y Ny, (z1))]
j=1 j=1

Where we used the inequalities (y;x;, w™) > 1 and qg ) pgj ) >

To summarize we have:
G(Wy)? < G(Wi—1)® + 20| (e Nw,_, (@) [1e Nw,_, (¢) + 2kn* 0> R2C (y: Nw, _, (1)) ]? (6)

F(Wy) =2 F(W,_1) + 2knuall (i Nw, _, (z4))] 7

For an upper bound on G(W;) we use the following inequalities (which hold for the cross entropy loss):

ytNw,_, (z+)
1+eytNWt71 (m)

Ve eR 1+ z<1= |€/(ytNWr 1(xt))|ytNWt 1(mt)

have for any ¢:

< land |¢/(y+Nw,_, (2+))| < 1. Together we

G(Wy)? < G(W;_1)? + 20 + 2kn*v? R
Using this recursively up until T' = nN, we get:
G(Wr)? < G(Wy)? + T(2kn*v°R2 + 2n) (8)

Now, for F'(W), let &g > 0, under our assumption, in any epoch 4. until N, (1 < i, < N,) there exists at least one point in
the epoch (v, , @1, ) € Ss.t. £(ys,, Nw, (4,,)) > €o-

Now, since in our case £(x) = log(1 4+ e~ %) and ¢'(z) = —H%, we see that the condition ¢(z) > ¢( implies that:

|/(z)] >1—e"° )
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In any other case |¢'(y: Nw, _, (z+))| > 0, so if we assume at least one point violation per epoch (i.e. £(yt, Nw, (¢, )) >

o for some point (ytie , mtie) in the epoch) we would get that at the end of epoch N,:

F(Wrp) > F(Wr_y,) + 2knva(l — e™*°) (10)

This implies that (recursively using Eq. (I0)):
F(Wryp) > F(Wy) + 2knuaN.(1 — e *°) (11)
where N, is the number of epochs and n the number of training points, 7" = nV,.

Now, using the Cauchy-Schwartz, Eq. () and Eq. (TT) we have:

— G(W)|[W|| + 2knuaN, (1 — e=0) < F(Wy) + 2knvaN, (1 — e=)
< F(Wr) < |[[W*]|G(Wr) < |[W*||\/G(Wo)2 + T (2kiPo? B2 + 2n)

Using v/a + b < v/a + /b the above implies:
(W)W + 2knvaNe(1 — ) < |[W(|G(Wo) + |[WIVT v/ 2k o2 2 + 20

|

= V/2k||w*|| and that N. = L, we get :

’U,él) ‘ < Ry we get G(Wo) < V2kRy.

Now using ‘ ‘w(()i)

Noting that HW*

2knva(l — e~ 0)
n

) T < \/4k2n2v2R2 + 4kn||w*||V'T + 4kRo||w*||

Therefore, we have an inequality of the form:
al < WT + ¢

2knva(l — e~ 0)

- b= \/4k2n202R2 + 4kn||w*|| and ¢ = 4kRy||w*||.

where a =

2 b

a

T<(b)2+\fb ¢ _ [RR0RRS + Ak |[w”|[Pn? | /ARPP0RRE + dkajw*[|n \/ Ak Rolw*[|n
- aa

By inspecting the roots of the parabola P(X) = x r — £ we conclude that:

a  4k2n202a2(1 — e—e0)2 2knva(l — e—c0) 2knva(l — e—c0)
4kRo|lw*|ln [ R2 1 [|w*||?n? V/Ro(8k22v2R2 + 8kn)||w*||*ont>
2knua(l —e=c0)  \ a2 = knpu2a2? ) (1 — e <0)2 2k(nua)t-3(1 — e=50)15
2Ry||w*||n
nua(l — e=%o)
By the inequality 1 — e™* > = for > 0 (which is equivalent to ﬁ < “'T'H), with z = g9 > 0 we get

1
l1—e—¢0

< % =1+ é Therefore for S > 0 (all arguments are positive):

YD
(1 —e—c0)B €0

By using the above inequality we can reach a polynomial bound on 7"

R2 1 1)\?
T<|=Z4+ — N2 1+ =
> <a2 + knv2a2> l|w*||*n < +€o>

VRo(8k22v2R2 + 8kn)||w*|[*Ont 5 (1 + )15 2Rg[|lw*||n(1+ L)
+ 0 + =)
2k(nva)ts noo

(12)
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We have shown that there is at most a finite amount of epochs N, = % such that there exists at least one point in each of
them with a loss greater than €. Therefore, there exists an epoch 1 < 4, < N, + 1 such that each point sampled in the
epoch has a loss smaller than ¢q. Formally, for any (i, — 1)n + 1 <t < i.n, ¢ (ytNWtfl(wt)) < gg. Recall that SGD
samples without replacement and therefore, each point is sampled at some ¢ in the epoch i,.

Next, we will show that there exists a time ¢ such that Ls(W;) < ¢ by bounding the change in the loss values during
the epoch. We’ll start by noticing that our loss function ¢(z) is locally Lipschitz with coefficient 1, that is because
Va |0 (x)] = 1+7 < 1. With this in mind for any point (y;, ;) € S if we can bound |y; Nw,, . (x;) — v Nw, (x:)| we

would also bound |¢ (%NWHS (a:z)) — 4 (y;Nw, (x;)) |-

For any iteration (i, — 1)n+1 <t < i.nand 1 < s < n we have:

|yiNWt+.e (:BZ) - yZNWf ($1)| = |NW1+§($i) - NWf ($2)|

(ol - ) — o(w)? i)—vZ( uly @)~ ou @)

|
Fq .

1

IA
(4
M» I

r(wl), - @) = o(w] o(ufl, @) — olu? - @)
j=1
k
<o) |(wl - w?) @ +vZ((ut+s—ut ) (13)
j=1
k
<oy llwi, —w?|l- \:cl||+v2||u§2g—u£’n e (14)
j=1
k s )
<vR, Z Z NVYt+hTt+h V'(ywhNWHh_l($t+h))’p§i)h71
j=111h=1
+0Re Y S moyeen@en [CWen Nw, o ()| a2, (15)
j=11]lh=1
k s
ZZUUV WesnNwi s @) gl + R > D 00 [€ WernNw, oy (@) | |
j=1h=1 j=1h=1

< 2R S Ny (@100))] < 22 Rnks(1 — %) < 22 REqfn(1 — ) < 2% Renknz,  (16)
h=1

Where in Eq. we used the Lipschitzness of o(+) : V1,29 € Rlo(z1) — o(x2)| < |21 — 22|, in Eq. we used the
Cauchy-Shwartz inequality, in Eq. we used the update rule Eq. (2)) recursively and finally in Eq. (I6) we used that if
{(z) < g then |¢/(z)| < 1 — %0 (follows from a similar derivation to Eq. (9)) and that 1 — e~ < &

Now we can use the bound we just derived and the Lipschitzness of £ and reach

|£ (yiNWt+s (:BZ)) -4 (yzNWt wz)) | < 2U2R2ﬁkn€0 (17)

for any time (i. —1)n+1 <t <i.nand 1 < s < n. We know that for all 1 <4 < n, there exists (i — 1)n+1 <t < i.n
such that £(y; Nw,. _, (x;)) < €o. Therefore, by Eq. , for time T = i.n + 1 and any (y;, ;) € S we have:

¢ (yi Ny, () < € (yiNWt%l (zci)) + 202 R2nkneo < o + 202 R2nkne, (18)

If V1 <i < nl(y;Nw(x;)) < e we would get our bound Lg(W) < ¢.

Therefore, if we set g = in Eq. @) we’ll reach our result.

€
1+2v2R2nkn
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Setting this € at Eq. (I2)) leads to:

R? 1 1+ 202 R2nkn \ >
T< |22 *112,,2 1 T
- <a2 + k:m}%ﬂ) [[w?[["n ( * 5 )

1.5
VRo(SRZ202RZ + Sk [w*|[ont-® (14 B2 T o gy gt (14 S22 ke )
+

€ €

+

19

2k(nva)l-® nua (19)
. . 4 . . .

We denote the right hand side of Eq. li plus n by M (n,e). Note that M (n, €) = O(%y) and therefor for simplicity we

can alternatively denote M (n, €) to be a less tight bound of the form (’;_’;4

where C'is a constant that depends polynomially

4
) €
solution with Lg(W;) < ¢ empirical loss for some ¢t < M (n, €).

on R, Ry, k, 1, max {n, %} ,max {v, 1} and ||w*||. Overall, we proved that after O(%z) steps, SGD will converge to a

"We need to add n to Eq. because we may consider the epoch immediately after 7.
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3. Proof of Theorem [5.1]

Before we start proving the main theorem we will prove some useful lemmas and corollaries.

We first show the following.
Corollary 3.1. if |(w — @) - | > 2r||x|| then |w - x| > r||z|| V [w - x| > r||z]|.

Proof. Assume in contradiction that |w-x| < r||z||A|@-x| < r||z||. then by the triangle inequality and the Cauchy-Shwartz
inequality we’ll get:

|(w—u) x| <|w-z|+[w- x| < r||lz||+r||z|| = 2r||z|| in contradiction to the assumption |(w — @) - x| > 2r||z||. O

Next, we prove the following lemma, which will be used throughout the proof of the main theorem. The lemma ties the dot
products with the center of the cluster to the dot products with the individual neurons:

Lemma 3.1. IfV1 < j < k: w9 € Ball(w,r) AuY) € Ball(w,r) then: Vo € R s.t [w - x| > r||jx|| : V1 < j <
Ewd . x>0 V[Vl<j<k wY . x<0|and similarly for u type neurons V& € R s.t |a - x| > r||z|| : V1 < j <
Eud). x>0 VvVi<j<k ul).z<0).

Proof. Let’s assume that w - & > r||z||, therefore V1 < j < k: w") .z = (wV) —w) z+w -z > —|[w"?) —w|| -
llz|| + 7||z|| > —7||x|| + ||=|| = 0 where we had used Cauchy-Shwartz inequality and that ||w") — @]|| < 7.

fw o< —r|z||,V1<j<k: w . = (w(j) —w)-xt+w-x< Hw(j) —w|| - ||x]| = r||lz|] < r||x|]| —r|lz|| =0
the same derivation would work for u. O

We are now ready to move forward with proving the main lemma.

By Corollary [3.1] we see that {z € R?| |(@ — @) - x| > 2r||z||} C {z € RY| [@ - x| > r|jz|| V [@- | > r||z||} so if we
prove that:

Ve € RY € {z € R |(w — @) - z| > 2r||z||]} N {z € RY| |[w - x| > r||z|| V [@- x| > r||z||} : sign(Nw(z)) =
sign ((w — @) - «) we will be done.

We'll start by showing first our lemma holds Vz € R s.t [w - 2| > r||z|| A |@ - | > 7||z|| and then deal with the points in
which only one of the above conditions holds.

Proposition 3.1. Vo € R? 5.t [w - x| > r||z|| A [w- x| > r||z|| : sign (Nw(x)) = sign (W — u) - )

Proof. Under our clusterization assumption V1 < j < k : w() € Ball(w,r) A u'9) € Ball(w,r) so we can use Lemma
and we are left with proving that V& € R? such that for the w neurons {[V1 < j < k w" .z > 0] v [Vl <
j <k wW .z < 0]} and for the u neurons {[V1 < j < k u) .z >0 V[Vl < j <k ul) .z < 0]} we get
sign (Nw (x)) = sign ((w — @) - x).

We can represent {z € R?| [w - x| > r||z|| A [w- x| > r||z||} as a union of {C],C~,C,C*} where:
Cl={zecRYVvi<j<kw’ z>0andVi<j<kul x>0}
C-={zeRYVi<j<k w¥ . z<0andVl<j<k u.z<0}
Cr={zcRYVI<j<k w? . z>0andV1<j<ku. z<0}
Ct={zeRYVi<j<k w?. z<0andVl<j<k u.z>0}

Now we will show that sign (Nyw (x)) = sign ((W — @) - ) in each region, from which the claim follows.

k k
I.If x € C] then Nw(xz) = v <Z o(w - z) — o(ul az)) = (Z wl) — u(j)> -« and therefore
j=1 ;

sign (Nw (x)) = sign ((w — @) - x). )
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-

k
2. If x € CZ then Nw(x) = v <Z o(w - x) — o(uld) m)) = av(
j=1

sign (N (@) = sign (@ — @) - @)

wl) — u(j)> -« and therefore

j=1

-

3. If ¢ € C7 then both Ny (x) = v

J Jj=1

7N
vk

o(w - x) — o(uld) .@) — (

(x)) =sign((w —u) - x).

w@ .z — qul® m) > 0 and

W - x —u-x > 0. Therefore, sign (N,

3

4. If z € CT then both Ny (x) = v

-

N

f o(wd - z) — o(ul) .w)> — (

j=

(x)) =sign((w —u) - x).

aw@ .z — 49 ac) < 0 and

=

1

J

w-x —u-x < 0. Therefore, sign (N

3

O

We are left with proving sign (Nw (x)) = sign ((w — @) - «) holds when exactly one condition holds ,i.e., either |w - | >
rla|| or [w- @] > r||z|.

Proposition 3.2.

Ve € {x € RY [W-x| < rl|z||Al@-z| > rl|z||A|(@ —a) - x| > 2r||z||} : sign (Nw(x)) = sign (@ — @) - x)
and similarly our decision boundary is linear for points in which our condition only holds for w:

Ve e {x eRY [@-x| < r||z||A|w- x| > r||lz||A|(@—a) - x| > 2r||z||} : sign (Nw(x)) = sign (@ — @) - x)
Proof. We start with the domain {x € RY| [w - z| < r||z|| A [w- x| > r||z|| A |(W — @) - x| > 2r||z||}
i.e. our condition only holds for u.

There are two cases, and we’ll prove the result for each of them:

Ifw-x > r||z|:

In this case Ny (x) = v (Zk: o(w) - x) — o(ul?) w)) =0 <

j=1

<.
™=
L

o(wW) - x) — ku - :1:)

Next, for any @ in the domain, we’ll denote J(z) == {jlw?) -z > 0} and k¥ (x) = |J¥ ()| similarly J*(z) =
{jlw") - & < 0} and k™ () := |J™(x)|. Using these definitions, our network has the following form:

Nw(z)=v Z wi+) .z 4« Z wi) z—ku x| =v|kw-z—ku-x+ (a—1) Z wl-) .
jreJP () j-€JY(x) j_eJw(x)

Next, we bound Vj |w) .| = |(w") —w+w) x| < ||[w) —aw||-||z||+|@ x| < 2r||z|| where we used ||w) —w|| < r
and [w - x| < r||x||.

V

Now, if (W — @) -« > 2r||z|| > 0 we get that Ny (x) = v (kz(w—u) x—(1—a) Y wb-) w>
Jj-€JY ()

v (2r||z||k — 2r||x||k(z)(1 —«)) > 0 since (1 — ) < 1 and k“(x) < k and therefore sign(Nw (z)) =

sign ((w — @) - ) = 1 for this case.

If (w—-a) -« < —2r||z|]] < 0 we get that Nw(x) = v (kz(w—u)-x— 1-a) > w(j—)-:c) <
j-€J2 (@)

v (=2r|[x||k + 2r||z||k* (x)(1 — @) < Osince (1 — @) < 1 and k¥ (x) < k. Therefore, we get that sign (Nw (x)) =

sign ((w — @) - &) = —1 in this case.
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At any rate, we have shown that V& € {z € RY| [w-z| < r||z|| AT -z
sign (Nw (x)) = sign (w — @) - x).

Y

rlle|| Af(w —a) - @] > 2r|e|]} :

Ifw-x < —rllz|:

First, we notice that (@ — @) - & > —7||z|| + 7|||| = 0 so sign (@ — @) - &) = 1 again we use Lemma 3.1]and from
our assumption @ - & < —r||x|| we have V1 < j < k ul) - & < 0 and we can see that our network takes the form:

Nw (z) =v (i o(w) - x) — o(ul?) w)) = (i o(w . x)—a- kuw) > v <zk: o(w') . x) + akr||az|>.

j=1 j=1 j=1
Next, we prove the following lemma:

k _
Lemma 3.2. If W - | < r||z|| then a - k - r||z|| > — 3 o(wl) - ).

Jj=1

k .
Proof. Let’s assume by contradiction that — 3~ o(w() - 2) > a - k - r||z||. We notice that regardless of the sign of the
j=1

_ _ ko k _

dot product Vj : —o(w) - z) < —aw) - x so we have —a > wV) -z > — 3 o(w) - x) > a - k- r||x||, which
j=1 j=1

leads to —akw -« > « - k - r||x|| (where we used the definition of w) finally we reach w - © < —r||x||. This contradicts

[w - x| < r||z||. O

k
Therefore, we have — 3 o(w') - &) < a - k - r||z|| and sign (Nw () = sign (W — @) - z)) = 1 as desired.
j=1

To conclude we proved that V € {z € RY| [w-z| < r||z||Al[u-z| > r||z||A|(@ —7) x| > 2r||z||}, sign (Nw (z)) =
sign ((w — @) - x).

Next we look at Vz € {z € R?| |[u- x| < r||z||A|w- x| > r||z|| A |(W — @) - | > 2r||z||} and through a similar
derivation of two cases we will prove that sign (Nw (x)) = sign (W — @) - x).

Ifw- x> rllz|:

Through a similar derivation for the case of @ - & > r||x||, our network has the following form:

k k
Nw(@) =v | Y ow? z)—ou? 2) | =v|kw 2z~ o@? )
Jj=1 j=1
=vkw-x —v Z wl+) x4 Z aul-) .
jreJi(z) jo€J" ()
j+€=]i(w) j_—€J¥(x) j_€Ju(x)

=v|kw-z—ku-z+(1-a) Z wl-) g
j-€J(z)

where J%(z) = {jlul) -z < 0}, J¥(x) = {jlul) -z > 0} and k" (z) = |J* ()|, k% (z) = | J%(z)|.
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If - w -z > 2r||xz|| > 0 then Nw(x) = v(k:(w—u)-sc—!—(l—a) > u(j—)-cc> >
J-€J ()

v (2kr||z|| — 2r||2|[(1 — a)k“(x)) > O (because (1 — a) < 1 and k“(z) < k) and sign(Nw(z)) =
sign (W — @) - ) = 1 (where we used the fact that Vj : |u9) - x| < 2r||x|| which follows from [@ - x| < r||z]|
and |[u) —@|| < 7).

If (w—w) -« < —2r||z|| < 0 we get that Ny (x) < v (—2r||z|[k + 2r||z||(1 — a)k" (z)) < 0 and sign (Nw (x)) =
sign((w—u)-x) =1.

To summarize, we showed that Vo € {z € RY| |[@-z| < rl|lz||A®w -z > r||lz|| A |(@ — @) - z| > 2r||z||},
sign (Nw (x)) = sign ((w — @) - x).

Ifw-x < —r|lx|:

We again use Lemma which yields from @ - & < —r|||| that V1 < j < k w) - 2 < 0 and we can see that our network
takes the form:

k

k
)=v| > o(w —ou -z) | =akvwa—v S o 2) | <v|—akrlzl| - Y o )

Jj=1 J=1 Jj=1

If — > o(ul) - x) < akr||z|| we have sign (Nw (x)) = sign (@ — @) - ) = —1 as desired.
j=1

The same contradiction proof from @ - © < —r||x|| segment above (Lemma|3.2) would show

k
— Y o(u) - x) < a- k- r||x|| (just exchange w and u) and we’ll get sign (Nwy () = sign (W — @) - ) = —1.
J=1

Finally, we proved that

Ve e {x eRY [w- x| <r||z||A[@- x| >r||z||A|(@—a) - x| > 2r||z||} sign (Nw () = sign (W — @) - x)
and that

Ve e {xecRY [@- x| <r||z||A[w@- x| >r||z)]|A|(@—a) - x| > 2r||z||} sign (Nw (x)) = sign (@ — @) - x)

as required. O

We can now combine Corollary 3.1} Proposition[3.1]and Proposition [3.2]and prove Theorem [5.1}

We have Vz € Rés.t|(w — u) - x| > 2r||z|| then [w - x| > r||z|| V |[@ - x| > r||z||. If = is such that |w - x| >
r||z|| A |@ - x| > r||z|| we can use Proposition (3.1) and get sign (Nw (x)) = sign (W — @) - x).

If only one condition holds i.e. = € {z € R |[w-z| < r||z||A|u- x| > r||lz|| A |(W — @) - x| > 2r||z||} or
z e {xeRY [w-z| <r||z|]|Aw- x| >r||z||A|(W—w) - x| > 2r||x||} then we can use Proposition (3.2) and get
sign (Nw (x)) = sign ((w — @) - x).

Therefore, overall for |(w — w) - | > 2r||x|| we get sign (Nw (x)) = sign ((w — @) - «) as required.

3.1. Proof of Corollary [6.1]

Since the network is perfectly clustered, the corollary follows by Proposition (3.1)) with r = 0.
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4. Additional Experiments - Linear Decision Boundary

In this section we provide additional empirical evaluations of the decision boundary that SGD converges to in our setting.

4.1. Leaky ReL U vs ReLLU decision boundary

Theorem [5.1] addresses the case of Leaky ReLU activation. Here we show that the result is indeed not true for ReLU
networks. We compare two perfectly clustered networks (i.e., each with two neurons) one with a Leaky ReLU activation
and the other with a ReLU activation. Figure[I|shows a decision boundary for a two neuron network, in the case of Leaky
ReLU (Figure[Ta) and ReLU (Figure[Ib). It can be seen that the leaky ReLU indeed provides a linear decision boundary, as
predicted by Theorem [5.1] whereas the ReLU case is non-linear (we explicitly show the regime where the network output is

zero. This can be orange or blue, depending on whether zero is given label positive or negative. In any case the resulting
boundary is non-linear).

-0.25 —0.25

-0.50 -0.50

-0.75

-0.75

—1.00 - T T T T T T T -1.00 T T T
-1.00 -0.75 -050 -0.25 0.00 0.25 0.50 0.75 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75

(a) Leaky ReLU network - Linear Decision Boundary (b) ReLU network - Non Linear Decision Boundary

Figure 1: The prediction landscape for two neuron networks with Leaky ReLU and ReLU activations. Orange for positive

prediction, blue for a negative prediction and grey for zero prediction. The w neuron is (1,0) € R? and the w neuron is
(0,1) € R2.

4.2. MNIST - Linear Regime

In Figure|Z|in the main text we saw how for MNIST digit pairs (0,1) and (3,5) the network enters the linear regime at some

point in the training process. In Figure 2] we see the robustness of this behavior across the MNIST data-set by showing the
above holds for more pairs of digits.

101 ¢ -e~- MNIST 2-8, std:1e-05
< : -e= MNIST 4-7, std:1e-05
E 081 } —-e- MNIST 0-1, std:1e-05
o :‘1 -e- MNIST 3-5, std:1e-05
Sosq N
o nl
I
§ 04{ m
= m\
c m‘ \
fo2] M \\.
1 \\\....-\_.
: S T e g _
0.0-
0 50 100 150 200 250 300
Epochs

Figure 2: Convergence to a classifier that is linear on the data, for MNIST pairs. Each line corresponds to an average over 5
initializations.
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4.3. Clustering of Neurons - Empirical Evidence

In Section [5]in the main text and Figure [2]above, we saw that learning converges to a linear decision boundary on the train
and test points. Theorem [5.1] suggests that this will happen if neurons are well clustered (in the w and w groups). Here we
show that indeed clustering occurs.

We consider two different measures of clustering. The first is the ratio ﬁ, and the second is the maximum angle
between the neurons of the same type (i.e., the maximal angle between vectors in the same cluster). Figure |3|shows these
two measures as a function of the training epochs. They can indeed be seen to converge to zero, which by Theorem 5.1]

implies convergence to a linear decision boundary.

120 T -e- Gaussian, std:1e-05 61 T —*- Gaussian, std: 1e-05

» 1001 & -e- MNIST 0-1, std:1e-05 S8 -e- MNIST 0-1, std: 1e-05
¢ —e- MNIST 3-5, std:1e-05 —e- MNIST 3-5, std: 1e-05
g 801 4
e 5
é 60 ‘-é 3
wn =
[=
S 40+ 2
3
Z 20 1

o 2‘313?':3&2—3{1—3!—!-3—)‘!&3:—‘:—(—3:—:3 0] Sm—m——e—ste——ses o009 —09

0 50 100 150 200 250 300 0 0 100 150 200 250 300
Epochs Epochs
(a) Max Angle In Same Cluster Neurons ®) 7=

Figure 3: Evaluation of clustering measures during training. We consider two different clustering measures in (a) and (b)
(see text). It can be seen that both measures converge to zero.

5. Assumptions for Gradient Flow Analysis

In the paper we use results from (Lyu & Lil 2020) and (Ji & Telgarsky, [2020). Here we show that the assumptions required
by these theorems are satisfied in our setup.

The assumptions in (Lyu & Lil 2020) and (J1 & Telgarsky, [2020) are:

(A1) . (Regularity). For any fixed «, ®(-; ) is locally Lipschitz and admits a chain rule;
(A2) . (Homogeneity). There exists L > 0 such that Va > 0 : ®(aW;z) = ol ®(W; z);

(B3) . The loss function ¢(g) can be expressed as £(q) = e~/(@) such that

(B3.1). f:R — Ris C'-smooth.
(B3.2). f'(q) > Oforallq € R.
(B3.3). There exists by > 0 such that f’(¢)g is non-decreasing for ¢ € (by, +00), and f(¢)g — 400 as ¢ — +oo.

(B3.4). Let g : [f(bf),+00) — [bf,+00) be the inverse function of f on the domain [bf,+00). There exists
by > max{2f(b), f(2bf)}, K > 1suchthat¢'(z) < Kg'(fx) and f'(y) < K f'(0y) forall z € (by, +0),y €
(g(bg),+00) and 6 € [1/2,1)

(B4). (Separability). There exists a time # such that L(W) < e~ /(5) = ¢(by)

We next show that these are satisfied in our setup.
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Proof. (Al). (Regularity) first we show that ®(-; &) is locally Lipschitz, with slight abuse of notations, let W; =
1, Wy = W4 € R?*4 50 in our case:

O(Wysx) —d(Whz)=v-0(Wy-x) —v-0(Wy-x)

o | (0 2) o (0§ 2) — (o (u)2) o (u-2))

j=

—

and therefore

[|[@(W1; ) — ©(Wo; )|
f o (w0 2) o () o) - (o (u o)~ o (u2))
2l (o w) = (w2 [l (w7 -2) o (w” )

v

j=1

<w

k
< 2llz|| |3 llwt — wd|| + [[ul? — ||| =20 |[a]| - |W) — W
j=1

And we showed ®(-; ) is globally Lipschitz (and therfor locally Lispchitz). Next for the chain rule, as shown in (Davis
et al., 2018) (corollary for deep learning therein), any function definable in an o-minimal structure admits a chain rule.
Our network is definable because algebraic, composition, inverse, maximum and minimum operations over definable
functions are also definable. Leaky ReLUs are definable as maximum operations over two linear functions (linear
functions are definable).and because Leaky ReLLUs are definable our network is also definable.

(A2). (Homogeneity). It is easy to see from the definition that in our case, the trainable parameters are only the first layer
weights and the network ®(-; ) is L = 1 homogeneous.

(B3). As seen in [Lyu & Li| (2020) (Remark A.2. therein) the logistic loss £(q) = log(1l + e~ ?) satisfies (B3) with
flqg) = —log (log(l + efq)) ,9(q) = —log (ee_q — 1) by =0.

(B4). (Separability). This is Assumption [6.1]in the main text. As we mentioned in the main text, this assumption is satisfied
with SGD by Theorem

O
6. Proof of Theorem
In this proof we will show that the normalized parameters W, = HVV‘%H under gradient flow optimization, converges to a

solution in \ and that the network Ny;, at convergence is perfectly clustered. Under our assumption V¢ > T ar W, e N.

From the definition of the NAR it’s easy to see that the NAR is a closed domain. Therefore any limit point of W, is also in
the NAR. From J1 & Telgarsky| (2020) (Theorem 3.1. therein) we have that the normalized parameters flow converges when
using gradient flow. To conclude so far, we had shown that W; converges to a point inside the NAR V.

We are left with showing that the limit point of tlim W, := W, hasa perfectly clustered form.
— 00

Lyu & Li|(2020) (Theorem A.8. therein) shows that every limit point of W, is along the direction of a KKT point of the
following optimization problem (P):

1
wmin [|W |
st. g(W)>1 Vi€ |n]
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where ¢;(W) = y; Nw (x;) is the network margin on the sample point (y;, a:l)

We are left with showing that at convergence the neurons align in two directions. We will use a characterization of the KKT
points of (P) and show that they are perfectly clustered. Since every limit point of the normalized parameters flow is along
the direction of a KKT point of (P) that would mean W, has a perfectly clustered form.

A feasible point W of (P) is a KKT point if there exist A, ..., A, > 0 such that:

1. W — > A\;h; =0 for some hy, ..., h, satisfying h; € 9°¢;(W)

=1

2. Vi€ [n]: M(g(W) — 1) =0

From|Lyu & Li|(2020) (Theorem A.8. therein) we know 37 s.t. BW* is a KKT point of (P). Since our limit point is in an
NAR we don’t need to worry about the non differential points of the network because V1 < j < k,i € [n] : wff ). T; #

0A uij ). x; # 0. (where wij ) and uij ) stands for the w and u type neurons of W, respectively). Therefore the Clarke
subdifferential coincides with the gradient in our domain, and we can derive it using calculus rules.

By looking at the gradient of the margin for any point (y;, «;):

i 1O i ; ;
. 8‘1 (W) Y 0 W(CC ) _ yivmia’(w(]) 'mi) _ ywmm’(w(” . -737',)

Swl) Ow ()
9¢;(W)  yiONw(xi) oG _ 100 ()
) S0l = —yvzio (uV - x;) = —yvx;o’ (U - x;)
k k
Now using the above gradients implies that: dg;(W) = yvx; (o’ (w - &), ..., 0" (w® - x;), =o' (uV - x,),..., o' (u® - x;))

By the definition of the NAR N with parameters (3, ¢*, ¢t*) the dot product of a point ; with all neurons of the same type
is of the same sign, i.e.:
Vie[n,V1<lp<k:o'(w®. z;)=cw? )=

and
Vie[n,V1<lp<k:o'(u®. x)=0c(u?. z)=ct

3

k k
It follows that for W € N, 9¢;(W) = y; - v - x;(c’, ..., ¢, —cp, ..., —c})
Therefore, by the definition of a KKT point we have:
k k
1 n n n n
W, = B Z iyivxicd ..., Z Aiyi vl — Z AYivxicy, ..., — Z Ayiveicy | € R2kd
i=1 i=1 i=1 =1

We can see that the first & entries are equal, as well as the next k entries (equal to each other and not to the first & entries).

Therefore the normalized parameters flow w, converges to a perfectly clustered solution.

6.1. Proof Of Corollary 6.2.

By Theorem [6.1, we know the normalized parameters W, are perfectly clustered at convergence so by Corollary
we get that the decision boundary of Ny;, is linear at convergence. From the homogeneity of the network we have
Nw (x) = |[W||Ny, () for any W € R?*? and because the norm is a non negative scalar we get sign (Nw (x)) =
sign (NW(a;)), i.e., Nw and Ny;, are the same classifiers. Therefore, this implies that the decision boundary of Nyy is
linear at convergence

21t is not hard to see that given that the solution is in an NAR, then this optimization problem is convex.
*We use sign (co) = 1 and sign (—o00) = —1, since the norm ||W || diverges.



Towards Understanding Learning in Neural Networks with Linear Teachers

7. Proof of Theorem

We divide the proof of Theorem [6;2] into two parts. First, we show that the NAR is a PAR, and then we show that if a
network enters and remains in the PAR the network weights at convergence are proportional to the solutions of the SVM
problem we defined in the main text.

7.1. The NAR is a PAR

In this subsection we will prove the NAR is in fact a PAR under the conditions of the theorem. In the first step we show
that for all w(®)’s, (%) -x4 > [ for all positive x € S; and times ¢ > Thsqrgin. Assume by contradiction that
the latter does not hold. Thus, by assumption 2 the network is in a NAR() and there exists a positive € S, such that
(%) -xy < —pforall w® . Denote by Vi {z} the margin of the network at time ¢ > Thsqrgin On the point . we
notice that 5, <7, 4, by definition. Then:

+1.NW(m+)U(Zk:U<wt(i) ) é( m*))

Ye < < Vifwy} = W = (20)
7 5 ot |
¢ (i) g (i) ¢
U(ZU(wlf a:_s_)fZa(u,f m+)> v< ( ) a:+)) va(Z’ugz) a:+)
L \& = <\ = < \iml @1
k e k NE k e
 [[°] 2 [l  [[°]
=1 =1 =1
SO 5], @
vor (3 |[ul? || llesll) va (S [|ul?]]) - moze]
< i=1 < i=1 ?
) 2 k ) 2
ZHut ZHut
=1 =1
k
v Hugl) - ugk)“ max||a:z\|
i€[n
_ 1
k 112
]

Zk: g (UE‘Z) ‘ 93+)

where the first inequality follows by|Lyu & Li/(2020) (Theorem A.7. therein). In Eq. we noticed that —
i=1

is largest when V1 < ¢ < k u( 2 - x4 < 0 and therefore o (ugi) : a:+> = ozug 2 - 1. Therefore, by the inequality
Vo e RE ol < VE- ||yl

2, we have:

k

goeey

v-a-Vk Hugl)

Y < . =Vk-a-v-maz||z;|| (22)
k @2 i€[n]
> ‘ Uy

i=1

k
ug )H mamelH

i€[n

Now under assumption 3 there exists a time Thrargin > Tnar such that 5, ~— > Vkav - mfa)]c ||2||. By Lyu & Li
‘ argin o

(2020) (Theorem A.7. therein) the smoothed margin 7; is a non-decreasing function and we will get that V¢ > Thrargin :
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(i)
At > Vkaw - m?>]<||ml\| which is a contradiction to Eq. 1i Hence, V1 <i<kAxz €S, : (wt(’)H) cx > .
i€[n Wy

O]

El)|> -x_ > [ doesn’t hold. Then by assumption 1
Uy

In a similar fashion, assume there is some x_ € S_ such that for <

O]
the network is in a NAR, (Hutl) | |> -x_ < —[( and by symmetry again we get:
Uy

T < Tifmy = — = ’
t t,{ } ||W)t” \/ D) 2
> [l [l

< Vv max] |
€N

By|Lyu & Li/(2020) (Theorem A.7. therein) we reach a contradiction to the network margin assumption again, so

Vz eS_ <M)m26

To conclude, we have proven so far for all £ > Thrargin:
. w!?
1.V1<i<k: VxeS;: Tl -x > p.
. u,

(4)

ul?
Now, by assumption 4, Vo € S_ : (I”H) - # [ and similarly Vx € S, : (
w

IS )II> - % (. This follows since

otherwise V; (S) and V; (S) would not be empty in contradiction to assumption 4.

Next, under the network being in an NAR assumption we have for all t > Thsqrgin:

wli

1. VzeS_: (I (§>-w§—ﬁ
(i)

2. VxeS, : (|“> x <03

Thus, for all £ > Tharqrgin. the network is in PAR().

7.2. PAR alignment direction

Now we will find where the parameters converge to when the network is in the PAR(S). By Theorem the normalized
gradient flow converges to a perfectly clustered solution, i.e., tlim W, .= W, is of a perfectly clustered form. Formally that
—00

means 35 and 39 such that the normalized parameters W are of the form W, = (Bw,...,Bw,ou,...,ou) € R* and
WLOG we can assume ||w|| = ||u|| = 1.

Because the solution is in the PAR(S), the network margins are given as follows for positive points:

k
Ve, € Syt i(W) = ys Nw (x5) = 3 |W|| Ny, (z:) = v||[W]| <Z o(fw - x;) — o(éu - a:z)>

=1

= v||W]|| (kBw - z; — akdt - x;)
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Figure 4: The ratio of neurons from each type in the PAR throughout the training process. We sample 400 data points from
two antipodal separable Gaussians (one for each label) in R%°. Our network is of 100 neurons (50 of each type) optimized
on the data using SGD with batch size 1 with learning rate n = 1073.

and negative points:

k
Vo € S_ 1 qi(W) = yiNw (z:) = yi|[W[ Ny, (i) = v|[W]| (Z (6u-x;) — o(fw - 331))
=1

= v||W]| (kdw - &; — akfw - x;)

where we used the fact we know the normalized solution would has a perfectly clustered form. We denote B = [|lW]|- 8
and similarly ¢ := ||[W]| - &

Using the above notations, the max margin problem in|Lyu & Li/ (2020) (Theorem A.8. therein) takes the form:
arg min k@z + ko2 = arg min v2k252 + v2k2462
BER,5€R BER,5ER
Ve, €Sy vkfw - x4 — avkdt - xy > 1
Ve_ €S_ :vkéu-z_ — avkBw-x_ > 1

Now we can denote w = vkﬁﬁ; and u := vkd@ and reach the desired formulation:
: 2 2
argmin — {|wl]” +[[u]]
weR? ueRd
Ve, eN, :w-zy —au-z;y >1
Ve_ eN_:u-xz_ —ow-xz_>1
We obtained a reformulation of (P){as an SVM problem with variables (w,u) € R?? and with a transformed dataset

which is a concatenated version of the original data ¢(x) = [0/ (w* - )z, —0o'(—w* - x)x] € R?¢, where for z, € N,
d(xy) = (x4, —azxy) e R*andforx_ € N_, ¢(z_) = (—az_,z_) € R*

8. Proof of Lemma [6.1]

Assume V;(S) #0,ie. v eS,st.Vr €S, 0 x> Fand Iz, € S_ s.t. ¥ - @, > B. This means that ¢ - —x, < -0,
because the data is linearly separable —x, € S has to be a positive point and by the definition of Vg (S) that would mean
v - —x, > 3 in contradiction.

By symmetry, if we assume Vg (S) # () by taking the positive point which ¢ € Vs (S) mistakenly classifies as a negative
one, we’ll reach a contradiction again.

Therefore if Yz € S, —x € S we have V;(S) = (and V;(S) = () and Assumption 4 in Theorem holds in this case.
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Figure 5: The entrance to the NAR of a 100 neurons network.The weights initialization std is 10~#, learning rate is n = 1072,
Each line in (c) and (d) is averaged over 5 initializations.

9. Entrance to PAR - High Dimensional Gaussians

We will show that the entrance to the PAR indeed happens empirically for two separable Gaussians. We measure the
percentage of neurons which are in the PAR of both types. A w type neuron is considered in the PAR if it classifies like the
ground truth w*. A w type neuron is considered in the PAR if it classifies like —w™.

The percentage of neurons in the PAR throughout the training process is given in Figure[d] We can see that the network
enters the PAR.

10. Entrance to NAR which is not a PAR

In this section we show that learning can enter an NAR which is not a PAR. We sample two antipodal Gaussians and add one
outlier positive point. Then for each neuron type (w or u) we measure the maximum amount of data points classification
disagreements between neurons of the same type denoted max(nq;¢) and the percentage of neurons which are in the PAR.

In Figure [5al we can see that the network yields 100% prediction accuracy. In Figure we can see the directions of the
neurons (w type in black and u type in yellow). In Figurewe can see that the maximal number of points which neurons
of the same type classified differently goes to zero, therefore all neurons of the same type agree on the classification of the
data points. In Figure[5d] we can see that the ratio of w type neurons which perfectly classifies the data does not increase to
1 so the network does not enter the PAR.
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11. Extension - First Layer Bias Term

In order to extend our results to include a bias term in the first layer, we would just need to reformulate our data points S to
S’ by
(,y) €ESCRIX Y = ((x,1),y) € S TR x Y

and extend our neurons to include a bias term:
V 1<i<k w?eRie (wl” b)) e R, ul? e RY s (uf?5()) € R

This is equivalent to reformulating the first weights matrix W € R?#*d o W’ ¢ R2Fx(d+1),

This reformulation is equivalent to adding a bias term for every neuron in the first layer, and all of the following results
would still hold under the above reformulation.

The proofs of Theorem and Theoremfollow exactly if we exchange W with W' while for the proofs of Theorem
and Theorem@]we use results from (Lyu & Li,[2020) and (Ji & Telgarskyl [2020) that require the model to be homogeneous.
Note that if we add a bias in the first layer, the model remains homogeneous and the proofs of Theorem [6.1]and Theorem
[6.20still hold for those cases as well.
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