
A Representation Learning Perspective on Train-Validation Splitting

A. Appendix Overview
The Appendix is structured as follows

• Section B proves the result for linear representation learning with the tr-tr objective, Theorem 5.1, that shows that “bad”
full rank solutions exist arbitrarily close to the optimal value of the tr-tr objective Ltr-tr

λ,rep. The proof works by arguing
that smaller values of λ are desirable for the tr-tr objective, and this can be simulated by effectively making the norm of
the representation layer very high. Furthermore a higher rank representation is preferable over lower rank ones to fit
the noise in the labels in the training data better.

• Section C proves the main result for linear representation learning with tr-val objective, Theorem 5.4, that proves that
the optimal solutions to the tr-val objective Ltr-val

λ,rep(A; (n1, n2)) for most n1 and σ will be low-rank representations that
are also expressive enough. The result is also extended to solutions that are τ -optimal in the Ltr-val

λ,rep objective for a small
enough τ . The crux of the proof for this result is in Theorem C.1 that provides a closed form expression for the tr-val
objective that disentangles the expressivity and the low-rankness of the representation.

• Section D presents additional experimental details and results, including results for the MiniImageNet dataset.

B. More on Train-Train split
B.1. Proof of main result

Theorem 5.1. For every λ, n > 0, for every τ > 0, there exists a “bad” representation layerAbad ∈ Rd×d that satisfies
Ltr-tr
λ,rep(Abad;n) ≤ inf

A∈Rd×d
Ltr-tr
λ,rep(A;n) + τ , but has the following lower bound on meta-testing loss

inf
λ̄>0
Ltest
λ̄,rep(Abad; n̄1) ≥ σ2 + min

{
1− n̄1

d(1 + σ2)
,

dσ2

(n̄1 + dσ2)

}
Proof. For most of the proof, we will leave out the n in the expression for Ltr-tr

λ,rep, i.e. we will denote the tr-tr loss as
Ltr-tr
λ,rep(A). We prove this result by using Lemma 5.2 first, and later prove this lemma.

Lemma 5.2. For every λ > 0 andA ∈ Rd×d with rank r,

Ltr-tr
λ,rep(A;n) ≥ lim

κ→∞
Ltr-tr
λ,rep(κA;n) ≥ σ2 (n− r)+

n

& lim
κ→∞

Ltr-tr
λ,rep(κId;n) = σ2 (n− d)+

n

This tells us that for any matrixA, Ltr-tr
λ,rep(A) ≥ σ2 (n−rank(A))+

n ≥ σ2 (n−d)+

n . Also the lower bound of σ2 (n−d)+

n can be

achieved by κId in the limit of κ→∞, thus σ2 (n−d)+

n = infA∈Rd×d Ltr-tr
λ,rep(A). Also since limκ→∞ κId = σ2 (n−d)+

n =

infA∈Rd×d Ltr-tr
λ,rep(A), for a large enough κ = κ(τ), Ltr-tr

λ,rep(κ(τ)Id) can be made lesser than infA∈Rd×d Ltr-tr
λ,rep(A) + τ .

Thus we pickAbad = κ(τ)Id. With this choice, the new task is essentially linear regression in d-dimension with isotropic
Gaussians.

To show thatAbad is indeed bad, we will use the lower bound for ridge regression on isotropic Gaussian linear regression
from Theorem 4.2(a) in Saunshi et al. (2020). They show that the excess risk for Id (and thus κ(τ)Id), regardless of the
choice of regularizer λ̄, for a new task ρv will be lower bounded by

inf
λ̄>0

E
S∼ρn̄1

v

[
‖Awλ̄(A;S)− v‖2

]
≥


d‖v‖2σ2

n̄1‖v‖+σ2d if n̄1 ≥ d

n̄1

d
‖v‖2σ2

‖v‖+σ2 + d−n̄1

d ‖v‖
2 if n̄1 < d

Their proof can be easily modified to replace ‖v‖2 with E
v∼µ̄
‖v‖2. The lower bound can be simplified for the the n̄1 < d

case to n̄1

d
‖v‖2σ2

‖v‖+σ2 + d−n̄1

d ‖v‖
2 = ‖v‖2 − n̄1

d
‖v‖2
‖v‖2+σ2 . Plugging in ‖v‖ = 1 completes the proof.

A Representation Learning Perspective on Train-Validation Splitting

We now prove the lemma

Lemma 5.2. For every λ > 0 andA ∈ Rd×d with rank r,

Ltr-tr
λ,rep(A;n) ≥ lim

κ→∞
Ltr-tr
λ,rep(κA;n) ≥ σ2 (n− r)+

n

& lim
κ→∞

Ltr-tr
λ,rep(κId;n) = σ2 (n− d)+

n

Proof. We first prove that having λ = 0 will lead to the smallest loss Ltr-tr
λ,rep(A) for everyA. We then observe that λ = 0 can

be simulated by increasing the norm ofA. These claims mathematically mean that, (a) Ltr-tr
λ,rep(A) ≥ Ltr-tr

λ′,rep(A) whenever
λ ≥ λ′) and (b) Ltr-tr

λ,rep(κA) = Ltr-tr
λ
κ2 ,rep(A). This will give us that limκ→∞ Ltr-tr

λ,rep(κA) = limλ→0 Ltr-tr
0,rep(κA) ≥ Ltr-tr

λ,rep(A).

Intuitively, Ltr-tr
λ,rep is trying to learn a linear classifier on top of data that is linear transformed byA with the goal of fitting

the same data well.

Lemma B.1. For any representation layerA ∈ Rd×d and λ > 0, we have the following

lim
κ→∞

Ltr-tr
λ,rep(κA) = lim

λ→0
Ltr-tr
λ,rep(A) ≤ Ltr-tr

λ,rep(A)

Fitting the data is better when there is less restriction on the norm of the classifier, which in this case means when λ is
smaller. Furthermore, increasing the norm of the representation layerA effectively reduces the impact the regularizer will
have. We first prove this lemma later, first we use it to prove Lemma 5.2 that shows that the loss for low rank matrices will
be high.

Lemma B.1 already shows that Ltr-tr
λ,rep(A;n) ≥ limκ→∞ Ltr-tr

λ,rep(κA;n). Also using Lemma B.1, we can replace
limκ→∞ Ltr-tr

λ,rep(κA) with limλ→0 Ltr-tr
λ,rep(A). Using Equation (9) and from central limit theorem, we have

Ltr-tr
λ,rep(A) = lim

T→∞
L̂tr-tr(A) = E

ρv∼µ

[
E

S∼ρnv

[
1

n
‖XAwλ(A;S)− Y ‖2

]]
(14)

= E
v∼N (0d,A∗A∗>)

[
E

S∼ρnv

[
1

n
‖XAwλ(A;S)− Y ‖2

]]
(15)

This is because L̂tr-tr
λ,rep is an average loss for T train tasks, and the limit when T →∞ it converges to the expectation over

the task distribution µ. We first observe that S ∼ ρv is equivalent to samplingX ∼ N (0d, Id), η ∼ N (0n, σ
2In) which

gives us Y = Xv + η, where X ∈ Rn×d,η ∈ Rn,Y ∈ Rn. Using the definition of wλ(A;S) from Equation (8) the
standard KKT condition for linear regression, we can write a closed form solution for

wλ(A;S) = arg min
w∈Rd

1

n
‖XAw − Y ‖2 + λ‖w‖2 =

(
A>X>XA

n
+ λId

)−1
A>X>

n
Y (16)

lim
λ→0

wλ(A;S) =

(
A>X>XA

n

)†
A>X>

n
Y (17)

where the last step is folklore that the limit of ridge regression as regularization coefficient goes to 0 is the minimum `2-norm
linear regression solution. Plugging this into Equation (20) and taking the limit

lim
λ→0
Ltr-tr
λ,rep(A) = E

v,S

[
1

n

∥∥∥∥XA(lim
λ→0

wλ(A;S)

)
− Y

∥∥∥∥2
]

= E
v,S

 1

n

∥∥∥∥∥
(
XA

(
A>X>XA

n

)†
A>X>

n
− In

)
Y

∥∥∥∥∥
2


=
1

n
E
v,S

[∥∥P⊥XAY ∥∥2
]

A Representation Learning Perspective on Train-Validation Splitting

where for any matrixB ∈ Rn×d, we denote PB ∈ Rn×n = BB† to denote the projection matrix onto the span of columns
ofB, and P⊥B = In − PB is the projection matrix onto the orthogona subspace. Note that if rank(B) = n, then PB = In
and P⊥B = 0. Thus the error incurred is the amount of the label Y that the representationXA cannot predict linearly. We
further decompose this

lim
λ→0
Ltr-tr
λ,rep(A) =

1

n
E
v,S

[∥∥P⊥XAY ∥∥2
]

=
1

n
E
v,S

[∥∥P⊥XAXv + P⊥XAη
∥∥2
]

=
1

n
E
v,S

[∥∥P⊥XAXv∥∥2
]

︸ ︷︷ ︸
fitting signal

+
1

n
E
v,S

[∥∥P⊥XAη∥∥2
]

︸ ︷︷ ︸
fitting noise

+
2

n
E
v,S

[
η>P⊥XAXv

]
︸ ︷︷ ︸

cross term

(18)

=
1

n
E
S

E
v∼N (0d,A∗A∗>)

[∥∥P⊥XAXv∥∥2
]

+ E
S

1

n
tr
(
P⊥XA E

η

[
ηη>

]
P⊥XA

)
=

1

n
E
S

[∥∥P⊥XAXA∗∥∥2
]

︸ ︷︷ ︸
α(A)

+E
S

σ2

n
tr
(
P⊥XA

)
︸ ︷︷ ︸

β(A)

(19)

We first note, due to independence of η andX that the cross term in Equation (18) is 0 in expectation. Using the distributions
for v ∼ N (0d,A

∗A∗>) and η ∼ N (0n, σ
2In), we get the final expressions Firstly, we note that α(A) ≥ 0 for everyA,

and a sufficient condition for α(A) = 0 is thatA∗ lies in the span ofA, i.e. P⊥AA
∗ = 0. More importantly, it is clear that

α(Id) = 0. Next we look at the β(A) term which is proportional to the trace of P⊥XA which, for a projection matrix, is also
equal to the rank of the matrix. Note that since the rank ofXA ∈ Rd×n is at most min{n, d}. Thus we get

β(A) = σ2 rank(P⊥XA)

n
= σ2 (n− rank(P⊥XA))

n
≥ σ2 (n− rank(A))+

n

where (x)+ = 1x≥0x. This along with α(A) ≥ 0 proves the first part of the result. For the second part α(Id) = 0 along
with noticing that tr(P⊥XId) = n− rank(X) = n−min{n, d} since a Gaussian matrix is full rank with measure 1, thus
giving us β(Id) = σ2 (n−d)+

n and completing the proof.

Thus Lemma 5.2 shows that limκ→∞ Ltr-tr
λ,rep(κId) = infA Ltr-tr

λ,rep(A) and so picking a large enough κ(τ) can always give us
Ltr-tr
λ,rep(κ(τ)Id) ≤ infA Ltr-tr

λ,rep(A)+ τ which completes the proof of Theorem 5.1. The only thing left to prove is Lemma B.1
which we do below

Proof of Lemma B.1. Using Equation (16) we get the following expression for Ltr-tr
λ,rep

Ltr-tr
λ,rep(A) = E

v,S

[
1

n
‖XAwλ(A;S)− Y ‖2

]

= E
v,S

 1

n

∥∥∥∥∥
(
XA

(
A>X>XA

n
+ λId

)−1
A>X>

n
− In

)
Y

∥∥∥∥∥
2
 (20)

From this we get

Ltr-tr
λ,rep(κA) = E

v,S

 1

n

∥∥∥∥∥
(
κXA

(
κ2A>X>XA

n
+ λId

)−1
κA>X>

n
− In

)
Y

∥∥∥∥∥
2


= E
v,S

 1

n

∥∥∥∥∥
(
XA

(
A>X>XA

n
+

λ

κ2
Id

)−1
A>X>

n
− In

)
Y

∥∥∥∥∥
2


= Ltr-tr
λ
κ2 ,rep(A)

Thus lim
κ→∞

Ltr-tr
λ,rep(κA) = lim

κ→∞
Ltr-tr

λ
κ2 ,rep(A) = lim

λ→0
Ltr-tr
λ,rep(A). Note that we have used the fact that Ltr-tr

λ,rep is continuous in

λ for λ > 0. To prove the remaining result, i.e. lim
λ→0
Ltr-tr
λ,rep(A) ≤ Ltr-tr

λ,rep(A), we just need to prove that Ltr-tr
λ,rep(A) is a

A Representation Learning Perspective on Train-Validation Splitting

increasing function of λ. Suppose XA√
n

= UXSXV
>
X is the singular value decomposition. For any λ′ < λ, we can rewrite

Ltr-tr
λ,rep(A) from Equation (20) as follows

Ltr-tr
λ,rep(A) = E

v,S

 1

n

∥∥∥∥∥
(
XA

(
A>X>XA

n
+ λId

)−1
A>X>

n
− In

)
Y

∥∥∥∥∥
2


= E
v,S

[
1

n

∥∥∥(VXSXU>X (UXSXV >XVXSXU>X + λId
)−1

UXSXV
>
X − In

)
Y
∥∥∥2
]

= E
v,S

[
1

n

∥∥∥VX (SX (S2
X + λId

)−1
SX − In

)
V >XY

∥∥∥2
]

= E
v,S

[
1

n

d∑
i=1

[(
SX [i]2

λ+ SX [i]2
− 1

)2

V >XY [i]2

]]

= E
v,S

[
1

n

d∑
i=1

[(
λ

λ+ SX [i]2

)2

V >XY [i]2

]]

≥ E
v,S

[
1

n

d∑
i=1

[(
λ′

λ′ + SX [i]2

)2

V >XY [i]2

]]
= Ltr-tr

λ′,rep(A)

where the only inequality in the above sequence follows from the observation that λ
λ+a is an increasing function for a, λ > 0.

This completes the proof.

C. More on Train-Validation split
C.1. Proof of main results

We first prove the result that for n1 = n̄1 and λ = λ̄, Ltr-val
λ,rep ≡ Ltest

λ̄,rep.

Proposition 5.3. Ltr-val
λ,rep(·; (n1, n2)) and Ltest

λ̄,rep(·; n̄1) are equivalent if n̄1 = n1 and λ̄ = λ

Proof. We again note using the central limit theorem and Equation (9) that

Ltr-val
λ,rep(A) = lim

T→∞
L̂tr-val
λ,rep(A) = E

ρv∼µ̄

[
E

(Str,Sval)∼ρnv

[
1

n2

∥∥XvalAwλ(A;Str)− Y val
∥∥2
]]

=(a) E
ρv∼µ̄

[
E

Str∼ρn1
v

[
E

Sval∼ρn2
v

1

n2

∥∥XvalAwλ(A;Str)− Y val
∥∥2

]]

= E
ρv∼µ̄

[
E

Str∼ρn1
v

[
E

(x,y)∼ρv

(
x>Awλ(A;Str)− y

)2]]

= E
ρv∼µ̄

[
E

Str∼ρn1
v

[∥∥Awλ(A;Str)− v
∥∥2
]]

+ σ2

=(b) Ltest
λ,rep(A;n1)

where (a) follows by noticing that sample S ∼ ρnv and splitting randomly into Str and Sval is equivalent to independently
sampling Str ∼ ρn1

v and Sval ∼ ρn2
v and (b) follows from the definition of Ltest from Equation (11).

We now prove the main benefit of the tr-val split: learning of low rank linear representations. For that, we use this general
result that computes closed form expression for Ltr-val

λ,rep.

A Representation Learning Perspective on Train-Validation Splitting

Theorem C.1. Let λ = 0. For a first layerA ∈ Rd×d with r = rank(A), letA = USV > be the SVD, whereU ,V ∈ Rd×r
and S ∈ Rr×r. Furthermore let PU = UU> denote the span of columns of U (and thusA) and let P⊥U = Id − PU . Then
the tr-val objective has the following form

Ltr-val
λ,rep(A; (n1, n2))− σ2 =



(1 + α(n1, r))‖P⊥UA∗‖2 + α(n1, r)σ
2 if r < n1 − 1

(n1

r + α(r, n1))‖P⊥UA∗‖2 + r−n1

r + β(S) + α(r, n1)σ2 if r > n1 + 1

∞ otherwise

where β(S) ≥ 0 and β(S) = 0 when S = κIr for some κ > 0. Also α is defined as

α(a, b) =
b

a− b− 1
(21)

We prove this theorem in Section C.2 First we prove the main result by using this theorem. We note that similar results
can be shown for different regimes of k, d, n1 and σ. The result below is for one reasonable regime where n1 = Ω(k) and
σ = O(1). Similar results can be obtained if we further assume that k � d with weaker conditions on σ, we leave that
for future work. Furthermore, this result can be extended to τ -optimal solutions to the tr-val objective rather than just the
optimal solution.

Theorem 5.4. Let λ = 0. Suppose n1 ≥ 2k + 2 and σ2 ∈ (0, n1−k−1
3k), then any optimal solution Abest ∈

arg min
A∈Rd×d

Ltr-val
λ,rep(A; (n1, n2)) will satisfy

rank(Abest) = k, PAbestA
∗ = A∗, Ltr-val

λ,rep(Abest; (n1, n2))− σ2 = σ2 k

n1 − k − 1

where PA = AA† is the projection matrix onto the columnspace ofA. For any matrixAgood ∈ Rd×d that is τ -optimal, i.e.
it satisfies Ltr-val

λ,rep(Agood; (n1, n2)) ≤ inf
A∈Rd×d

Ltr-val
λ,rep(A; (n1, n2)) + τ for τ ∈ (0, σ2

n1−k−1), then we have

rank(Agood) = k, ‖PAgoodA
∗ −A∗‖2 ≤ τ

The meta-testing performance ofAgood on a new task with n̄1 > 2k + 2 samples satisfies

inf
λ̄≥0
Ltest
λ̄,rep(Agood; n̄1)− σ2 ≤ 2τ + σ2 2k

n̄1

Proof. Suppose the optimal value of Ltr-val
λ,rep(A; (n1, n2)) is L∗, i.e.

L∗ = inf
A∈Rd×d

Ltr-val
λ,rep(A; (n1, n2)) (22)

Let Agood ∈ Rd×d be the “good” matrix that is τ -optimal, i.e. Ltr-val
λ,rep(Agood; (n1, n2))− L∗ ≤ τ . Note that the result for

Abest follows from the result for τ = 0.

We use the expression for Ltr-val
λ,rep(·; (n1, n2) from Theorem C.1 to find properties for Agood that can ensure that it is τ -

optimal. Consider a representationA ∈ Rd×d and letA = USV > be its SVD with U ,V ∈ Rd×r and S ∈ Rr×r where
r = rank(A). We consider 3 cases for r: r < k, k ≤ r ≤ n1 and r > n1, and find properties that can result in A being
τ -optimal in each of the 3 cases. For the ranges of n1, σ, τ in the theorem statement, it will turn out that when r < k or
r > n1,A must satisfy Ltr-val

λ,rep(A; (n1, n2) > L∗ + τ , thus concluding that rank(Agood) cannot be in these ranges.

To do so we analyze the optimal value of Ltr-val
λ,rep(·; (n1, n2)) that can be achieved for all three cases. We first start analyzing

the most promising case of k ≤ r ≤ n1.

A Representation Learning Perspective on Train-Validation Splitting

Case 1: k ≤ r ≤ n1 For this case we can use the r < n1 − 1 regime from Theorem C.1. Note that for r ∈ {n1 − 1, n1},
Ltr-val
λ,rep(A; (n1, n2)) is unbounded. Thus we get

Ltr-val
λ,rep(A; (n1, n2))− σ2 = (1 + α(n1, r))‖P⊥UA∗‖2 + α(n1, r)σ

2 (23)

where α(n1, r) is defined in Equation (34). Note that ‖P⊥UA∗‖ ≥ 0 and in fact equality can be achieved for every r in
this case since r = rank(U) ≥ k = rank(A∗). Furthermore α(n1, r) = r

n1−r−1 is an increasing function of r, and thus
α(n1, r) ≥ α(n1, k), which can also be achieved by picking r = k. Thus for the range of k ≤ r ≤ n1, we get

L∗ − σ2 ≤ min
A s.t.

k≤r≤n1

Ltr-val
λ,rep(A; (n1, n2))− σ2 = σ2α(n1, k) = σ2 k

n1 − k − 1
(24)

with the minimum being achieved when rank(A) = k and ‖P⊥UA∗‖, which is the same as PUA∗ = A∗.

Suppose rgood = rank(Agood) lies in this range, i.e. k ≤ rgood ≤ n1. Using the fact thatAgood is τ -optimal, we can show an
upper bound the rgood and ‖PAgoodA

∗ −A∗‖. From the τ -optimality condition and Equation (24), we get

τ ≥ Ltr-val
λ,rep(Agood; (n1, n2))− L∗ ≥ Ltr-val

λ,rep(Agood; (n1, n2))− σ2α(n1, k) (25)

≥(a) (1 + α(n1, r))‖P⊥UA∗‖2 + σ2α(n1, rgood)− σ2α(n1, k) (26)

= (1 + α(n1, r))‖P⊥Agood
A∗‖2 + σ2(α(n1, rgood)− α(n1, k)) (27)

=(b) ‖P⊥Agood
A∗‖2 + σ2α′(n1, r

′)(rgood − k) = ‖P⊥Agood
A∗‖2 + σ2 r′(n1 − 1)

(n1 − r′ − 1)2
(rgood − k) (28)

≥(c) ‖P⊥Agood
A∗‖2 + σ2 k(n1 − 1)

(n1 − k − 1)2
(rgood − k) ≥ ‖P⊥Agood

A∗‖2 + σ2 k

(n1 − k − 1)
(rgood − k) (29)

where (a) follows from Equation (23) instantiated for Agood, (b) follows from the mean value theorem applied to the
continuous function α(n1, ·) with r′ ∈ [k, rgood], (c) follows by k > r′ and the monotonocity of α′(n1, ·). Thus from the
inequality in Equation (29), we can get an upper bound on rgood as follows

τ ≥ σ2 k

(n1 − k − 1)
(rgood − k) =⇒ rgood ≤ k +

τ(n1 − k − 1)

σ2k
≤(a) k +

1

k
(30)

=⇒ rgood = k (31)

where (a) follows from the upper bound on τ in the theorem statement. We can also get an upper bound on ‖P⊥Agood
A∗‖

using Equation (29) as ‖P⊥Agood
A∗‖2 ≤ τ . Thus anyAgood with k ≤ rgood ≤ n1 that is τ -optimal will satisfy rgood = k and

‖P⊥Agood
A∗‖2 ≤ τ .

Additionally the minimum achievable value for this range of rank is σ2 k
n1−k−1 fromr Equation (24). We now analyze the

other two cases, where we will show that noA can even be τ -optimal.

Case 2: r < k In this case, since k < n1, we are still in the r < n1 regime. The key point here is that when r < k, it
is impossible for A to span all of A∗. In fact for rank r, it is clear that A can cover only at most r out of k directions
fromA∗. Thus the inexpressiveness term ‖P⊥UA∗‖2 will be at least k−rk ‖A

∗‖2 = k−r
k . Using the r < n1 expression from

Theorem C.1, we get

Ltr-val
λ,rep(A; (n1, n2))− σ2 = (1 + α(n1, r))‖P⊥UA∗‖2 + α(n1, r)σ

2

≥(a) k − r
k

+ σ2 r

n1 − r − 1

=
k − r
k

+ σ2 r

n1 − r − 1
− σ2 k

n1 − r − 1
+ σ2 k

n1 − r − 1
− σ2 k

n1 − k − 1
+ σ2 k

n1 − k − 1

=
k − r
k
− σ2 k − r

n1 − r − 1
− σ2k

(
1

n1 − k − 1
− 1

n1 − r − 1

)
+ σ2 k

n1 − k − 1

=
k − r
k
− σ2 k − r

n1 − r − 1
− σ2 k(k − r)

(n1 − r − 1)(n1 − k − 1)
+ σ2 k

n1 − k − 1

A Representation Learning Perspective on Train-Validation Splitting

≥(b) k − r
k
− σ2 k − r

n1 − k − 1
− σ2 (k − r)

(n1 − k − 1)
+ σ2 k

n1 − k − 1

=
k − r
k
− σ2 2(k − r)

n1 − k − 1
+ σ2 k

n1 − k − 1
(32)

where for (a) we use α(n1, r) ≥ 0 and for (b), we use that k < n1−k−1 < n1−r−1. Since we assume σ2 < (n1−k−1)/2k,
the difference between the first 2 terms is at least 0. Thus the error when r < k is at least Ltr-val

λ,rep(A; (n1, n2)) − σ2 >

σ2 k
n1−k−1 , which is larger than the previous case. So the optimal solution cannot have r < k.

We now check if such anA can be a τ -optimal solution instead. The answer is negative due to the following calculation

Ltr-val
λ,rep(A; (n1, n2))− L∗ ≥(a) Ltr-val

λ,rep(A; (n1, n2))− σ2 k

n1 − k − 1

≥(b) k − r
k
− σ2 2(k − r)

n1 − k − 1

≥(c) 3kσ2

n1 − k − 1

k − r
k
− σ2 2(k − r)

n1 − k − 1

=
σ2(k − r)
n1 − k − 1

≥ σ2

n1 − k − 1
> τ

where (a) follows from Equation (24), (b) follows from Equation (32), (c) follows from 1 ≥ 3kσ2

n1−k−1 from the condition on
σ in the theorem statement and the last inequalities follow from r < k condition and the range of τ in the theorem statement
respectively. Thus we cannot even have a τ -optimal solution with r < k. Next we show the same for the case of r > n1.

Case 3: r > n1 For this case we can use the r > n1 + 1 regime from Theorem C.1. Note that for r ∈ {n1 + 1, n1},
Ltr-val
λ,rep(A; (n1, n2)) is unbounded. Thus we have Ltr-val

λ,rep(A; (n1, n2))− σ2 = (n1

r + α(r, n1))‖P⊥UA∗‖2 + r−n1

r + β(S) +

σ2α(r, n1). We again note that since r > n1 > k, we can make ‖P⊥UA∗‖2 = 0 by simply picking an “expressive” rank-r
subspaceU . Further more β(S) = 0 is easy to achieve by making S = Ir which can be done independently ofU . Thus we
can lower bound the error as follows

Ltr-val
λ,rep(A; (n1, n2))− σ2 ≥ r − n1

r
+ σ2α(r, n1) = 1− n1

r
+ σ2 n1

r − n1 − 1
(33)

where equality can be achieved by letting columns ofA span the subspaceA∗ and by picking S = Ir. We now lower bound
this value further to show that we cannot have a τ -optimal solution.

Firstly we note that if σ ≥ 1, then Equation (33) gives us

Ltr-val
λ,rep(A; (n1, n2))− σ2 ≥ 1− n1

r
+

n1

r − n1 − 1
≥ 1 ≥(a) σ2 3k

n1 − k − 1

≥(b) (L∗ − σ2) + σ2 2k

n1 − k − 1
≥(c) (L∗ − σ2) + τ(n1 − k − 1)

2k

n1 − k − 1

> (L∗ − σ2) + τ

where (a) follows from the upper bound on σ2 from the theorem statement, (b) follows from Equation (24) and (c) follows
from the upper bound on τ from the theorem statement. Thus we cannot have a τ -optimal solution in this case.

If σ < 1 on the other hand, we can lower bound the error as

Ltr-val
λ,rep(A; (n1, n2))− σ2 = 1− n1

r
+ σ2 n1

r − n1 − 1
> 1− n1

r
+ σ2 n1

r − n1

≥ min
r>n1

1− n1

r
+ σ2 n1

r − n1

Setting the derivate w.r.t. r to 0 for the above expression, we get that this is minimized at r = n1/(1−σ). Plugging in this
value and simplifying, we get

Ltr-val
λ,rep(A; (n1, n2))− σ2 ≥ 1− (1− σ)2 = 2σ − σ2 ≥ σ2

A Representation Learning Perspective on Train-Validation Splitting

= σ2n1 − 2k − 1

n1 − k − 1
+ σ2 k

n1 − k − 1
>(a) σ2

n1 − k − 1
+ (L∗ − σ2)

>(b) τ + (L∗ − σ2)

where (a) follows from the condition that n1 > 2k + 2 and (b) follows again from Equation (24). Thus the r > n1

case can never give us a τ -optimal solution, let alone the optimal solution and so Agood cannot have rank rgood > n1

either. Combining all 3 cases, we can conclude that any τ -optimal solution Agood will satisfy rank(Agood) = k and
‖P⊥Agood

A∗‖2 = ‖PAgoodA
∗ −A∗‖2 ≤ τ .

For the second part, we use Proposition 5.3 to first get that for λ = λ̄ = 0, Ltest
λ̄,rep(Agood; n̄1) = Ltr-val

λ,rep(Agood; (n̄1, ·)). Since
n̄1 > 2k + 2 and rank(Agood) = k < n̄1, we can use Theorem C.1 to get

Ltest
λ̄,rep(Agood; n̄1)− σ2 = Ltr-val

λ,rep(Agood; (n̄1, ·))− σ2 = (1 + α(n̄1, k))‖P⊥Agood
A∗‖2 + α(n̄1, k)σ2

≤(a) 2‖P⊥Agood
A∗‖2 + σ2 k

n̄1 − k − 1
≤(b) 2τ + σ2 k

n̄1 − n̄1/2
= 2τ + σ2 2k

n̄1

where (a) follows by noting that α(n̄1, k) < 1 and (b) follows from k + 1 < n̄1/2. This completes the proof of result for
τ -optimal solutionAgood. Setting τ = 0 gives results for optimal solutionAbest of Ltr-val

λ,rep(·, (n1, n2)).

C.2. Proof of Theorem C.1

We now prove the crucial result that gives a closed form solution for the tr-val objective

Theorem C.1. Let λ = 0. For a first layerA ∈ Rd×d with r = rank(A), letA = USV > be the SVD, whereU ,V ∈ Rd×r
and S ∈ Rr×r. Furthermore let PU = UU> denote the span of columns of U (and thusA) and let P⊥U = Id − PU . Then
the tr-val objective has the following form

Ltr-val
λ,rep(A; (n1, n2))− σ2 =



(1 + α(n1, r))‖P⊥UA∗‖2 + α(n1, r)σ
2 if r < n1 − 1

(n1

r + α(r, n1))‖P⊥UA∗‖2 + r−n1

r + β(S) + α(r, n1)σ2 if r > n1 + 1

∞ otherwise

where β(S) ≥ 0 and β(S) = 0 when S = κIr for some κ > 0. Also α is defined as

α(a, b) =
b

a− b− 1
(34)

Proof. We will prove the result for the cases r < n1 and r ≥ n1. Firstly, using Proposition 5.3, we already get that

Ltr-val
λ,rep(A; (n1, n2)) = Ltest

λ,rep(A;n1) = σ2 + E
ρv∼µ̄

[
E

(X,Y)∼ρn1
v

[
‖Awλ(A; (X,Y))− v‖2

]]

= σ2 + E
v∼N (0d,Id)

 E
X∼N (0d,Id)n1 ,

η∼N (0d,σ
2In)

[
‖Awλ(A; (X,Xv + η))− v‖2

] (35)

We will use this expression in the rest of the proof.

Case 1: r ≤ n1 In this case, the rank of the representationsXA ∈ Rn1×d for training data is higher than the number of
samples. Thus the unique minimizer for the dataset (X,Y) is

lim
λ→0

wλ(A; (X,Y)) = arg min
w∈Rd

`λ,rep(w;A, (X,Y)) =
(
A>X>XA

)†
A>X>Y

A Representation Learning Perspective on Train-Validation Splitting

Plugging this into Equation (35), we get

Ltr-val
λ,rep(A; (n1, n2))− σ2 = E

v∼N (0d,Id)

 E
X∼N (0d,Id)n1 ,

η∼N (0d,σ
2In1

)

[
‖A
(
A>X>XA

)†
A>X>(Xv + η)− v‖2

]
=(a) E

v,X

[
‖A
(
A>X>XA

)†
A>X>Xv − v‖2

]
︸ ︷︷ ︸

bias(A)

+ E
η,X

[
‖A
(
A>X>XA

)†
A>X>η‖2

]
︸ ︷︷ ︸

variance(A)

where (a) follows from the independence of η and (X,v) and that E[η] = 0n. We will analyze the bias and variance terms

separately below

Bias: Recall that A = USV > is the singular value decomposition, with U ,V ∈ Rd×r and S ∈ Rr×r. We set
XU = XU ∈ Rn1×r The two key ideas that we will exploit are thatXU ∼ N (0d, Ir)

n1 and thatXU is independent of
XP⊥U sinceX is Gaussian-distributed.

bias(A) = E
v,X

[
‖A
(
A>X>XA

)†
A>X>Xv − v‖2

]
=(a) E

v,X

[
‖USV >

(
V SU>X>XUSV >

)†
V SU>X>Xv − v‖2

]
=(b) E

v,X

[
‖US

(
S(XU)>XUS

)−1
S(XU)>Xv − v‖2

]
=(c) E

v,X

[
‖US

(
SX>UXUS

)−1
SX>UXv − v‖2

]
=(d) E

v,X

[
‖USS−1(X>UXU)−1S−1SX>UXv − v‖2

]
=(e) E

v,X

[
‖U(X>UXU)−1X>UXv − v‖2

]
= E
v,X

[
‖U(X>UXU)−1X>UX(UU> + P⊥U)v − (UU> + P⊥U)v‖2

]
=(f) E

v,X

[
‖U(X>UXU)−1X>UXUU

>v +U(X>UXU)−1X>UXP⊥U v −UU>v − P⊥U v‖2
]

=(g) E
v,X

[
‖UU>v −UU>v +U(X>UXU)−1X>UXP⊥U v‖2 + ‖P⊥U v‖2

]
=(h) E

v,X

[
tr
(
(P⊥U v)>P⊥UX

>XU (X>UXU)−2X>UXP⊥U (P⊥U v)
)]

+ ‖P⊥UA∗‖2

=(i) E
v,XU

[
tr

(
XU (X>UXU)−2X>U E

P⊥UX

[
XP⊥U (P⊥U v)(P⊥U v)>P⊥UX

>])]+ ‖P⊥UA∗‖2

while (a) just uses the SVD of A, (b) uses the simple fact that V >(V BV >)†V = B† for an orthogonal matrix V . (d)
follows from the fact that X>UXU ∈ Rr×r is full rank with probability 1, and thus invertible. (f) simply decomposes
v = UU>v+P⊥U v, while (g) follows from the orthogonality of P⊥U v and any vector in the span ofU . (h) uses the simple
facts that ‖a‖2 = tr(aa>) and P⊥UP

⊥
U = P⊥U and (i) uses the crucial observation thatXU is independent ofXP⊥U , since

for Gaussian distribution, all subspaces are independent of its orthogonal subspace, and that tr is a linear operator.

We now look closer at the termM = E
[
XP⊥U (P⊥U v)(P⊥U v)>P⊥UX

>] which is a matrix in Rn1×n1 .

Mi,j = E
P⊥UX

[
x>i (P⊥U v)(P⊥U v)>xj

]
= tr

(
(P⊥U v)(P⊥U v)> E

[
xjx

>
i

])
=

{
0 if i 6= j

‖P⊥U v‖2 if i = j
(36)

This gives us thatM = ‖P⊥U v‖2 In1 . We can now complete the computation for bias(A).

bias(A) = E
v,XU

[
tr
(
XU (X>UXU)−2X>U‖P⊥U v‖2

)]
+ ‖P⊥UA∗‖2

= E
XU

[
tr
(
XU (X>UXU)−2X>U

)]
E
v

[
‖P⊥U v‖2

]
+ ‖P⊥UA∗‖2

A Representation Learning Perspective on Train-Validation Splitting

= E
XU

[
tr
(
(X>UXU)−1

)]
‖P⊥UA∗‖2 + ‖P⊥UA∗‖2

We will deal with the E
XU

[
tr
(
(X>UXU)−1

)]
term later and show that it is equal to α(n1, r).

Variance: We will use many ideas that were used for the bias term. Again using the SVD, we get

variance(A) = E
η,X

[
‖A
(
A>X>XA

)†
A>X>η‖2

]
=(a) E

η,XU

[
‖USV >

(
V SX>UXUSV

>)† V SX>Uη‖2]
=(b) E

η,XU

[
‖USS−1(X>UXU)−1S−1SX>Uη‖2

]
=(c) E

η,XU

[
‖(X>UXU)−1X>Uη‖2

]
=(d) E

η,XU

[
tr
(
(X>UXU)−1X>Uηη

>XU (X>UXU)−1
)]

=(e) σ2 E
XU

[
tr
(
(X>UXU)−1X>UXU (X>UXU)−1

)]
=(f) σ2 E

XU

[
tr
(
(X>UXU)−1

)]
Here (a) uses SVD, (b) uses the fact that as beforeX>UXU is full rank with probability 1, (d) follows from the norm and
trace relationship, (e) follows from the noise distribution η ∼ N (0n1

, σ2In1
) and its independence fromX .

Thus combining the bias and variance terms, we get

Ltr-val
λ,rep(A; (n1,a))− σ2 = bias(A) + variance(A) =

(
1 + E

XU

[
tr
(
(X>UXU)−1

)])
‖P⊥U ‖2 + E

XU

[
tr
(
(X>UXU)−1

)]
σ2

Thus the only thing remaining to show is that E
XU

[
tr
(
(X>UXU)−1

)]
= α(n1, r). To show this, we will use the fact that

(X>UXU)−1 is from the inverse Wishart distribution, and that E
XU

(X>UXU)−1 =
In1

r−n1−1 when r > n1 + 1 and unbounded

when r ∈ {n1, n1 + 1} (Mardia et al., 1979; Belkin et al., 2020). For r < n1 − 1, this gives us E
XU

[
tr
(
(X>UXU)−1

)]
=

tr
(

E
XU

[
(X>UXU)−1

])
= tr

(
In1

r−n1−1

)
= n1

r−n1−1 , which completes the proof. We now prove the result for r > n1.

Case 2: r > n1 In this case, the rank of the representationsXA ∈ Rn1×d for training data is lower than the number of
samples. Thus we can use the dual formulation to get the minimum `2 norm solution for dataset (X,Y)

lim
λ→0

wλ(A; (X,Y)) = arg min
XAw=Y

‖w‖2 = A>X>
(
XAA>X>

)−1
Y

Plugging this into Equation (35), we get

Ltr-val
λ,rep(A; (n1, n2))− σ2 = E

v∼N (0d,Id)

 E
X∼N (0d,Id)n1 ,

η∼N (0d,σ
2In1

)

[
‖AA>X>

(
XAA>X>

)−1
(Xv + η)− v‖2

]
=(a) E

v,X

[
‖AA>X>

(
XAA>X>

)−1
Xv − v‖2

]
︸ ︷︷ ︸

bias(A)

+ E
η,X

[
‖AA>X>

(
XAA>X>

)−1
η‖2

]
︸ ︷︷ ︸

variance(A)

We again handle the bias and variance terms separately. Let XU⊥ = XP⊥U and we will again use the fact that XU =
XUU> andXU⊥ are independent

A Representation Learning Perspective on Train-Validation Splitting

Bias:

bias(A) = E
v,X

[
‖AA>X>

(
XAA>X>

)−1
Xv − v‖2

]
= E
v,X

[
‖US2U>X>

(
XUS2U>X>

)−1
X(UU> + P⊥U)v − (UU> + P⊥U)v‖2

]
= E
v,X

[
‖U(S2X>U

(
XUS

2X>U
)−1

XU − Ir)U>v +US2X>U
(
XUS

2X>U
)−1

XP⊥U v − P⊥U v‖2
]

= E
v,X

[
‖U(S2X>U

(
XUS

2X>U
)−1

XU − Ir)U>v +US2X>U
(
XUS

2X>U
)−1

XU⊥P
⊥
U v‖2 + ‖P⊥U v‖2

]
= E
v,X

[
‖BXU

U>v +CXU
XU⊥P

⊥
U v‖2

]
+ ‖P⊥UA∗‖2

whereBXU
= U(S2X>U

(
XUS

2X>U
)−1

XU − Ir) andCXU
= US2X>U

(
XUS

2X>U
)−1

only depends on the compo-
nents ofX in the direction of U , i.eXU . The main difference from the r < n1 case is that hereBXU

∈ Rr×r is not zero,
since the rank ofXU is min{n1, r} = n1. We can expand the bias term further

bias(A) = E
v,X

[
‖BXU

U>v‖2 + ‖CXU
XU⊥P

⊥
U v‖2 + 2tr

(
v>UB>XU

CXU
XU⊥P

⊥
U v
)]

+ ‖P⊥UA∗‖2

=(a) E
v,XU

[
‖BXU

U>v‖2
]

+ E
v,X

[
‖CXU

XU⊥P
⊥
U v‖2

]
+ 2 E

v,XU

[
tr

(
v>UB>XU

CXU E
X

U⊥
[XU⊥]P⊥U v

)]
+ ‖P⊥UA∗‖2

=(b) E
v,XU

[
‖BXU

U>v‖2
]

+ E
v,X

[
‖CXU

XU⊥P
⊥
U v‖2

]
+ ‖P⊥UA∗‖2

=(c) E
v,XU

[
‖BXU

U>v‖2
]

+ E
v,X

[
tr
(
v>P⊥UX

>
U⊥C

>
XU
CXU

XU⊥P
⊥
U v
)]

+ ‖P⊥UA∗‖2

=(d) E
v,XU

[
‖BXU

U>v‖2
]

+ E
v,XU

[
tr

(
C>XU

CXU E
X

U⊥

[
XU⊥P

⊥
U vv

>P⊥UX
>
U⊥

])]
+ ‖P⊥UA∗‖2

=(e) E
v,XU

[
‖BXU

U>v‖2
]

+ E
XU

[
tr
(
C>XU

CXU

)]
‖P⊥UA∗‖2 + ‖P⊥UA∗‖2 (37)

where (a) uses the fact thatXU⊥ is independent ofXU and v, (b) uses the Gaussianity ofXU⊥ and that it has mean 0, (c)
uses ‖a‖2 = tr(aa>), (d) uses the independence of XU and XU⊥ and (e) uses the calculation from Equation (36). We
first tackle the CXU

term

E
XU

[
tr
(
C>XU

CXU

)]
= E
XU

[
tr
((
XUS

2X>U
)−1

XUS
2U>US2X>U

(
XUS

2X>U
)−1
)]

= E
XU

[
tr
((
XUS

2X>U
)−1

XUS
4X>U

(
XUS

2X>U
)−1
)]

(38)

We will encounter this function again in the variance term and we will tackle this later. At a high level, we will show that this
term is going to be at least as large as the term for S = Ir, which reduces to E

XU

[
tr
((
XUX

>
U

)−1
)]

which has a closed

form expression, again using inverse Wishart distribution. For now we will first deal with theBXU
term.

E
v,XU

[
‖BXU

U>v‖2
]

= E
u∼N (0r,U

>A∗A∗>U),
XU

[
‖BXU

u‖2
]

= E
u,XU

[
‖U(S2X>U

(
XUS

2X>U
)−1

XU − Ir)u‖2
]

= E
u,XU

[
‖(S2X>U

(
XUS

2X>U
)−1

XU − Ir)u‖2
]

We are now going to exploit the symmetry in Gaussian distribution once again. Recall thatXU ∼ N (0r, Ir). We notice
that XU ≡D XUPD, where P is a random permutation matrix and D is a diagonal matrix with random entries in
±1. Essentially this is saying that randomly shuffling the coordinates and multiplying each coordinate by a random

A Representation Learning Perspective on Train-Validation Splitting

sign results in the same isotropic Gaussian distribution. We observe that PDS2DP> for diagonal matrix S and that
PP> = P>P = D2 = Ir rewrite the above expectation.

E
v,XU

[
‖BXU

U>v‖2
]

= E
u,XU

[
‖(S2X>U

(
XUS

2X>U
)−1

XU − Ir)u‖2
]

= E
u,XU ,P ,D

[
‖(S2DP>X>U

(
XUPDS

2DP>X>U
)−1

XUPD − Ir)u‖2
]

= E
u,XU ,P ,D

[
‖(S2DP>X>U

(
XUS

2X>U
)−1

XUPD −DP>PD)u‖2
]

= E
u,XU ,P ,D

[
‖DP>(PDS2DP>X>U

(
XUS

2X>U
)−1

XU − Ir)PDu‖2
]

= E
u,XU ,P ,D

[
‖DP>(S2X>U

(
XUS

2X>U
)−1

XU − Ir)PDu‖2
]

= E
u,XU ,P ,D

[
‖(S2X>U

(
XUS

2X>U
)−1

XU − Ir)PDu‖2
]

= E
u,XU

[
tr
(

(S2X>U
(
XUS

2X>U
)−1

XU − Ir) E
P ,D

[
PDuu>DP>

]
(S2X>U

(
XUS

2X>U
)−1

XU − Ir)>
)]

It is not hard to see that randomly multiplying coordinates of u by ±1 and then shuffling the coordinates will lead to

E
P ,D

[
PDuu>DP>

]
= ‖u‖2

r Ir.

E
v,XU

[
‖BXU

U>v‖2
]

= E
u∼N (0r,U>A∗A∗>U)

[
‖u‖2

r

]
E
XU

[
‖S2X>U

(
XUS

2X>U
)−1

XU − Ir‖2
]

=
‖PUA∗‖2

r
E
XU

[
‖S2X>U

(
XUS

2X>U
)−1

XUPXU
− PXU

− P⊥XU
‖2
]

=
‖PUA∗‖2

r
E
XU

[
‖S2X>U

(
XUS

2X>U
)−1

XU − PXU
‖2 + ‖P⊥XU

‖2
]

= β1(S) +
‖PUA∗‖2

r
E
XU

[
rank(P⊥XU

)
]

= β1(S) +
r − n1

r
‖PUA∗‖2 (39)

where β1(S) = ‖PUA
∗‖2

r E
XU

[
‖S2X>U

(
XUS

2X>U
)−1

XU − PXU
‖2
]

is a function that satisfies β1(S) ≥ 0 and

β1(κIr) = 0 for any κ. Also we used that rank(P⊥XU
) = r − rank(XU) = r − n1 with probability 1.

Plugging Equations (38) and (39) into Equation (37), we get the following final expression for the bias

bias(A) =

(
1 + E

XU

[
tr
((
XUS

2X>U
)−1

XUS
4X>U

(
XUS

2X>U
)−1
)])
‖P⊥UA∗‖2 +

r − n1

r
‖PUA∗‖2 + β1(S)

=

(
1 + E

XU

[
tr
((
XUS

2X>U
)−1

XUS
4X>U

(
XUS

2X>U
)−1
)])
‖P⊥UA∗‖2 +

r − n1

r

(
1− ‖P⊥UA∗‖2

)
+ β1(S)

=

(
1 + E

XU

[
tr
((
XUS

2X>U
)−1

XUS
4X>U

(
XUS

2X>U
)−1
)]
− r − n1

r

)
‖P⊥UA∗‖2 +

r − n1

r
+ β1(S)

=

(
n1

r
+ E
XU

[
tr
((
XUS

2X>U
)−1

XUS
4X>U

(
XUS

2X>U
)−1
)])
‖P⊥UA∗‖2 +

r − n1

r
+ β1(S) (40)

Variance: We now move to the variance term

variance(A) = E
η,X

[
‖AA>X>

(
XAA>X>

)−1
η‖2

]
= σ2 E

X

[
tr
(
AA>X>

(
XAA>X>

)−2
XAA>

)]

A Representation Learning Perspective on Train-Validation Splitting

= σ2 E
X

[
tr
(
US2U>X>

(
XUS2U>X>

)−2
XUS2U>

)]
= σ2 E

XU

[
tr
(
S2X>U

(
XUS

2X>U
)−2

XUS
2
)]

= σ2 E
XU

[
tr
((
XUS

2X>U
)−1

XUS
4X>U

(
XUS

2X>U
)−1
)]

(41)

To further simply both, the bias and variance terms, we need the following result

Lemma C.2. ForXU ∼ N (0r, Ir)
n1 and diagonal matrix S ∈ Rr×r

E
XU

[
tr
((
XUS

2X>U
)−1

XUS
4X>U

(
XUS

2X>U
)−1
)]

=

{
α(r, n1) + β2(S) if r > n1 + 1

∞ if r ∈ {n1, n1 + 1}

where α(r, n1) is defined in Equation (34) and β2(S) ≥ 0 and β2(κIr) = 0 for any κ > 0.

Using Lemma C.2 and plugging it into Equations (40) and (41), we get

Ltr-val
λ,rep(A; (n1,a))− σ2 = bias(A) + variance(A) =

(n1

r
+ α(r, n1)

)
‖P⊥UA∗‖2 +

r − n1

r
+ σ2α(r, n1) + β(S)

where β(S) = β1(S) + β2(S)
(
‖P⊥UA∗‖2 + σ2

)
is a non-negative function that is 0 at κIr for all κ > 0.

We now complete the proof by proving Lemma C.2

Proof of Lemma C.2. Let the L.H.S. be γ(S) = E
XU

[
tr
((
XUS

2X>U
)−1

XUS
4X>U

(
XUS

2X>U
)−1
)]

. We first show

that equality holds for S = κId. In this case, we have γ(κIr) = E
XU

[
tr
((
XUX

>
U

)−1
XUX

>
U

(
XUX

>
U

)−1
)]

=

E
XU

[
tr
((
XUX

>
U

)−1
)]

. Using the closed-form expression for inverse Wishart distribution once again, we conclude

γ(κIr) = E
XU

[
tr
((
XUX

>
U

)−1
)]

= tr
(

E
XU

[(
XUX

>
U

)−1
])

=

{
tr
(

In1

r−n1−1

)
= n1

r−n1−1 if r > n1 + 1

∞ otherwise

Thus we get γ(κIr) = α(r, n1) when r > n1 + 1 and unbounded otherwise.

We will show for an arbitrary diagonal matrix S that the value is at least as large as Ir, i.e. γ(S) ≥ γ(κIr),
which will complete the proof. We first observe that XUS

4X>U = XUS
2S2X>U < XUS

2PXU
S2X>U =

XUS
2X>U

(
XUX

>
U

)−1
XUS

2X>U . Using this, we get

γ(S) = E
XU

[
tr
((
XUS

2X>U
)−1

XUS
4X>U

(
XUS

2X>U
)−1
)]

≥ E
XU

[
tr
((
XUS

2X>U
)−1

XUS
2X>U

(
XUX

>
U

)−1
XUS

2X>U
(
XUS

2X>U
)−1
)]

≥ E
XU

[
tr
((
XUX

>
U

)−1
)]

= γ(Ir)

D. Experiments
This section contains experimental details and also additional experiments on more datasets and settings. The code for all
experiments will be made public.

A Representation Learning Perspective on Train-Validation Splitting

Algorithm 1 RepLearn(θrep, TaskLoader, variant)

Parameters: Regularization (λ), Outer steps (Tout), outer lr (ηout), batch size (b), Inner steps (Tin), inner lr (ηin)
Input: Representation model θrep, TaskLoader, variant {tr-tr or tr-val}
θrep(0)← RandInit

for t = 0 to Tout − 1 do
TaskBatch← TaskLoader(batch size = b)

for i = 1 to b do
S ← TaskBatch[i] {Dataset of size n}

if variant is ‘tr-val’ then
(Str, Sval)←split S {Split into tr-val sets of sizes n1 + n2 = n}
W̃ ←stop gradient InnerLoop(θrep(t), Str, λ) {Ignore the dependence of W̃ on θrep(t)}
∇i ←∇θrep `rep(W̃ ; θrep, Sval)|θrep(t)

else if variant is ‘tr-tr’ then
W̃ ←stop gradient InnerLoop(θrep(t), S, λ)

∇i ←∇θrep `rep(W̃ ; θrep, S)|θrep(t) {Defined in Equation (42)}

end if

∇ = 1
b

∑b
i=1 [∇i]

θrep(t+ 1)← Adam(θrep(t),∇, ηin)
end for

end for
return θrep(Tout)

Algorithm 2 InnerLoop(θrep, S)

Parameters: Regularization (λ), Inner steps (Tin), inner lr (ηin)
Input: Representation model θrep, S
W (0)← 0d×k
for t = 0 to Tin − 1 do
∇ ← ∇W {`rep(W ; θrep, S) + λ

2 ‖W ‖
2
F }|W (t)

W (t+ 1)← SGD(W (t),∇, ηin,momentum = 0.9)
end for
return W (Tin)

D.1. RepLearn Algorithm and Datasets

RepLearn We describe the inner and outer loops for the RepLearn algorithm that we use for experiments in Algorithms 2
and 1 respectively. Recall the definitions for inner and outer losses.

`rep(W ; θrep, S) = E
(x,y)∼S

[`(W>fθrep(x), y)] (42)

`λ,rep(W ; θrep, S) = E
(x,y)∼S

[`(W>fθrep(x), y)] +
λ

2
‖W ‖22 (43)

Aλ,rep(θrep;S) = arg min
W

`λ,rep(W ; θrep, S) (44)

tr-tr Inner loop: For dataset S and current initialization θrep
i , run Tin of gradient descent (with momentum 0.9) with

A Representation Learning Perspective on Train-Validation Splitting

learning rate ηin on `λ,rep(W ; θrep, S) to get an approximation W̃λ,rep(θrep;S) ≈ Aλ,rep(θrep;S). Compute the gradient:
∇tr-val(θrep) = ∇`λ,rep(W̃λ,rep

(
θrep
i , S); ·, S

)
|θrep
i

Outer loop: Run Adam with learning rate ηout (other parameters at default value) with batch size b for Tout steps by using the
gradient

Meta-testing: Tune Tin and λ̄ using validation tasks

Datasets We conduct experiments on the Omniglot (Lake et al., 2015) and MiniImageNet (Vinyals et al., 2016) datasets.
The Omniglot dataset consists of 1623 different handwritten characters from 50 different alphabets. Each character was
hand drawn by 20 different people. The original Omniglot dataset was split into a background set comprised of 30 alphabets
and an evaluation set of 20 alphabets. We use the split recommended by Vinyals et al. (2016), which contains of a training
split of 1028 characters, a validation split of 172 characters, and test split of 423 characters. Vinyals et al. (2016) construct
the MiniImageNet dataset by sampling 100 random classes from ImageNet. We use 64 classes for training, 16 for validation,
and 20 for testing. We use torchmeta (Deleu et al., 2019) to load datasets. All our evaluations in meta-test time are conducted
in the transductive setting.

D.2. Omniglot Experiments

Replearn on Omniglot We use a batch size b = 32. We use the standard 4-layer convolutional backbone with each
layer having 64 output filters followed by batch normalization and ReLU activations. We resize the images to be 28x28
and apply 90, 180, and 270 degree rotations to augment the data, as in prior work, during training and evaluation. We
train for Tout = 30000 meta-steps and use Tin = 100 inner steps regardless of model, and use an inner learning rate ηin =
0.05, unless there is a failure of optimization, in which case we reduce the learning rate to 0.01. We use an outer learning
rate ηout = 0.001. We evaluate on 600 tasks at meta-test time. At meta-test time, for each model, we pick the best λ̄ and
inner step size based on the validation set, where we explore λ̄ ∈ [0, .1, .3, 1.0, 2.0, 3.0, 10.0, 100.0] and inner step size in
[50, 100, 200] and evaluate on the test set.

Increasing width of a FC network on Omniglot We examine the performance gap between tr-val versus tr-tr as we
increase the expressive power of the representation network. We use a baseline 4 hidden layer fully connected network
(FCN) inspired by Finn et al. (2017), but with 64` nodes at all 4 layers for different values of ` ∈ {1, 4, 8, 16, 32}. We set
inner learning rates to be .05, except for ` ∈ {16, 32} where we found a smaller inner learning rate of .01 was needed for
convergence.

iMAML We use the original author code10 as a starting point, which creates a convolutional neural network with four
convolutional layers, followed by Batch Normalization and ReLU activations. We modify their code to add a tr-tr variant
by using the combined data for the inner loop and the outer loop updates. We apply 90, 180, and 270 degree rotations to
Omniglot data, resizing each image to 28x28 pixels. We use 5 conjugate gradient steps. For meta-testing we pick the best
λ̄ ∈ {0, .1, .3, 1.0, 2.0, 3.0, 10.0, 100.0} and nin ∈ .{8, 16, 32, 64} that maximizes accuracy on the validation set. All other
hyper-parameters at meta-test time are equal to the values used during training. We use an outer learning rate of 1e-3. We
train for 30000 outer steps for all models tested, and set the number of inner steps n steps = 16 for 5-way 1-shot and 25 for
20-way 1-shot. We investigate the performance of tr-val versus tr-tr by examining different settings of the regularization
parameter λ. We report our results for tr-val versus tr-tr for Omniglot 5-way 1-shot and 20-way 1-shot in Table 6. We find
that tr-val significantly outperforms tr-tr in all settings, and the gap is much larger than for RepLearn.

iMAML representations and t-SNE We train a model on Omniglot 5-way 1-shot using iMAML with batch size 32, inner
learning rate .05, and meta steps 30000, again using the original author code convolutional neural network. We use λ = 2.0
for tr-val and λ = 1.0 for tr-tr. We use the tr-val and tr-tr CNN models to get image representations for input images, and
then perform t-SNE on 10 randomly selected classes. We report t-SNE and singular value decay results for iMAML in
Figure 4. We also plot the t-SNE representations for varying values of the perplexity in Figure 2. As in the case of RepLearn,
the tr-val representations are much better clustered in the tr-tr representations. Furthermore the tr-val representations have a
sharper drop in singular values, suggesting that they have lower effective rank than tr-tr representations.

10https://github.com/aravindr93/imaml_dev

https://github.com/aravindr93/imaml_dev

A Representation Learning Perspective on Train-Validation Splitting

Table 6. meta-test accuracies in % for a CNN trained with iMAML for tr-val versus tr-tr on Omniglot 5-way 1-shot and Omniglot 20-way
1-shot. We find a huge gap in performance between tr-val and tr-tr, even larger than that for RepLearn.

5-way 1-shot 20-way 1-shot

λ = 2.0 tr-val 97.90 ± 0.58 91.0 ± 0.54

λ = 10.0 tr-tr 49.22 ± 1.83 14.45 ± 0.61
λ = 2.0 tr-tr 43.71 ± 1.92 16.18 ± 0.65
λ = 1.0 tr-tr 47.18 ± 1.90 16.96 ± 0.66
λ = 0.3 tr-tr 48.61 ± 1.90 16.50 ± 0.64
λ = 0.1 tr-tr 48.60 ± 1.93 17.70 ± 0.69
λ = 0.0 tr-tr 49.21 ± 1.92 18.30 ± 0.67

Figure 2. t-SNE plots for tr-val versus tr-tr for varying values of the perplexity for a CNN model trained with iMAML on Omniglot 5-way
1-shot. Plots shown for 10 randomly selected classes from the test split of Omniglot. Top row depicts tr-tr and bottom row depicts tr-val.
We find that the tr-val representations appear to be more clustered for all values of perplexity of t-SNE.

Rank and Expressivity For a fully connected model of width factor ` = 32 trained with RepLearn on Omniglot 5-way 1-
shot, we conduct linear regression twice. The first regression predicts the tr-tr representations given the tr-val representations,
and the second predicts the tr-val representations given the tr-tr representations. We find that the R2 scores were 0.0973
and 0.0967, respectively. Thus the two sets of representations can express each other well enough, even though tr-val
representations have lower effective rank.

We conduct the same experiment for a CNN model trained with iMAML on Omniglot 5-way 1-shot, and find that the R2

scores were 0.0103 and 0.171, respectively, thus suggesting that tr-val representations are a bit more expressive than tr-tr
representations, in addition to having lower effective rank.

Adding explicit regularization to RepLearn For a CNN model trained with RepLearn on Omniglot 5-way 1-shot, we
add explicit regularization to tr-tr by adding the Frobenius norm of the representation to the loss. We report the accuracy in
percentage evaluated on 1200 tasks in Table 8 in the top row. We find that this significantly improves the performance of the
tr-tr method, compared to the tr-tr models without explicit regularization in Table 10, or the bottom row of Table 8. This
fits our intuition that the tr-tr method requires some form of regularization to learn low rank representations and to have
guaranteed good performance on new tasks.

D.3. MiniImageNet Experiments

RepLearn on MiniImageNet As standard (Rajeswaran et al., 2019), we resize the data to 84x84 pixel images and apply
90, 180, and 270 degree rotations and use a batch size of 16 during training. We use a convolutional neural network with
four convolutional layers, with output filter sizes of 32,, 64, 128, and 128 each followed by batch normalization and ReLU
activations. We investigate the performance of tr-val versus tr-tr for RepLearn on the MiniImageNet 5-way 1-shot and 5-way
5-shot setting and report our results in Table 7. The findings are very similar to those from the Omniglot dataset, suggesting
that our insights hold across multiple benchmark datasets.

A Representation Learning Perspective on Train-Validation Splitting

Table 7. Tr-val versus tr-tr meta-test accuracies in % for a CNN model trained with RepLearn on MiniImageNet 5-way 1-shot and 5-way
5-shot for varying values of the regularization parameter, λ. The final value of the tr-tr objective is depicted in the last two columns for
MiniImageNet 5-way 1-shot and MiniImageNet 5-way 5-shot, respectively. The tr-tr models make the tr-tr loss very small, which is what
they were trained to minimize. Thus their failure on few-shot learning is not due to failure of optimization.

5-way 1-shot 5-way 5-shot tr-tr loss 5-way 1-shot tr-tr loss 5-way 5-shot

λ = 0.0 tr-val 46.16 ± 1.67 65.36 ± 0.91 0.01 0.01

λ = 0.0 tr-tr 25.53 ± 1.43 33.49 ± 0.82 1.1e-8 2.1e-6
λ = 0.1 tr-tr 24.69 ± 1.32 34.91 ± 0.85 3.5e-8 5.5e-7
λ = 1.0 tr-tr 25.88 ± 1.45 40.19 ± 1.12 1.9e-6 9.3e-5

Table 8. Meta-test accuracies in % for tr-tr RepLearn trained on Omniglot 5-way 1-shot with explicit Frobenius norm regularization added
to the representations.

λ = 0.0 (tr-tr) λ = 0.1 (tr-tr) λ = 3.0(tr-tr)

with representation regularization 94.73 ± 0.55 95.05 ± 0.55 94.74 ± 0.55
no representation regularization 67.78 ± 1.60 67.53 ± 1.66 89.00 ± 1.08

Table 9. Accuracies in % of representations parameterized by CNN networks of varying number of filters on MiniImageNet. Repre-
sentations trained using tr-val objective consistently outperforms those learned using tr-tr objective, and the gap increases as width
increases.

capacity = MiniImageNet 5-way 1-shot Supervised 20-way
num filters∗` tr-val tr-tr tr-val tr-tr

` = 0.5 46.66 ± 1.69 26.25 ± 1.45 1. 1.
` = 1 48.44 ± 1.62 26.81 ± 1.44 1. 1.
` = 4 52.22 ± 1.68. 24.66 ± 1.26 1. 1.
` = 8 52.25 ± 1.71 25.28 ± 1.37 1. 1.

Table 10. Tr-val versus tr-tr meta-test accuracies in % for a CNN model trained with RepLearn on Omniglot 5-way 1-shot for varying
values of the regularization parameter, λ.

5-way 1-shot tr-val 5-way 1-shot tr-tr

λ = 0.0 97.25 ± 0.57 67.78 ± 1.60
λ = 0.1 97.34 ± 0.59 67.53 ± 1.64
λ = 0.3 97.59 ± 0.55 66.06 ± 1.67
λ = 1.0 97.66 ± 0.52 87.25 ± 1.13
λ = 3.0 97.19 ± 0.59 89.00 ± 1.08
λ = 10.0 96.50 ± 0.61 85.41 ± 1.22

Increasing capacity of a CNN model on MiniImageNet We start with a CNN model trained on MiniImageNet with four
convolutional layers with 32, 64, 128, and 128 filters, respectively. Each convolution is followed by batch normalization
and ReLU activations. We train with RepLearn. We increase the capacity by increasing the number of filters by a capacity
factor, `, so that the convolutional layers contain 32`, 64`, 128`, and 128` output filters, respectively. We depict our results
in Table 9. We find that increasing the network capacity improves the performance of tr-val representations, but slightly
hurts tr-tr performance, just like the findings for Omniglot dataset with fully-connected networks. Thus the tr-val method is
more robust to architecture choice/capacity and datasets.

t-SNE on MiniImageNet We take the baseline convolutional neural network with capacity factor ` = 1 from the previous
section, and conduction t-SNE on the representations produced by the tr-val versus the tr-tr model. We report our results in
Figure 3.

A Representation Learning Perspective on Train-Validation Splitting

Table 11. Tr-val versus tr-tr meta-test accuracies in % for a CNN model trained with RepLearn on Omniglot 20-way 1-shot for varying
values of the regularization parameter, λ.

20-way 1-shot trval 20-way 1-shot tr-tr

λ = 0.0 92.26 ± 0.45 49.00 ± 0.88
λ = 0.1 92.38 ± 0.44 50.84 ± 0.85
λ = 0.3 92.21 ± 0.47 55.38 ± 0.92
λ = 1.0 92.44 ± 0.47 84.14 ± 0.63
λ = 3.0 92.70 ± 0.48 88.20 ± 0.55
λ = 10.0 91.50 ± 0.48 85.85 ± 0.58

(a) (b) (c)

Figure 3. Plot of singular values and t-SNE plots for MiniImageNet tr-val versus tr-tr. (a): Singular values for representations produced by
tr-val versus tr-tr of a CNN model trained with RepLearn on MiniImagement. (b): t-SNE plot of representations produced by tr-val CNN
model trained with RepLearn on MiniImageNet for 10 randomly selected classes of test split. (c): t-SNE plot of representations produced
by tr-tr CNN model trained with RepLearn on MiniImageNet for the same 10 randomly selected classes of test split. We find that the
tr-val representations appear to be more clustered than the tr-tr representations.

(a) (b) (c) (d)

Figure 4. Plot of singular values and t-SNE plots for iMAML tr-val versus tr-tr. (a): Singular values for representations produced by tr-val
versus tr-tr of a CNN model trained with iMAML on Omniglot 5-way 1-shot. (b): t-SNE plot of representations produced by tr-val CNN
model trained with iMAML on Omniglot 5-way 1-shot for 10 randomly selected classes of test split. (c): t-SNE plot of representations
produced by tr-tr CNN trained with iMAML model on Omniglot 5-way 1-shot for the same 10 randomly selected classes of test split. We
find that the tr-val representations appear to be more clustered than the tr-tr representations. (d): Tr-tr loss values for tr-tr versus tr-val
models.

