A Representation Learning Perspective on the Importance of
Train-Validation Splitting in Meta-Learning

Nikunj Saunshi' Arushi Gupta' Wei Hu'

Abstract

An effective approach in meta-learning is to uti-
lize multiple “train tasks” to learn a good initial-
ization for model parameters that can help solve
unseen “test tasks” with very few samples by fine-
tuning from this initialization. Although success-
ful in practice, theoretical understanding of such
methods is limited. This work studies an impor-
tant aspect of these methods: splitting the data
from each task into train (support) and valida-
tion (query) sets during meta-training. Inspired
by recent work (Raghu et al., 2020), we view
such meta-learning methods through the lens of
representation learning and argue that the train-
validation split encourages the learned representa-
tion to be low-rank without compromising on ex-
pressivity, as opposed to the non-splitting variant
that encourages high-rank representations. Since
sample efficiency benefits from low-rankness, the
splitting strategy will require very few samples
to solve unseen test tasks. We present theoretical
results that formalize this idea for linear repre-
sentation learning on a subspace meta-learning
instance, and experimentally verify this practical
benefit of splitting in simulations and on standard
meta-learning benchmarks.

1. Introduction

Humans can learn from prior experiences, summarize them
into skills or concepts and leverage those to solve new tasks
with very few demonstrations (Ahn & Brewer, 1993). Since
labeled data is often expensive to obtain, it would be desir-
able for machine learning agents to emulate this behavior
of exploiting data from prior experiences to make solving
new tasks sample efficient. In this regard, we consider the
meta-learning or learning-to-learn paradigm (Schmidhuber,
1987; Thrun & Pratt, 1998), where a learner utilizes data
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from many “train” tasks to learn a useful prior that can
help solve new “test” tasks. The goal is to do well on test
tasks with way fewer samples per task than would be re-
quired without access to train tasks. There is a rich history
of successful methods in meta-learning and related fields
of multi-task, lifelong and few-shot learning (Evgeniou &
Pontil, 2004; Ruvolo & Eaton, 2013; Vinyals et al., 2016).
The advent of the deep learning pipeline has led to more re-
cent model-agnostic methods (Finn et al., 2017) that learn a
good initialization for model parameters by using train tasks
(meta-training) and solve test tasks by fine-tuning from this
initialization using little data (meta-testing). Such methods
have helped with many problems like few-shot classifica-
tion in computer vision (Nichol et al., 2018), reinforcement
learning (Finn et al., 2017), federated learning (McMahan
et al., 2017), neural machine translation (Gu et al., 2018).

This empirical success has encouraged theoretical studies
(cf. Section 2) of the statistical and optimization proper-
ties of such methods. We are interested in the statistical
aspect, where a meta-learner is evaluated based on the num-
ber of test task samples it requires to achieve small error.
Specifically, we focus our attention on the design choice of
data splitting that is used in many meta-learning methods
(Finn et al., 2017; Rajeswaran et al., 2019; Raghu et al.,
2020). In this setting, a typical meta-learner learns a good
initialization by 1) splitting the train task data into train
(support) and validation (query) sets, 2) running the inner
loop or base-learner of choice on the frain set of the task
starting from the current initialization, 3) minimizing the
loss incurred on the validation set of the task by parameters
from the inner loop, 4) updating the initialization in outer
loop. The learned initialization is used to solve an unseen
test task, typically in the few-shot regime with very few
samples available. Here we study the sample complexity
benefit offered by such train-validation (tr-val) splitting by
arguing that it learns low-rank & expressive representations.

We further compare this splitting strategy to the non-splitting
variant where the entire task data is used for both, inner loop
and outer loop updates (Nichol et al., 2018; Zhou et al.,
2019). Recent theoretical work (Bai et al., 2020) makes
the case for the non-splitting variant (referred to as tr-tr
variant) with an analysis in the centroid learning setting for
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noiseless Gaussian linear regression and arguing that the
non-splitting variant uses the available data more effectively
in an asymptotic regime (cf. Section 5.3). We instead take a
representation learning perspective, inspired by Raghu et al.
(2020) arguing that the power of modern meta-learning
methods can be derived from the good representations they
learn. Our main contributions are summarized below:

* Big picture: We study the setting of representation
learning, where the meta-learner trains a representation
function (all weights before the linear classifier head)
in the outer loop, while the inner loop learns a linear
classifier on top of fixed representations. We show,
theoretically and experimentally, that tr-val splitting
helps with sample complexity of few-shot learning by
inducing an implicit regularization that encourages the
learning of expressive low-rank representations. On
the theoretical side, we prove the sample efficiency of
the tr-val objective for linear representations, going
beyond previous theoretical results that require explicit
regularization or low rank constraints. We also show
potential failures of the tr-tr variant without explicit
regularization, contrasting recent theoretical work (Bai
et al., 2020) that shows that tr-tr is better than tr-val in
a different setting. Experiments support our hypothesis
on simulations and standard benchmarks.

e Theory: Our theoretical study is for a representation
function that /inearly maps d-dimensional inputs to d-
dimensional' representations, while the inner loop per-
forms ridge regression on fixed representation. We con-
sider a meta-learning instance where tasks are linear re-
gression problems with regressors on a k-dimensional
subspace (k < d). Firstly we show that approximately
minimizing the tr-val objective guarantees learning an
expressive low-rank representation, which is precisely
the underlying k-dimensional subspace. This results
in a new task sample complexity of O(k), i.e. only
O(k) < d samples are required from test tasks to
achieve a small error. In contrast, no matter how well
the tr-tr objective is optimized, one cannot guarantee
learning a “good” representation and we may end up
having an Q(d) new task samples complexity. By ex-
ploiting the practical design choice of tr-val splitting,
we go beyond previous analysis that require explicit
regularization or low-rank constraints on linear repre-
sentations. Our analysis allows for different number
of samples per task in meta-training and testing, un-
like previous excess risk based analyses (Baxter, 2000;
Maurer et al., 2016; Denevi et al., 2018a).

e Experiments: Simulations on the subspace meta-
learning instance verify that the tr-val splitting leads to

'Dimensionality of representation can be smaller too. Larger
makes the results stronger.

smaller few-shot error by virtue of learning the right
subspace. In contrast, the tr-tr objective trained using
standard methods has poor performance on the same
problem. We also test on standard few-shot classifica-
tion benchmarks like Omniglot (Lake et al., 2015) and
MinilmageNet (Vinyals et al., 2016), where again the
tr-val objective turns out to be superior to tr-tr objective,
for representation learning and a gradient based method
implicit MAML (Rajeswaran et al., 2019). We further
find that while the tr-tr and tr-val representations are
both expressive enough to separate all test classes with
a lot of training data, the tr-val representation has lower
effective rank. Thus although the theory is for the sim-
plistic model of linear representations, it provide useful
insights into the practice of meta-learning.

After discussing related work in Section 2, we present meta-
learning preliminaries and describe the representation learn-
ing framework and the tr-val, tr-tr objectives in Section 3.
Section 4 defines the subspace meta-learning instance for
our theoretical analysis and formulates linear representation
learning. We present our theoretical results in Section 5 for
the tr-tr and tr-val objectives, along with intuitive explana-
tions and comparisons to previous resutls. We present our
experimental verifications and findings in Section 6. Proofs
and additional experiment details are in the Appendix.

2. Related Work

Background and empirical work: Learning-to-learn or
meta-learning has a rich history (Schmidhuber, 1987; Ben-
gio et al., 1990; Naik & Mammone, 1992; Caruana, 1997;
Thrun & Pratt, 1998). Existing deep learning based methods
can be broadly classified as metric-based (Vinyals et al.,
2016; Snell et al., 2017), model-based (Andrychowicz et al.,
2016; Ravi & Larochelle, 2017) and more relevant to us,
gradient-based (Finn et al., 2017; Nichol et al., 2018) meth-
ods. Recent empirical work (Raghu et al., 2020) shows that
most of the power of gradient-based methods like MAML
(Finn et al., 2017) can be derived by fixing representations
and learning a linear classifier for new tasks. Their proposed
representation learning algorithm ANIL and other methods
(Lee et al., 2019; Bertinetto et al., 2019) show that repre-
sentation learning performs comparably to gradient-based
methods on many benchmarks. We note that Oh et al. (2020)
highlights the importance of updating representations in the
inner loop. Recent works also try to demystify these meth-
ods by studying the role of depth (Arnold et al., 2019) and
clustering of representations (Goldblum et al., 2020).

Theoretical work: The seminal work of Baxter (2000) intro-
duced a framework to study the statistical benefits of meta-
learning, subsequently used to show excess risk bounds for
ERM-like methods using techniques like covering numbers
(Baxter, 2000), algorithmic stability (Maurer, 2005) and
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Gaussian complexities (Maurer et al., 2016). Sample com-
plexity guarantees for initialization-based methods have
been shown for inner loop losses that are convex in model
parameters (Khodak et al., 2019a;b; Zhou et al., 2019); in
particular for squared-error loss (Denevi et al., 2018b; Bai
et al., 2020), a.k.a. centroid meta-learning. The underlying
structure exploited in these guarantees is the closeness of
optimal task parameters for different tasks in some metric.

Another paradigm for analyzing meta-learning methods is
representation learning (Maurer et al., 2016; Du et al., 2020;
Tripuraneni et al., 2020b). Linear representation learning
is a popular playground to theoretically study various as-
pects of meta-learning (Argyriou et al., 2008; Maurer, 2009;
Maurer & Pontil, 2013; Bullins et al., 2019; Denevi et al.,
2018a; Du et al., 2020; Tripuraneni et al., 2020a;b). These
analyses do not employ a train-validation split but instead
require explicit regularizers or low-rank constraints on rep-
resentations to show meaningful guarantees, which we do
not need. Saunshi et al. (2020) show that Reptile (Nichol
et al., 2018) and gradient descent on linear representation
learning (without data splitting or regularization) learn an
underlying 1-dimensional subspace and show a separation
from centroid meta-learning methods.

Other theoretical analyses show PAC-Bayes bounds (Pentina
& Lampert, 2014), and regret bounds for life-long learning
(Alquier et al., 2017) and study mixed linear regression
(Kong et al., 2020). Methods like MAML are also studied
from an optimization perspective (Rajeswaran et al., 2019;
Fallah et al., 2020; Wang et al., 2020a; Collins et al., 2020),
but we are interested in statistical aspects.

Data splitting: The role of data splitting was theoretically
considered in a recent work (Bai et al., 2020) for the cen-
troid learning problem. While Denevi et al. (2018b) shows
bounds for tr-val splitting, as noted in Bai et al. (2020), their
bounds cannot differentiate between tr-tr and tr-val objec-
tives. (Wang et al., 2020b) shows that tr-tr is worse than
tr-val splitting for tuning learning rate using meta-learning.
We do a detailed comparison to data splitting and linear
representation learning results in Section 5.3.

3. Meta-Learning Preliminaries

Notation: We use x is used to denote a vector, S to denote
a set, A to denote matrix, 6 to denote model parameters (like
weights of neural network). = ~ S denotes sampling an
element & from the uniform distribution over a finite set
S. N(04,%) is Gaussian distribution with mean 04 and
covariance X. I denotes a d x d identity matrix. The ReLU
function is denoted by (x) = 1,0 x. For A € R?*4 At
denotes the pseudo-inverse of A and P4 = (A AT) denotes
the projection matrix for the column span of A.

3.1. Data Splitting and Meta-Learning

We formalize the train-validation split that is used in practice
and define the tr-tr and tr-val objective functions. Let Z =
X x ) denote space of data points, where X is the input
space, ) is the label space. Let # € © C R denote the
model parameters (e.g. weights of a neural network) and
fo(x) € R¢ denote the model prediction® for input €
X. A meta-learner has access to 7 train tasks as datasets

S1,...,S7, with each dataset S; of n points being split
into S = {(=};,y,)}i2y and S = {(&}4, /%) 120,

with S; = S U S}, where S and S} refer to the train
and validation splits respectively. For a loss function /, e.g.
logistic loss or squared error loss, we define the average loss
incurred by model parameters § € O on a dataset S as

00;5)= E [fo(z)y)] (D

(®,y)~S
Initialization-based meta-learning methods (Finn et al.,
2017) aim to learn an initialization 6, € © for model pa-
rameters such that solving a task using its train data and
the initialization 6 with an algorithm A will lead to param-
eters that do well on the test data for the task. Formally,
A : O x Z"™ — O is an inner algorithm or base-learner, e.g.
A(6p, S) can run a few steps of gradient descent starting
from 6y on the loss £(-;.S). We now describe the train-
validation (tr-val) and train-train (tr-tr) outer algorithms or
meta-learners as ones that minimize the following objectives
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Our tr-tr and tr-val objective definitions are similar to those
from (Bai et al., 2020). We now describe the representation
learning objective and the corresponding inner algorithm A.

3.2. Representation Learning

As in Raghu et al. (2020), we define a representation learn-
ing objective where the inner algorithm only learns a linear
predictor on top of fixed learned representations. Let 6P
parametrize the representation function fper : X — R?

Base-learner: For any task, we define the inner algorithm
A\ rep that only learns a linear classifier W € R4xc a5

g)\,rep(W; erep’ S) = E
(w,U)NS

A rep(0"F; S) = arg min £ yep (W67, .S) 4)
w

LW fyo(a). )] + 2 W3

?For classification, model prediction is the logits and ¢ is num-
ber of classes. For regression, c is target dimension.
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Meta-learner: The corresponding tr-val and tr-tr objec-
tives that use the base-learner A r.p are

E{tr tr,tr-val } (erep)

Voo Z{lr—tr,tr—val} ( grep : -A)\,rep) 5)

where £{t-tt-val} are defined in Equations (2) and (3). The
inner algorithm from Equation (4), that uses || - || » regular-
ization, has been used in empirical work, for ¢ being the
logistic and squared error losses in Bertinetto et al. (2019)
and the margin loss in Lee et al. (2019); also used in theo-
retical work (Saunshi et al., 2020). As evidenced in these
works, minimizing "‘V“l performs very well in practice.
In the subsequent sect10ns we will show, theoretically and

experimentally, that D)ﬂgl learned representations are better

than £y

rep for few-shot learning.

4. Meta-Learning of Linear Representations

In this section we discuss the subspace meta-learning in-
stance for which we show theoretical guarantees. We also
define the tr-tr and tr-val objectives and the meta-testing
metric for linear representation learning.

4.1. Subspace Meta-Learning Instance

We construct a simple meta-learning instance where each
task is a regression problem. We assume that the 7' train
tasks and the unseen test tasks will be sampled from an
underlying distribution over tasks, as in many prior theoreti-
cal work (Baxter, 2000; Maurer et al., 2016; Denevi et al.,
2018b; Bai et al., 2020). Each task is a regression problem,
with the input and target spaces being X = R% and Y = R
respectively. A task p,, is characterized by a vector v € R?
and has an associated distribution® over X’ x ) that satisfies

(%,y) ~ Pov =T~ N(0d7ld)7y ~ N(’UTw7O'2) (6)

Thus the input distribution is standard normal, while the
label is a linear function of input with some Gaussian
noise* with variance o added to it. We are interested in a
meta-learning instance that only considers a subset of the
tasks {py }, namely for v € R? that lie on an unknown k-
dimensional subspace for some k < d. Let A* € RxF
be an orthogonal matrix> (A*T A* = I,) whose columns
define the basis for this subspace. We define the distribution
1 over tasks {p,, } that is supported on span(A*) as follows

Po~ = v~ N(0g, A*A*T) (7)

The optimal classifier for each regression task p,, is v. Since
all classifiers v of interest will be on a k-dimensional sub-
space spanned by A*, we only need to know the projec-
tions of the d-dimensional inputs onto A* to solve all tasks

3We abuse notation and use p,, as a task and its distribution.
*We only need E[y|z] = v "z, Var[y|z] = 0> I,.
>For simplicity. Results hold even if A* is not orthonormal.

in p. Thus an expressive low rank linear representation
x — A* A* " x exists for the inputs, but this subspace A* is
unknown to the meta-learner. We note that a 1-dimensional
subspace meta-learning instance (k = 1) was considered in
Saunshi et al. (2020) to show guarantees for Reptile.

Meta-training dataset We assume access to T’ tasks
Pvys - - -5 Pup Sampled independently from the distribution
1 defined in Equation (7). For the task p,, a dataset of
n points, S; = (X;,Y;), where X; € R™*4 Y € R" is
sampled from p,,, . Each dataset S; = (X, Y}) is split into

= (X, Y") and S} = (X7 Y,"") with sizes ny and
ng respectively, with ny + ng = n.

4.2. Linear Representation Learning

We parametrize the predictor as a two-layer linear network,
denoting the representation layer as A € R?*¢ and the
linear classifier layer as w € R?. The loss function is the
squared-error loss £(4),y) = (§ — y)?. We now describe the
base-learner, meta-learners and meta-testing metric.

Base-learner: Recall that for each task ¢ € [T, the
task data of size S; = (Xi,Y;) of size n is split into

= (XFY,") and S} = (X}, Y,"¥) of sizes ny and
ny respectively. For the squared error loss, the inner loop
for data S = (X,Y) reduces to the following:

g)\,rep(w; A» S) =

w(A; S) = argmin £y rp(w; A, S) (8)
weERd

1
—[| X Aw = Y[ + M|w]3

Meta-learner: The tr-val and tr-tr objectives to learn rep-
resentation layer A on 7 train tasks are described below:

L5 (A; (n, n2>>

TmZHX““‘AwA( SO o

L5 (Asn)

Z 1X: Awx (A5 S,) — Yi|* (10)
ni=

We note that the linear representation learning literature
considers a similar objective to E‘)f:;rep (Bullins et al., 2019;
Denevi et al., 2018a; Du et al., 2020; Tripuraneni et al.,
2020b), albeit with either a Frobenius norm constraint on A
or a rank constraint with A € R*¥ rather than R**“. We
show that such a constraint is not needed for the £ (A)

A,rep
objective, since it implicitly induces such a regularization.

Meta-testing/evaluation We evaluate the learned repre-
sentation layer A on a test task p,, with only 727 train sam-
ples from the task. The inner algorithm first uses A to learn
wjy (A; S)® from Equation (8) on 7; samples S sampled

%The regularization parameter X can also be different from .



A Representation Learning Perspective on Train-Validation Splitting

from p,,. The final predictor Awy(A;S) € R? is then eval-
uated on py: E(g y)mp, @ T Aw —y[|? = 02 + || Aw — v
Formally we define the meta-testing metric as an average
loss over a test tasks sampled from z

LY (Am) = B

Aep E [lAws(4;S) —|]| +

Po~i Sszl
(In

This metric is similar to the one used in prior work (Baxter,
2000; Maurer et al., 2016; Denevi et al., 2018a; Saunshi
et al., 2020), however the distribution over test tasks z need
not be the same as p. All we need is that test tasks lies on
the subspace spanned on A*.

Assumption 4.1. Forall p, ~ i, A*A* v =v

Note also that samples per test task 727 can also be different
from n or n; available during meta-training.

5. Theoretical Results

We discuss theoretical results for linear representation learn-
ing on the meta-learning instance defined in Section 4.1.
First we show that trying to minimize the tr-tr objective
without any explicit regularization can end up learning a full
rank representation, thus leading to €2(d) sample complexity
on a new task. While this is not too surprising or hard to
show, it suggests that for the non-splitting variant to succeed,
it needs to depend on either some explicit regularization
term or low-rank constraints as imposed in prior work, or
rely on inductive biases of the training algorithm. We then
show our main result for the tr-val objective showing that
minimizing it implicitly imposes a low-rank constraint on
representations and leads to new task sample complexity of
O(k). Proving this results entails deriving a closed form
expression for the asymptotic tr-val objective using symme-
try in the Gaussian distribution and properties of the inverse
Wishart distribution (Mardia et al., 1979).

5.1. Results for Train-Train Objective

For theoretical results in this section, we look at the asymp-
totic limit as the number of train tasks 7" goes to infinity, but
with each task having just n samples’.

-~

tr-tr . o tr-tr
)\,rep(A7 ’/l) - TIE)I;O ‘Ck,rep

(A;n) 12)
This limit gives an indication of the best one could hope
to do with access to many tasks with small amount of data
(n) per task. Note that the results in this subsection can be

extended to the non-asymptotic case of finite 7" as well.

The goal of D/{'frrep is to learn a first representation layer
A such the linear classifier wy(A; S;) learned using the

"Standard benchmarks that solve N-way K-shot tasks with C
classes can effective produce (f,) tasks which can be large

task data S = (X,Y’) can fit the same task data S well.
While a low rank layer (A = A*) can perfectly predict the
signal component of the the labels (X;v;) for tasks in g,
fitting the random noise in the labels (Y; — X;v;) requires
a representation that is as expressive as possible. However
as we show subsequently, a full rank representation layer is
bad for the final meta-evaluation ﬁg—‘\"sr‘ep. We formalize this
idea below and show the existence of such “bad” full rank

representations that make the E‘)\r:trrep arbitrarily small.

Theorem 5.1. For every A\,n > 0, for every T > 0, there
exists a “bad” representation layer Apyy € R that sat-
; tr-t . 3 tr-ti .

isfies L5 (Apaan) < Aelﬂrgxd S ep(Ain) + 7, but has
the following lower bound on meta-testing loss

: test = 2
;\Hfoﬁ;\ rop(Abad; 1) — 0
N )

> min {1 — #1/d(140%), 9% /(1+0%), }

The fixed error of o2 is unavoidable for any method due to
noise in labels. In the few-shot regime of n; < d, the lower
bound on the error is close to 1. To get an error of 02 + ¢
on a new test task for a very small ¢, the number of samples
n1 for the new tasks must satisfy nq = Q(4).
Implications Theorem 5.1 implies that no matter how
close L7, (A) gets to the optimal value, one cannot guar-
antee good performance for A in meta-testing £§* (A).
rep
This does not, however, rule out the existence of “good”
representations that have a small £, = and small £ .
»rep A,rep
However our result suggests that simply trying to minimize
W' may not be enough to learn good representations. We
A,rep y g g p
show in Section 6 that standard meta-learning algorithms
with a tr-tr objective can end up learning bad representations,
even if not the worst one. We demonstrate this for the above
meta-learning instance and also for standard benchmarks,

thus suggesting that our result has practical bearing.

Prior work has shown guarantees for linear representation
learning algorithms without any data splitting. The main
difference is that these methods either add a norm regulariza-
tion/constraint on the representation layer (Argyriou et al.,
2008; Maurer, 2009; Maurer & Pontil, 2013; Bullins et al.,
2019; Denevi et al., 2018a) to encourage low-rankness or an
explicit low rank constraint on the representation (Du et al.,
2020; Tripuraneni et al., 2020a;b). We show that even for
this simple meta-learning instance, lack of rank constraint
or norm regularization can lead to terrible generalization to
new tasks, as also demonstrated in experiments in Section 6.
In Table 8 we find that adding a regularization term on the
representation does lead to much better performance, albeit
still slightly worse that the tr-val variant.

Proof sketch 'We prove Theorem 5.1 by first arguing that

4 tr-tr . — 4 tr-tr . 1
lim, o0 A,rep(’dd’ n) = Aéﬂ%gm A,rep(A7 n). Thus pick-
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ing Ap,g = rkly for a large enough k suffices to get an
e-good L5 solution. On the other hand since 14 treats
all dlrectlons alike, it does not encode anything about the
k-dimensional subspace A*. The test task, thus, reduces to
linear regression on d-dimensional isotropic Gaussians data,
which is known to have €2 (%) sample complexity to get
loss at most €. The lemma below shows that xI; converges
to the infimum of LT, since a lower rank layer will not
fit the noise in the train labels well enough.

Lemma 5.2. Forevery A > 0and A € R vith rank r,

e (A;n) > lim LY (kA;n) > O'QM
K—>00 n

A,rep A, rep
2(n—d)y

tr-tr (K/Id7n) =0
n

& lim
K—00 Asrep
We note that this result can be shown without needing Gaus-
sianity assumptions. The ideas from this result are applica-
ble beyond linear representations. In general, making the
t)r\'fr‘ep objective small can be achieved by learning a very
expressive representation can fit the training data perfectly.
There is nothing in the objective function that encourages
forgetting redundant information in the representation. We
now present the main results for tr-val objective.

5.2. Result for Train-Validation Objective

We again look at the asymptotic limit as the number of train
tasks 7" goes to infinity, with each task having an (n1,ns)
train-validation split.

L3 (As (n1,n2)) = N L5378 (As (n1,n2)) - (13)

Here we demonstrate two benefits of the tr-val.

Correct objective to minimize The first result formalizes
the intuitive benefit of the Ltr‘¥“1 objective: if number of
train samples in train tasks and test tasks are the same, i.e.
ny = nq, then LY ‘r’;“ is the the correct objective to minimize

Proposition 5.3. L7 (+; (n1,n2)) and L35, (5n) are

equivalent if 7, =ny and A = \

Thus when ny = nq, Lg{ gé is an unbiased estimate of L‘fsﬁep
and minimizing it makes sense. This is easy to prove by
exploiting the independence of S™ and S¥a in the expression
for ‘Cj/”::) in Equation (2). However when fi; # n; or
A # ), the objective functions are different, so it is apriori
unclear why minimizing ‘/{Zg:, should be a good idea if we

st This is what we handle next.

care about Nrep

Low rank representation We show here that for A = 0,
the minimizers of L‘”“l are the same for almost all n; and
are in fact rank-k representations that span the subspace of
interest A*. This low rankness also ensures that the sample
complexity of a new task is O (£).

Theorem 5.4. Let A = 0. If ny > cik, 0 € (0,ca),
2

T < 03‘:1—1 Sfor small constants c1, ca, c3, then any Agooq €

R that is T-optimal, i.e. Ly ‘;j;(Agood; (n1,n2)) <

Aéﬁgm ﬁ’/\’f;jll)(A, (n1,mn2)) + 7, will satisfy

rank(Agooa) =k, ||Pa - A*||2 <rT

good

and the meta-testing performance ny > 2k + 2 satisfies

2k
inf L""” (Agw,d, n) — o <21+ 02 ="
A>0 Aor ni

Thus under mild conditions on the noise in labels and size of
train split during meta-training, this result shows that mini-
mizers (7 = 0) of E‘;ﬁ;‘ll) will have meta-testing loss smaller
than e with 7y = O (%) samples per test task, even when
ny1 # n1. It does so by learning a rank-k representation that
spans A*. Compared to the result from Theorem 5.1, the

bad representation Ap,q learned using the L7, objective

will need ny = Q (¢) samples to get the same error. The
above result also shows that getting close enough to opti-
mality is also sufficient for good meta-testing performance;
full version of the theorem and its proof can be found in
Section C. We reiterate that we did not need any explicit
regularization to show this sample complexity benefit. The
proof sketch below highlights the implicit regularization in
L’tr "‘il » and discusses the role of label noise o and number of
tram task samples 1 in ensuring the desired low-rankness.

Proof sketch The crux of the proof is in a stronger re-
sult in Theorem C.1 that provides a closed form expres-
sion for ES{:?;‘II)(A; (n1,n2)). For any representation A, let
A =USVT be the singular value decomposition (SVD)
with U,V € R¥" S € R™" and r = rank(A). The

expression for L52 (A; (n1,n2)) from Theorem C.1 is

tr-val ~ 1l n1 LoA*2 (7’7711)_;,_
L (A)len{l, - }||PAA P+ ==

A,rep
ai(A) as(A)
ny T
+ 02 |:]lr>n1+1r_ 1 +]lr<mflm
as(A)

where P4 is the projection matrix for the column span of
A and Pj = I; — Pa. We now look at how each term
contributes to the final result.

1) The term a1 (A) penalizes inexpressiveness of the rep-
resentation through the || P4 A*||? term. When r > k, this
can be made 0 by letting A span all the & directions in A*;
thus this term also encourages the rank being at least k.

2) The second term cxz (A) can be as low as 0 only when the

rank satisfies 7 < ny. In the noiseless setting (o = 0), Et{g’
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already encourage learning an expressive representation
with rank between k and n;. Thus if the number of samples
n1 in the train split of train tasks is small, we are already
guaranteed a low rank representation and new task sample
complexity of O(ny); thus it might be beneficial to use
fewer samples in the train split and more in the validation
split, similar to the result in (Bai et al., 2020).

3) Unlike 0 = 0, 0 > 0 can differentiate in r € [k, n4]
through the g (A) term. Under the mild assumptions on o
and n, this term ensures that the loss is minimized exactly
atr = k, and thus | Pz A*||> = 0 from a1 (A). Thus label
noise helps learn low rank representations even for large n .

This leads to the first part of Theorem 5.4 showing that any
minimizer Agqoq Of the tr-val objective will be low-rank and
expressive. The extension to T-optimal solutions also fol-
lows the same strategy. The second part showing that such
a representation Agq.q can reduce the sample complexity
of a new test task follows by noting that Ay, effectively
projects inputs onto the k-dimensional subspace A* and
thus lets us use the upper bound on sample complexity for
linear regression on k dimensions, which is (’)(%)

The above result holds for any output dimensionality D > k
of representation A € R9*P; the tr-val objective can au-
tomatically adapt and learn low rank and expressive repre-
sentations, unlike the tr-tr objective. This is demonstrated
in experiments on Omniglot and MinilmageNet in Sec-
tion 6 where increasing dimensionality of representations
improves the performance of tr-val representations, but the
added expressivity hurts the tr-tr performance (cf. Tables 3
& 4). Theorem C.1 is proved using symmetry in Gaussian
distribution and properties of Wishart distributions. We now
make a closer comparison to prior work on linear represen-
tation learning and role of tr-val splitting.

5.3. Comparison to Prior Work and Discussions

Data splitting: Bai et al. (2020) analyze the tr-tr and tr-
val objectives for linear centroid meta-learning, where the
prediction function for parameters § € R? on input x is
fo(x) = 0T . Using random matrix theory, they show in
the realizable setting that tr-tr objective learns parameters
that have better new task sample complexity than tr-val
parameters, by a constant factor, because it can use the data
from train tasks more efficiently. For experiments they use
iMAML (Rajeswaran et al., 2019) for tr-val method and
MiniBatchProx (Zhou et al., 2019) for the tr-tr method and
show that tr-tr outperforms tr-val on standard benchmarks.
We note that these findings do not contradict ours, since
MiniBatchProx does not minimize the vanilla tr-tr objective
method but adds a regularization term. In Section 6 we
verify that a tr-tr variant of iMAML without regularization
indeed does poorly on the same dataset.

Table 1. Performance of meta-learning models trained using the
tr-val and tr-tr objectives on Omniglot few-shot classification. Re-
pLearn method is described in Section D and iMAML method is
from (Rajeswaran et al., 2019)

| 5-way I-shot  20-way 1-shot

tr-val RepLearn | 97.30 £0.01 92.30 £ 0.01
iMAML | 9790 £0.58 91.00 £ 0.54

-t RepLearn | 89.00 £0.01 88.20 £ 0.01
iMAML | 49.20 £ 1.91 18.30 £ 0.67

Table 2. Performance of linear representations A on simulation
dataset with d = 50,k = 5,0 = 0.5 (refer to Section 4.1). tr-tr

and tr-val correspond to representations trained using ‘;’fr'ep and

-~

L‘,ﬁ'}?p respectively. Representations are evaluated on test tasks
with 71; samples using C;“;CP(A; 711); (X is tuned for all entries).
Includes performance of A = Iy and A = A*A* " that are the

“worst” and “best” representations for this task respectively.

L5 (171)

A n1=2>5 n1 =15 ny = 25
Iy 1.10 £0.09 0.99 +0.08 097 £0.17
tr-tr (A = 0) 1.04 £0.08 0.85+0.06 0.82+0.06
tr-tr (A = 1) 094 £+£0.07 0.69+0.05 0.66+0.05
tr-tr (A = 10) | 0.92 £0.07 0.69 +0.05 0.69 & 0.05
tr-val (A =10) | 0.72+0.06 0.40+0.03 0.38 +0.03
A AT 070 £0.05 0.38+0.03 0.364+0.03

Linear representation learning: We have already dis-
cussed differences in settings from many linear representa-
tion learning guarantees: lack of data splitting and presence
of regularization or rank constraints. Our work incorporates
a practical choice of data splitting in linear representation
learning theory. Another such result is from Saunshi et al.
(2020) that employs a trajectory based analysis to show that
Reptile and also gradient descent £ learn good repre-
sentations without explicit regularization or data splitting.
This provides evidence that inductive biases of training al-
gorithms is another way to avoid high rank representations.
Their result is for the subspace meta-learning instance with
k =1 and n; — oco. While interesting, it is not clear how
to extend it to the more interesting case of n; = O(k) that

H tr-val
our analysis for L3¢ can handle.

6. Experiments

In this section we present experimental results® that demon-
strate the practical relevance of our theoretical results. For
simulations we use the subspace learning meta-learning
instance defined in Section 4.1 and verify that the tr-val
objective is indeed superior to the tr-tr variant due to learn-
ing low-rank representation. We also perform experiments
on the standard meta-learning benchmarks of Omniglot

8Code available at https://github.com/nsaunshi/
meta_tr_wval_split
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Figure 1. (a): Normalized singular values for tr-val versus tr-tr. Singular value decay for tr-val is faster, indicating that it has lower
effective rank than tr-tr. (b,c): tSNE for tr-val and tr-tr representations respectively for inputs from 10 randomly selected test classes from
Omniglot dataset. Dots with the same color correspond to points from the same class. We find that the tr-val representations are more
clustered than the tr-tr representations. (d): tr-tr loss plotted in log scale versus training iteration for tr-val versus tr-tr runs at varying
width factor ¢. This verifies that tr-tr models are indeed optimizing the loss that they were meant to minimize.

(Lake et al., 2015) and MinilmageNet (Vinyals et al., 2016)
datasets, where we again find that representation learning
benefits from tr-val splitting. Furthermore we show that
iMAML (Rajeswaran et al., 2019), a non-representation
learning meta-learning algorithm, also benefits from tr-val
splitting. iIMAML was also used by (Bai et al., 2020) to con-
clude the tr-tr is better than tr-val. We also perform a more
detailed study of the learned representations on these bench-
marks and find that while tr-val and tr-tr representations are
almost equally expressive, tr-val representations have lower
effective rank and thus have better few-shot performance.
In Table 8 we verify that adding a Frobenius norm regular-
ization on the representation with the tr-tr objective helps
significantly, but is still slightly worse than tr-val splitting.

For our representation learning experiments, similar to
ANIL algorithm (Raghu et al., 2020), we optimize the ob-
jective defined in Equation (5) that fixes the representation
in the inner loop. Details of our first-order variant of ANIL
(akin to first-order MAML (Finn et al., 2017)) are deferred
to Section D.1; Algorithm 1 summarizes this RepLearn algo-
rithm. Please refer to Section D for additional experiments.

Simulation: We simulate the meta-learning instance from
Section 4.1 with d = 50, £k = 5 and ¢ = 0.5. The tr-tr

models are trained by minimizing A‘/{‘frrep(g n) with n =
16 and tr-val models trained with £52 (+; (n1,n2)) with

ny = 8,ny = 8. We tune \ for before meta-evaluation
using validation tasks for each model. For meta-testing
we evaluate with 7 € {5,15,25} train samples per test
task in Table 2. We find that the tr-val objective, trained
with A = 0 as in Theorem 5.4, outperforms all tr-tr models,
and does almost as well as the correct projection A*A*T
We notice that the tr-tr objective does not do as badly as
A = I, indicating that the training algorithm could have
some useful inductive biases, but not enough. For the A €
R50%50 Jearned using tr-val in the simulation experiment,
the top k& = 5 singular values explain 95% of its total norm,
thus implying that it is almost rank k. We also check the

alignment of the top-k singular directions of A with the
optimal subspace and find the principle angle to be as small
as 0.1°. For reference, the corresponding numbers for the
best tr-tr learned A are 24% and 5° respectively.

RepLearn on Omniglot: We investigate the performance
of tr-val and tr-tr objectives for representation learning on
the Omniglot dataset for the 5-way 1-shot and 20-way 1-
shot variants with a 4 layer convolution backbone as in
(Finn et al., 2017); results presented in Table 1. Following
the same protocol as (Bai et al., 2020), for meta-training
we use n = 2N for tr-tr objective and n; = ny = N for
the tr-val objective for the N-way 1-shot task. For meta-
testing we use 7; = IN. We find that tr-val outperforms tr-tr.
Additional details are in Section D.

Capacity and tr-val versus tr-tr: We examine the perfor-
mance gap between tr-val versus tr-tr as we increase the
expressive power of the representation network. We use a
baseline 4 hidden layer fully connected network (FCN) in-
spired by (Rajeswaran et al., 2019), but with 64¢ nodes at all
4 layers for different values of £ € {1,4,8,16,32}. Using
FCNs gets rid of inductive biases of CNNs and helps distill
the role of data splitting better. The models are trained us-
ing tr-tr and tr-val representation learning objectives on the
Omniglot 5-way 1-shot dataset; results presented in Table 3..
We find that increasing width tends to slightly improve the
performance of tr-val models but hurts the performance of
tr-tr models, thus increasing the gap between tr-val and tr-tr.
Additionally, we note that the tr-tr model succeeds in mini-
mizing the tr-tr loss £" as evident in Figure 1d. Thus its
bad performance on meta-learning is not an optimization
issue, but can be attributed to learning overly expressive
representations due to lack of explicit regularization, as pre-
dicted by Theorem 5.1. This demonstrates that the tr-val
objective is more robust to choice of model architecture.

Low-rankness and expressivity: We investigate the repre-
sentations from the trained FCNs with ¢ = 32. To ascertain
expressivity of representations, we combine all data from
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Table 3. Accuracies in % of representations parameterized by fully
connected networks of varying widths on Omniglot 5-way 1-shot
meta-testing and on a supervised dataset that is constructed using
the 413 test classes from Omniglot. Representations trained using
tr-val objective consistently outperforms those learned using tr-tr
objective, and the gap increases as width increases.

width = | Omniglot 5-way 1-shot  Supervised 413-way
647 ¢ tr-val tr-tr | tr-val tr-tr
(=1 878+ 1.1 806+14 | 874 73.4
{=4 1908+10 77.8+£14 | 100.0 100.0
=38 91.6+ 1.0 739+1.5 | 100.0 100.0
=16 | 91.7£09 70.6 £ 1.6 | 100.0 100.0
£=32 | 91610 678+1.6 | 100.0 100.0

the test classes of Omniglot to produce a supervised learn-
ing dataset with 413 classes. We measure expressivity of
representations by evaluating its linear classification perfor-
mance on the 413-way supervised task; results in Table 3.
We find that the tr-val representations do at least as well as
tr-tr ones and thus are expressive enough. To compare the
effective ranks, we plot the normalized singular values of
both sets of representations in Figure 1a and find that the
tr-val representations have a steeper drop in singular values
than the tr-tr representations, thus confirming their lower
effective rank. t-SNE plots (Figure 1b and Figure 1c) on
the tr-val and tr-tr representations for data points from 10
randomly selected classes suggest that tr-val representations
are better clustered than the tr-tr representations.

iMAML on Omniglot: We go beyond representation learn-
ing and consider a meta-learning method iMAML (Ra-
jeswaran et al., 2019) that updates all parameters in the
inner loop. We modify the authors code’ to implement a
tr-tr version and we investigate the performance of tr-val
and tr-tr objectives on the Omniglot dataset for both 5-way
1-shot and 20-way 1-shot settings in Table 1. We find that
tr-val outperforms tr-tr again, this time by a significant mar-
gin. We do not tune hyper-parameters for tr-val and just use
the defaults, but for tr-tr we tune them to give it an edge.

RepLearn on MinilmageNet: We performs similar experi-
ments on MinilmageNet using a standard CNN backbone
with 32, 64, 128, and 128 filters, respectively. Table 5
shows again that RepLearn with tr-val splitting is much
better than tr-tr on 5-way 1-shot and 5-way 5-shot settings,
similar to the findings with Omniglot. We also perform the
capacity experiment by increasing the number of filters by
a factor /; the convolutional layers contain 32¢, 64/, 128/,
and 128¢ output filters, respectively. Results in Table 4
suggest that increasing the network capacity improves the
performance of tr-val representations, but slightly hurts tr-
tr performance, just like the findings for Omniglot dataset
with fully-connected networks. The drop might be lower

9https ://github.com/aravindr93/imaml_dev

Table 4. Accuracies in % of representations parameterized by CNN
networks with varying number of filters on MinilmageNet. Repre-
sentations trained using tr-val objective consistently outperforms
those learned using tr-tr objective; gap increases as width increases.

capacity = MinilmageNet 5-way 1-shot
num_filters™£ tr-val tr-tr |
=05 46.66 £ 1.69  26.25 £ 1.45
(=1 4844 +£1.62 26.81 + 1.44
=4 5222 £1.68. 24.66+1.26
=38 5225+ 1.71 2528 £1.37

Table 5. Tr-val v/s tr-tr meta-test accuracies in % for a CNN model
trained with RepLearn on MinilmageNet 5-way 1-shot and 5-way
5-shot for varying values of the regularization parameter, \.

| 5-way l-shot | 5-way 5-shot
A = 0.0 tr-val ‘ 46.16 £+ 1.67 ‘ 65.36 = 0.91

A=00tr-tr | 2553 4+1.43 | 33.49 +0.82
A=0.1tr-tr | 24.69+1.32 | 3491 £0.85
A=10tr-tr | 2588 +1.45 | 40.19 +1.12

here due to a CNN being used instead of fully connected
network in Table 3. Thus the tr-val method is more robust
to architecture choice/capacity and datasets.

7. Discussions and Future Work

We study the implicit regularization effect of the practical
design choice of train-validation splitting popular in meta-
learning, and show that it encourages learning low-rank but
expressive enough representations. This is contrasted with
the non-splitting variant that is shown to fail without explicit
regularization. Both of these claims are justified theoreti-
cally for linear representation learning and experimentally
for standard meta-learning benchmarks. Train-validation
splitting provides a new mechanism for sample efficiency
through implicit regularization in the objective, as opposed
to explicit regularization and implicit bias of training algo-
rithm, as discussed in Section 5.3. We show learning of
exact low rank representations in our setting as opposed
to approximate low-rankness observed in practice. Relax-
ing assumptions of Gaussianity, common input distribution
across tasks and linearity of representations might explain
the observed effective low-rankness. Finally an interesting
problem is to get the best of all worlds, data efficiency from
tr-tr style objective, explicit regularization and the implicit
low rank regularization from tr-val splitting in a principled
way. Identifying and understanding other training paradigms
that intrinsically use data efficiently, even without explicit
regularization is also an interesting direction.
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