

Descending through a Crowded Valley —
Benchmarking Deep Learning Optimizers

Robin M. Schmidt * 1 Frank Schneider * 1 Philipp Hennig 1 2

Abstract

Choosing the optimizer is considered to be among
the most crucial design decisions in deep learning,
and it is not an easy one. The growing literature
now lists hundreds of optimization methods. In
the absence of clear theoretical guidance and con-
clusive empirical evidence, the decision is often
made based on anecdotes. In this work, we aim
to replace these anecdotes, if not with a conclu-
sive ranking, then at least with evidence-backed
heuristics. To do so, we perform an extensive,
standardized benchmark of ffteen particularly
popular deep learning optimizers while giving
a concise overview of the wide range of possible
choices. Analyzing more than 50,000 individual
runs, we contribute the following three points:
(i) Optimizer performance varies greatly across
tasks. (ii) We observe that evaluating multiple
optimizers with default parameters works approx-
imately as well as tuning the hyperparameters of
a single, fxed optimizer. (iii) While we cannot
discern an optimization method clearly dominat-
ing across all tested tasks, we identify a signif-
cantly reduced subset of specifc optimizers and
parameter choices that generally lead to competi-
tive results in our experiments: ADAM remains a
strong contender, with newer methods failing to
signifcantly and consistently outperform it. Our
open-sourced results1 are available as challeng-
ing and well-tuned baselines for more meaningful
evaluations of novel optimization methods with-
out requiring any further computational efforts.

*Equal contribution 1Methods of Machine Learning, Univer-
sity of Tübingen, Tübingen, Germany 2Max Planck Institute for
Intelligent Systems, Tübingen, Germany. Correspondence to:
Robin M. Schmidt <robin.schmidt.97@web.de>, Frank Schneider
<f.schneider@uni-tuebingen.de>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

1https://github.com/SirRob1997/
Crowded-Valley---Results

1. Introduction
Large-scale stochastic optimization drives a wide variety of
machine learning tasks. Because choosing the right opti-
mization method and effectively tuning its hyperparameters
heavily infuences the training speed and fnal performance
of the learned model, it is an important, every-day challenge
to practitioners. It is probably the task that requires the most
time and resources in many applications. Hence, stochastic
optimization has been a focal point of research, engender-
ing an ever-growing list of methods (cf. Figure 1), many of
them targeted at deep learning. The hypothetical machine
learning practitioner who is able to keep up with the litera-
ture now has the choice among hundreds of methods (see
Table 2 in the appendix), each with their own set of tunable
hyperparameters, when deciding how to train a model.

There is limited theoretical analysis that clearly favors one
of these choices over the others. Some authors have offered
empirical comparisons on comparably small sets of pop-
ular methods (e.g. Wilson et al., 2017; Choi et al., 2019;
Sivaprasad et al., 2020); but for most optimizers, the only
empirical evaluation is offered by the original work intro-
ducing the method. Many practitioners and researchers,
meanwhile, rely on personal and anecdotal experience, and
informal discussion with colleagues or on social media.
The result is an often unclear, ever-changing “state of the
art” occasionally driven by hype. The key obstacle for an
objective benchmark is the combinatorial cost of such an
endeavor posed by comparing a large number of methods
on a large number of problems, with the high resource and
time cost of tuning each method’s parameters and repeating
each (stochastic) experiment repeatedly for fdelity.

We conduct a large-scale benchmark of optimizers to ground
the ongoing debate about deep learning optimizers on em-
pirical evidence, and to help understand how the choice of
optimization methods and hyperparameters infuences the
training performance. Specifcally, we examine whether
recently proposed methods show an improved performance
compared to more established methods such as SGD or
ADAM. Additionally, we assess whether there exist opti-
mization methods with well-working default hyperparame-
ters that are able to keep up with tuned optimizers. To this
end, we evaluate ffteen optimization methods, selected for

https://github.com/SirRob1997/Crowded-Valley---Results
https://github.com/SirRob1997/Crowded-Valley---Results
mailto:f.schneider@uni-tuebingen.de
mailto:robin.schmidt.97@web.de
https://1https://github.com/SirRob1997
mailto:f.schneider@uni-tuebingen.de
mailto:robin.schmidt.97@web.de

Descending through a Crowded Valley

2010 2012 2014 2016 2018 2020
Year

0

500

1000
A

rX
iv

m
en

tio
ns

AMSBOUND

AMSGRAD

ADABELIEF

ADABOUND

ADADELTA

ADAGRAD

ADAM

LOOKAHEAD

MOMENTUM

NAG
NADAM

OTHER

RADAM

RMSPROP

SGD

Figure 1: Number of times ArXiv titles and abstracts men-
tion specifc optimizer per year. All non-selected optimizers
from Table 2 in the appendix are grouped into Other. This
fgure illustrates not only the expected increase in both meth-
ods and mentions, but also that our selection covers the most
popular methods. In 2020, the excluded methods accounted
for < 4% of the mentions (see Figure 9).

their perceived popularity, on a range of representative deep
learning problems (see Figure 4) drawing conclusions from
tens of thousands of individual training runs.

Right up front, we want to state that it is impossible to
include all optimizers (see Table 2 in the appendix), and to
satisfy any and all expectations readers may have on tuning,
initialization, or the choice of problems—not least because
everyone has different expectations in this regard. In our
personal opinion, what is needed is an empirical comparison
by a third party not involved in the original works. As the
target audience of our work, we assume a careful practitioner
who does not have access to near-limitless resources, nor
to a broad range of personal experiences. As such, the core
contributions of our work are:

1. Assessing the progress in deep learning optimization.
A literature review provides a compact but extensive list
of recent advances in stochastic optimization. We identify
more than a hundred optimization methods (see Table 2 in
the appendix) and more than 20 families of hyperparameter
schedules (see Table 3 in the appendix) proposed for deep
learning. We conduct a large-scale optimizer benchmark,
specifcally focusing on problems arising in deep learning.
We evaluate ffteen optimizers on eight deep learning prob-
lems using four different schedules, tuning over dozens
of hyperparameter settings. To our knowledge, this is the
most comprehensive empirical evaluation of deep learning
optimizers to date (see Section 1.1 on related work).

2. Insights from more than 50,000 optimization runs.
Our empirical experiments indicate that an optimizer’s per-
formance highly depends on the problem (see Figure 4).
But some high-level trends emerge, too: (1) Evaluating
multiple optimizers with default hyperparameters works
approximately as well as tuning the hyperparameters for
a fxed optimizer. (2) Using an additional untuned learn-
ing rate schedule helps on average, but its effect varies
greatly depending on the optimizer and the problem. (3)
While there is no optimizer that clearly dominates across all
tested workloads, some of the methods we tested exhibited
highly variable performance. Others demonstrated decent
performance consistently. We deliberately abstain from rec-
ommending a single one among them, because we could not
fnd a clear winner with statistical confdence.

3. An open-source baseline for future optimizer bench-
marks and meta-learning approaches. Our results are
available in an open and easily accessible form (see Foot-
note 1 on Page 1). This data set contains 53,760 unique runs,
each consisting of thousands of individual data points, such
as the mini-batch training losses of every iteration or epoch-
wise performance measures, for example, the loss on the full
validation set or test set accuracy. These results can be used
as competitive and well-tuned baselines for future bench-
marks of new optimizers, drastically reducing the amount of
computational budget required for a meaningful optimizer
comparison. This collection of training curves could also be
used for meta-learning novel optimization methods, hyper-
parameter search strategies, or hyperparameter adaptation
strategies. To encourage researches to contribute to this
collection, we made our baselines easily expandable. 1

The high-level result of our benchmark is, perhaps expect-
edly, not a clear winner. Instead, our comparison shows
that, while some optimizers are frequently decent, they also
generally perform similarly, often switching their positions
in the ranking. This result is reminiscent, albeit not formally
a rigorous result of the No Free Lunch Theorem (Wolpert &
Macready, 1997). A key insight of our comparison is that
a practitioner with a new deep learning task can expect to
do about equally well by taking almost any method from
our benchmark and tuning it, as they would by investing the
same computational resources into running a set of optimiz-
ers with their default settings and picking the winner.

Possibly the most important takeaway from our comparison
is that “there are now enough optimizers”. Methods re-
search in stochastic optimization should focus on signifcant
(conceptual, functional, performance) improvements—such
as methods specifcally suited for certain problem types,
inner-loop parameter tuning or structurally novel methods.
We make this claim not to discourage research but, quite
on the contrary, to offer a motivation for more meaningful,
non-incremental research.

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

Descending through a Crowded Valley

1.1. Related work

Following the rapid increase in publications on optimiz-
ers, benchmarking these methods for the application in
deep learning has only recently attracted signifcant interest.
Schneider et al. (2019) introduced a benchmarking frame-
work called DEEPOBS, which includes a wide range of
realistic deep learning problems together with standardized
procedures for evaluating optimizers. Metz et al. (2020) pre-
sented TASKSET, another collection of optimization prob-
lems focusing on smaller but more numerous problems. For
the empirical analysis presented here, we use DEEPOBS as
it provides optimization problems closer to real-world deep
learning tasks. In contrast to our evaluation of existing meth-
ods, TASKSET and its analysis focuses on meta-learning
new optimizers or hyperparameters.

Both Choi et al. (2019) and Sivaprasad et al. (2020) analyzed
specifc aspects of the benchmarking process. Sivaprasad
et al. (2020) used DEEPOBS to illustrate that the relative
performance of an optimizer depends signifcantly on the
used hyperparameter tuning budget. The analysis by Choi
et al. (2019) supports this point, stating that “the hyper-
parameter search space may be the single most important
factor explaining the rankings”. They further stress a hierar-
chy among optimizers, demonstrating that, given suffcient
hyperparameter tuning, more general optimizers can never
be outperformed by special cases. In their study, however,
they manually defned a hyperparameter search space per
optimizer and problem basing it either on prior published
results, prior experiences, or pre-tuning trials.

Here, we instead aim to identify well-performing general-
purpose optimizers for deep learning, especially when there
is no prior knowledge about well-working hyperparameter
values for each specifc problem. We further elaborate on the
infuence of our chosen hyperparameter search strategy in
Section 4 discussing the limitations of our empirical study.

Our work is also related to empirical generalization studies
of adaptive methods, such as that of Wilson et al. (2017)
which sparked an extensive discussion whether adaptive
methods (e.g. ADAM) tend to generalize worse than stan-
dard frst-order methods (i.e. SGD). By focusing on and
reporting the test set accuracy we implicitly include the
generalization capabilities of different optimizers in our
benchmark results, an important characteristic of deep learn-
ing optimization.

2. Benchmarking process
Any benchmarking effort requires tricky decisions on the
experimental setup that infuence the results. Evaluating on
a specifc task or picking a certain tuning budget may favor
or disadvantage certain methods (Sivaprasad et al., 2020). It
is impossible to avoid these decisions or to cover all possible

choices. Aiming for generality, we evaluate the performance
on eight diverse real-world deep learning problems from
different disciplines (Section 2.1). From a collection of
more than a hundred deep learning optimizers (Table 2 in
the appendix) we select ffteen of the most popular choices
(see Figure 1) for this benchmark (Section 2.2). For each
problem and optimizer we evaluate all possible combina-
tions of four different tuning budgets (Section 2.3) and four
selected learning rate schedules (Section 2.4), covering the
following combinatorial space:

Problem Optimizer Tuning Schedule ⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫
P1 ADAM one-shot constant ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬P2 NAG small cosine × × × .
. medium cosine wr⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭
P8 SGD large trapez.

8 15 4 4

Combining those options results in 1,920 confgurations,
where each of the ffteen optimizers is evaluated in 128
settings (i.e. on eight problems, with four budgets and four
schedules). Including hyperparameter search and estimating
the confdence interval, our main benchmark consists of
53,760 unique training curves.

2.1. Problems

We consider the eight optimization tasks summarized in
Table 1, available as the “small” (P1–P4) and “large” (P5–
P8) problem sets in DEEPOBS. A detailed description of
these problems, including architectures, training parameters,
etc. can be found in the work of Schneider et al. (2019).2

DEEPOBS provides several performance metrics, includ-
ing the training and test loss, and the validation accuracy.
While these are all relevant, any comparative evaluation
of optimizers requires picking only a few, if not just one
particular performance metric. For our analysis (Section 3),
we focus on the fnal test accuracy (or the fnal test loss, if
accuracy is not defned for this problem). This metric cap-
tures the optimizer’s ability to generalize and is thus highly
relevant for practical use. Our publicly released results in-
clude all metrics for completeness. An example of training
loss performance is shown in Figure 17 in the appendix.
Accordingly, the tuning (Section 2.3) is done with respect
to the validation metric. We discuss possible limitations
resulting from these choices in Section 4.

2.2. Optimizer

In Table 2 in the appendix we collect over a hundred opti-
mization methods introduced for or used in deep learning.
This list was collected by multiple researchers trying to keep
up with the feld over recent years. It is thus necessarily

2All experiments were performed using version 1.2.0-beta
of DEEPOBS and TensorFlow version 1.15 (Abadi et al., 2015).

Descending through a Crowded Valley

Table 1: Summary of problems used in our experiments. Exact model confgurations can be found in Schneider et al. (2019).

Data set Model Task Metric Batch Budget Approx.
size in epochs run time3

P1 Artifcial Noisy quadratic Minimization Loss 128 100 < 1 min
P2 MNIST VAE Generative Loss 64 50 10 min
P3 Fashion-MNIST Simple CNN: 2c2d Classifcation Accuracy 128 100 20 min
P4 CIFAR-10 Simple CNN: 3c3d Classifcation Accuracy 128 100 35 min

P5 Fashion-MNIST VAE Generative Loss 64 100 20 min
P6 CIFAR-100 All-CNN-C Classifcation Accuracy 256 350 4 h 00 min
P7 SVHN Wide ResNet 16-4 Classifcation Accuracy 128 160 3 h 30 min
P8 War and Peace RNN Character Prediction Accuracy 50 200 5 h 30 min

incomplete, although it may well represent one of the most
exhaustive of such collections. Even this incomplete list,
though, contains too many entries for a benchmark with
the degrees of freedom collected above. This is a serious
problem for research: Even an author of a new optimizer,
let alone a practitioner, cannot be expected to compare their
work with every possible previous method.

We thus select a subset of ffteen optimizers, which we con-
sider to be currently the most popular choices in the commu-
nity (see Table 4 in the appendix). These do not necessarily
refect the “best” methods, but are either commonly used by
practitioners and researchers, or have recently generated at-
tention. Our selection is focused on frst-order optimization
methods, both due to their prevalence for non-convex opti-
mization problems in deep learning as well as to simplify
the comparison. Whether there is a signifcant difference
between these optimizers or if they are inherently redundant
is one of the questions this work investigates.

Our list focuses on optimizers over optimization techniques,
although the line between the two is admittedly blurry. Tech-
niques such as averaging weights (Izmailov et al., 2018, e.g.)
or ensemble methods (Garipov et al., 2018, e.g.) have been
shown to be simple but effective at improving the optimiza-
tion performance. Those methods, however, can be applied
to all methods in our lists, similar to regularization tech-
niques, learning rate schedules, or tuning method. We have,
therefore, decided to omit them from Table 2.

2.3. Tuning

Budget Optimization methods for deep learning regularly
expose hyperparameters to the user. The user either relies
on the default suggestion or sets them using experience
from previous experiments, or using additional tuning runs
to fnd the best-performing setting. All optimizers in our
benchmark have tunable hyperparameters, and we consider
four different tuning budgets.

3All approximations are for ADAM on a Tesla K80 GPU.

The frst budget consists of just a single run. This one-
shot budget uses the default values proposed by the original
authors, where available (Table 4 in the appendix lists the
default parameters). If an optimizer performs well in this
setting, this has great practical value, as it drastically reduces
the computational resources required for successful training.

The small, medium and large budgets consist of 25, 50, and
75 tuning runs, where the parameters for each setting are
sampled using random search. Tuning runs for the small
and medium budget were sampled using the distributions
defned in Table 4. The additional 25 tuning runs of the
large budget, however, were sampled using refned bounds:
For each combination of optimizer, problem, and learning
rate schedule we use the same distribution as before, but
restrict the search space, to contain all hyperparameter con-
fgurations of the top-performing 20 % tuning runs from the
medium budget are included.

We use a single seed for tuning, but for all confgurations
repeat the best setting with ten different seeds. This allows
us to report standard deviations in addition to means, assess-
ing stability. Our tuning process can sometimes pick “lucky”
seeds, which do not perform well when averaging over mul-
tiple runs. This is arguably a feature rather than a bug, since
it refects practical reality. If an optimizer is so unstable
that ten random seeds are required for tuning—which would
render this benchmark practically infeasible—it would be
impractical for the end-user as well. Our scoring naturally
prefers stable optimizers. Appendices C and D provide fur-
ther analysis of these cases and the general stability of our
benchmark, showing amongst other things that failing seeds
occur in less than 0.5% of the tuning runs.

Tuning method We tune parameters by random search
without early-stopping for the small, medium and large
budget. Random search is a popular choice due to its ef-
fciency over grid search (Bergstra & Bengio, 2012) and
its ease of implementation and parallelization compared to
Bayesian optimization (further discussed in Section 4). A

Descending through a Crowded Valley

minor complication of random search is that the sampling
distribution affects the performance of the optimizer. The
sampling distribution acts as a prior over good parameter
settings, and bad priors consequently ruin performance. We
followed the valid interval and intuition provided by the
optimizers’ authors for relevant hyperparameters. The re-
sulting sampling distributions can be found in Table 4 in
the appendix. Even though a hyperparameter might have a
similar name in different optimization methods (e.g. learn-
ing rate α), its appropriate search space can differ. How-
ever, without grounded heuristics guiding the practitioner
on how the hyperparameters differ between optimizers, the
most straightforward approach for any user is to use the
same search space. Therefore, in case there was no prior
knowledge provided in the cited work we chose similar
distributions for similar hyperparameters across different
optimizers.

What should be considered a hyperparameter? There
is a fuzzy boundary between (tunable) hyperparameters and
(fxed) design parameters. A recently contentious example
is the ε in adaptive methods like ADAM. It was originally
introduced as a safeguard against division by zero, but has
recently been re-interpreted as a problem-dependent hyper-
parameter (see Choi et al. (2019) for a discussion). Un-
der this view, one can actually consider several optimizers
called ADAM: From an easy-to-tune but potentially limited
ADAMα, only tuning the learning rate, to the tricky-to-tune
but all-powerful ADAMα,β1,β2,ε, which can approximate
SGD in its hyperparameter space. While both share the
update rule, we consider them to be different optimizers.
For each update rule, we selected one popular choice of
tunable parameters, e.g. ADAMα,β1,β2 (see Table 4).

2.4. Schedules

The literature on learning rate schedules is now nearly as
extensive as that on optimizers (see Table 3 in the appendix).
In theory, schedules can be applied to all hyperparameters
of an optimization method but to keep our confguration
space feasible, we only apply schedules to the learning rate,
by far the most popular practical choice (Goodfellow et al.,
2016; Zhang et al., 2020). We choose four different learning
rate schedules, trying to cover all major types of schedules
(see Appendix E):

• A constant learning rate;
• A cosine decay (Loshchilov & Hutter, 2017) as an

example of a smooth decay;
• A cosine with warm restarts schedule (Loshchilov &

Hutter, 2017) as a cyclical schedule;
• A trapezoidal schedule (Xing et al., 2018) from the

warm-up schedules introduced in Goyal et al. (2017).

3. Results
How well do optimizers work out-of-the-box? By com-
paring each optimizer’s one-shot results against the tuned
versions of all ffteen optimizers, we can construct a 15×15
matrix of performance gains. Figure 2 illustrates this on fve
problems showing improvements by a positive sign and an
orange cell. Detailed plots for all problems are in Figures 10
and 11 in the appendix. For example, the bottom left cell of
the largest matrix in Figure 2 shows that AMSBOUND (1)
tuned using a small budget performs 2.4% better than SGD
(15) with default parameters on this specifc problem.

An orange row in Figure 2 indicates that an optimizer’s de-
fault setting is performing badly, since it can be beaten
by any well-tuned competitor. We can observe badly-
performing default settings for MOMENTUM, NAG and
SGD, advocating the intuition that non-adaptive optimiza-
tion methods require more tuning, but also for AMSGRAD
and ADADELTA. This is just a statement about the default
parameters suggested by the authors or the popular frame-
works; well-working default parameters might well exist
for those methods. Conversely, a white & blue row signals
a well-performing default setting, since even tuned opti-
mizers do not signifcantly outperform it. ADAM, NADAM
and RADAM, as well as AMSBOUND, ADABOUND and
ADABELIEF all have white or blue rows on several (but not
all!) problems, supporting the rule of thumb that adaptive
methods have well-working default parameters. Conversely,
orange (or blue) columns highlight optimizers that, when
tuned, perform better (or worse) than all untuned optimiza-
tion methods. We do not observe such columns consistently
across tasks. This supports the conclusion that an opti-
mizer’s performance is heavily problem-dependent and that
there is no single best optimizer across workloads.

Figures 10 to 13 in the appendix suggest an interesting alter-
native approach for machine learning practitioners: Instead
of picking a single optimizer and tuning its hyperparame-
ters extensively, trying out a few optimizers with default
settings and picking the best one yields competitive results
with less computational and tuning choice efforts. How-
ever, this might not hold for more complicated, structurally
different tasks such as GANs (Goodfellow et al., 2014) or
Transformer models (Vaswani et al., 2017). The similarity
of those two approaches might be due to the fact that opti-
mizers have implicit learning rate schedules (Agarwal et al.,
2020) and trying out different optimizers is similar to trying
out different (well-tested) schedules.

How much do tuning and schedules help? We consider
the fnal performance achieved by varying budgets and
schedules to quantify the usefulness of tuning and apply-
ing parameter-free schedules (Figure 3). While there is no
clear trend for any individual setting (gray lines), in the

Descending through a Crowded Valley

−3 −2 −1 0 1 2 3

Performance improvement
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Small budget

AMSBound: 1

AMSGrad: 2

AdaBelief: 3

AdaBound: 4

Adadelta: 5

Adagrad: 6

Adam: 7

LA(Mom.): 8

LA(RAdam): 9

Mom.: 10

NAG: 11

Nadam: 12

RAdam: 13

RMSProp: 14

SGD: 15

O
ne

-s
ho

t

-0.1 -1.0 -0.1 -0.6 -1.9 -0.0 -1.4 -0.5 1.4 -0.3 0.1 -0.3 -1.0 -0.7 -1.1

39.4 38.5 39.4 38.9 37.6 39.5 38.2 39.0 41.0 39.3 39.6 39.2 38.5 38.8 38.5

1.1 0.2 1.1 0.6 -0.7 1.2 -0.1 0.7 2.7 1.0 1.3 0.9 0.2 0.5 0.2

0.3 -0.6 0.3 -0.2 -1.5 0.4 -0.9 -0.1 1.9 0.2 0.5 0.1 -0.6 -0.3 -0.7

43.9 43.0 43.8 43.4 42.0 44.0 42.6 43.4 45.4 43.7 44.0 43.7 43.0 43.3 42.9

1.8 0.9 1.8 1.3 -0.0 1.9 0.6 1.4 3.4 1.7 2.0 1.6 0.9 1.2 0.9

1.5 0.6 1.4 1.0 -0.4 1.6 0.2 1.0 3.0 1.3 1.6 1.3 0.6 0.9 0.5

6.5 5.6 6.4 5.9 4.6 6.6 5.2 6.0 8.0 6.3 6.6 6.2 5.6 5.9 5.5

6.0 5.1 6.0 5.5 4.1 6.1 4.7 5.6 7.5 5.8 6.2 5.8 5.1 5.4 5.0

41.2 40.3 41.2 40.7 39.3 41.3 39.9 40.8 42.7 41.0 41.4 41.0 40.3 40.6 40.2

18.8 17.9 18.8 18.3 16.9 18.9 17.5 18.4 20.3 18.6 19.0 18.6 17.9 18.2 17.8

0.7 -0.2 0.6 0.2 -1.2 0.8 -0.6 0.2 2.2 0.5 0.8 0.5 -0.2 0.1 -0.3

1.3 0.4 1.3 0.8 -0.6 1.4 0.0 0.9 2.8 1.1 1.5 1.1 0.4 0.7 0.3

3.2 2.3 3.2 2.7 1.4 3.3 2.0 2.8 4.8 3.1 3.4 3.0 2.3 2.6 2.3

2.4 1.5 2.4 1.9 0.6 2.5 1.2 2.0 4.0 2.3 2.6 2.2 1.5 1.8 1.5

CIFAR-10 3c3d

1 3 5 7 9 11 13 15

1

3

5

7

9

11

13

15

F-MNIST VAE

1 3 5 7 9 11 13 15

1

3

5

7

9

11

13

15

CIFAR-100 All-CNN-C

1 3 5 7 9 11 13 15

1

3

5

7

9

11

13

15

SVHN Wide ResNet 16-4

1 3 5 7 9 11 13 15

1

3

5

7

9

11

13

15

Tolstoi Char RNN

Figure 2: The test set performance improvement after switching from any untuned optimizer (y-axis, one-shot) to any tuned
optimizer (x-axis, small budget) as an average over 10 random seeds for the constant schedule. For example, the bottom
left cell of the largest matrix indicates that the tuned version of AMSBOUND (1) reaches a 2.4% higher test accuracy than
untuned SGD (15). We discuss the unintuitive occurrence of negative diagonal entries in Appendix G. The colormap is
capped at ±3 to improve presentation, although larger values occur.

median we observe that increasing the budget improves per-
formance, albeit with diminishing returns. For example,
using the medium budget without any schedule leads to a
median relative improvement of roughly 3.4% compared to
the default parameters (without schedule).

Applying an untuned schedule improves median perfor-
mance as well. For example, the large tuning budget cou-
pled with a trapezoidal learning rate schedule leads to a
median relative improvement of the performance of roughly
5.2% compared to the default parameters. However, while
these trends hold in the median, their individual effect varies
wildly among optimizers and problems, as is apparent from
the noisy structure of the individual lines shown in Figure 3.

Which optimizers work well after tuning? Figure 4
compares the optimizers’ performance across all eight prob-
lems. There is no single optimizer that dominates its com-
petitors across all tasks. Nevertheless, some optimizers gen-
erally perform well, while others can vary greatly in their
behavior, most notably performing poorly on VAEs. Fur-
ther supporting the hypothesis of previous sections, we note
that taking the best out of a small set of untuned optimiz-
ers — for example, ADAM and ADABOUND — frequently
results in competitive performance. Except for the two VAE

problems, the best of those two untuned optimizers gener-
ally falls within the distribution of the well-tuned methods.
Combining these runs with a tuned version of ADAM (or
a variant thereof) provides stable and slightly improved re-
sults across many problems in our benchmark. To further
increase the performance, our results suggest trying a dif-
ferent optimizer next, such as RMSPROP or NAG. Across
multiple budgets and schedules, both optimizers show a con-
sistently good performance on the RNN and ALL-CNN-C
model, respectively.

Nevertheless, achieving (or getting close to) the absolute
best performance still requires testing numerous optimiz-
ers. Which optimizer wins in the end is problem-dependent:
optimizers that achieve top scores on one problem can per-
form poorly on other tasks. We note in passing that the
individual optimizer rankings changes when considering
e.g. a smaller budget or an additional learning rate schedule
(see Figures 14 to 16 in the appendix). However, the overall
trends described here are consistent.

The idea that optimizers perform consistently better or worse
for specifc model architectures or tasks has been regularly
theorized and mentioned in the literature. Indeed, our results
support this hypothesis, with NAG often beating ADAM on

Descending through a Crowded Valley

const. cosine
wr.

cosine trapez. const. cosine
wr.

cosine trapez. const. cosine
wr.

cosine trapez. const. cosine
wr.

cosine trapez.Schedule:

Tuning:

−5.0%

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%
R

el
at

iv
e

im
pr

ov
em

en
t

one-shot small budget medium budget large budget

Figure 3: Lines in gray (—, smoothed by cubic splines for visual guidance only) show the relative improvement for a
certain tuning budget and schedule (compared to the one-shot tuning without schedule) for all ffteen optimizers on all eight
problems. The median over all lines is plotted in orange (—) with the shaded area (z) indicating the area between the 25th
and 75th percentile. With an increased budget and a schedule, one can expect a performance increase on average (orange
lines), but not automatically for individual settings (i.e. gray lines can be unaffected or even decrease).

image classifcation tasks, and RMSPROP being consis-
tently on top for the natural language modeling task (see
Tables 6 to 9). Understanding whether and why certain
optimizers favor specifc problem types presents an interest-
ing research avenue and might lead to more sophisticated
optimizers that utilize the problem characteristics.

4. Limitations
Any empirical benchmark has constraints and limitations.
Here we highlight some of ours’ and characterize the context
within which our results should be considered.

Generalization of the results By using the problems
from DEEPOBS, which span models and data sets of vary-
ing complexity, size, and different domains, we aim for
generalization. Our results are, despite our best efforts,
refective of not just these setups, but also of the chosen
training parameters, the software framework, and further
unavoidable choices. The design of our comparisons aims to
be close to what an informed practitioner would encounter
for a relatively novel problem in practice. It goes with-
out saying that even a carefully curated range of problems
cannot cover all challenges of machine learning or even
just deep learning. In particular, our conclusions may not
generalize to other workloads such as GANs, reinforcement
learning, or applications where e.g. memory usage is crucial.

Similarly, our benchmark does not cover more large-scale
problems such as ImageNet (Deng et al., 2009) or trans-
former models (Vaswani et al., 2017). While there is oft-
mentioned anecdotal evidence that the characteristics of

deep learning problems change for larger models, it would
simply be impossible to perform the kind of combinatorial
exploration of choices covered in our benchmark, even with
signifcant hardware resources. The inclusion of larger mod-
els would require reducing the number of tested optimizers,
schedules or tuning methods and would thus shift the focus
of the benchmark. Studying whether there are systematic
differences between different types of deep learning prob-
lems presents an interesting avenue for further research.

We do not consider this study the defnitive work on bench-
marking deep learning optimizers, but rather an important
and signifcant step in the right direction. While our compar-
ison includes many “dimensions” of deep learning optimiza-
tion, e.g. by considering different problems, tuning budgets,
and learning rate schedules, there are certainly many more.
To keep the benchmark feasible, we chose to use the fxed
L2 regularization and batch size that DEEPOBS suggests
for each problem. We also did not include optimization
techniques such as weight averaging or ensemble methods
as they can be combined with all evaluated optimizers and
hence would increase the computational cost further. Future
works could study how these techniques interact with differ-
ent optimization methods. However, to keep our benchmark
feasible, we have selected what we believe to be the most
important aspects affecting an optimizer comparison. We
hope, that our study lays the groundwork so that other works
can build on it and analyze these questions.

Infuence of the hyperparameter search strategy As
noted by, e.g., Choi et al. (2019) and Sivaprasad et al. (2020),
the hyperparameter tuning method, its budget, and its search

Descending through a Crowded Valley

Quadratic
Deep

MNIST
VAE

F-MNIST
2c2d

CIFAR-10
3c3d

F-MNIST
VAE

CIFAR-100
All-CNN-C

SVHN
Wide ResNet 16-4

Tolstoi
Char RNN

90

100

110

120

130

140

AMSBOUND

AMSGRAD

ADABELIEF

ADABOUND

ADADELTA

ADAGRAD

ADAM

LA(MOM.)
LA(RADAM)

MOM.
NAG

NADAM

RADAM

RMSPROP

SGD

27.5

28.0

28.5

29.0

29.5

30.0

30.5

31.0 89.5%

90.0%

90.5%

91.0%

91.5%

92.0%

92.5%

74%

76%

78%

80%

82%

84%

86% 23.0

23.5

24.0

24.5

25.0

25.5
35%

40%

45%

50%

55%

60%

93%

94%

95%

96%

59.5%

60.0%

60.5%

61.0%

61.5%

62.0%

62.5%

Figure 4: Mean test set performance over 10 random seeds of all tested optimizers on all eight optimization problems using
the large budget for tuning and no learning rate schedule. One standard deviation for the tuned ADAM optimizer is shown
with a red error bar (I; error bars for other methods omitted for legibility). The performance of untuned ADAM (t) and
ADABOUND (s) are marked for reference. The upper bound of each axis represents the best performance achieved in the
benchmark, while the lower bound is chosen in relation to the performance of ADAM with default parameters. Tabular
version available in the Appendix as Table 6.

domain, can signifcantly affect performance. By report-
ing results from four different hyperparameter optimization
budgets (including the tuning-free one-shot setting) we try
to quantify the effect of tuning. We argue that our random
search process presents a realistic setting for many but cer-
tainly not all deep learning practitioners. One may criticize
our approach as simplistic, but note that more elaborate
schemes, in particular Bayesian optimization, would multi-
ply the number of design decisions (kernels, search utilities,
priors, etc.) and thus signifcantly complicate the analysis.

The individual hyperparameter sampling distributions sig-
nifcantly affect the relative rankings of the optimizers. A
poorly chosen search space can make successful tuning next
to impossible. In our benchmark, we use relatively broad
initial search spaces, dozens of tuning runs and a refning
of those search spaces for the large budget. Note, though,
that the problem of fnding appropriate search spaces is in-
herited by practitioners. It is arguably an implicit faw of
an optimization method that expects hyperparameter tuning
not to come with well-identifed search spaces for those
parameters and this should thus be refected in a benchmark.

5. Conclusion
Faced with an avalanche of research developing new stochas-
tic optimization methods, practitioners are left with the near-
impossible task of not just picking a method from this ever-
growing list, but also to guess or tune hyperparameters for
them, even to continuously tune them during training. De-
spite efforts by the community, there is currently no method
that clearly dominates the competition.

We have provided an extensive empirical benchmark of op-
timization methods for deep learning. It reveals structure
in the crowded feld of training methods for deep learning:
First, although many methods perform competitively, a sub-
set of methods tends to come up near the top across the
spectrum of problems. Despite years of new research by
many committed authors, ADAM remains a viable (but also
not a clearly superior) choice for many problems, with NAG
or RMSPROP being interesting alternatives that were able
to boost performance on individual problems. Secondly,
tuning helps about as much as trying other optimizers. Our
open and extendable data set allows many, more technical
observations, for example, that the stability to re-runs is an
often overlooked challenge.

Perhaps the most important takeaway from our study is

Descending through a Crowded Valley

hidden in plain sight: the feld is in danger of being drowned
by noise. Different optimizers exhibit a surprisingly similar
performance distribution compared to a single method that
is re-tuned or simply re-run with different random seeds.
It is thus questionable how much insight the development
of new methods yields, at least if they are conceptually
and functionally close to the existing population. We hope
that benchmarks like ours can help the community to move
beyond inventing yet another optimizer and to focus on
key challenges, such as automatic, inner-loop tuning for
truly robust and effcient optimization. We are releasing
our data to allow future authors to ensure that their method
contributes to such ends.

ACKNOWLEDGMENTS

The authors gratefully acknowledge fnancial support by
the European Research Council through ERC StG Action
757275 / PANAMA; the DFG Cluster of Excellence “Ma-
chine Learning - New Perspectives for Science”, EXC
2064/1, project number 390727645; the German Federal
Ministry of Education and Research (BMBF) through the
Tübingen AI Center (FKZ: 01IS18039A); and funds from
the Ministry of Science, Research and Arts of the State
of Baden-Württemberg. Moreover, the authors thank the
International Max Planck Research School for Intelligent
Systems (IMPRS-IS) for supporting Frank Schneider. We
would like to thank Aaron Bahde for providing his analysis
on the robustness to random seeds. Further, we are grateful
to Lukas Balles, Frederik Künstner, and Felix Dangel for,
among other things, helping to create the list of optimiz-
ers and providing feedback to the manuscript. Lastly, we
want to thank Agustinus Kristiadi, Jonathan Wenger, Marius
Hobbhahn, and Lukas Tatzel for their additional feedback.

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Is-
ard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mané, D., Monga, R., Moore, S., Mur-
ray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,
Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Va-
sudevan, V., Viégas, F., Vinyals, O., Warden, P., Watten-
berg, M., Wicke, M., Yu, Y., and Zheng, X. TensorFlow:
Large-Scale Machine Learning on Heterogeneous Sys-
tems, 2015. URL http://tensorflow.org/.

Agarwal, N., Anil, R., Hazan, E., Koren, T., and Zhang, C.
Disentangling Adaptive Gradient Methods from Learning
Rates. arXiv preprint: 2002.11803, 2020.

Bergstra, J. and Bengio, Y. Random Search for Hyper-

Parameter Optimization. Journal of Machine Learning
Research, JMLR, 13, 2012.

Choi, D., Shallue, C. J., Nado, Z., Lee, J., Maddison, C. J.,
and Dahl, G. E. On Empirical Comparisons of Optimizers
for Deep Learning. arXiv preprint: 1910.05446, 2019.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. ImageNet: A Large-Scale Hierarchical Image
Database. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition.
IEEE, 2009.

Garipov, T., Izmailov, P., Podoprikhin, D., Vetrov, D. P.,
and Wilson, A. G. Loss Surfaces, Mode Connectivity,
and Fast Ensembling of DNNs. In Advances in Neural
Information Processing Systems 31, NeurIPS, 2018.

Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning.
MIT Press, 2016.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative Adversarial Nets. In Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N. D., and Weinberger,
K. Q. (eds.), Advances in Neural Information Processing
Systems 27, NIPS, 2014.

Goyal, P., Dollár, P., Girshick, R., Noordhuis, P.,
Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., and He,
K. Accurate, Large Minibatch SGD: Training ImageNet
in 1 Hour. arXiv preprint: 1706.02677, 2017.

Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D., and G,
W. A. Averaging weights leads to wider optima and better
generalization. In Uncertainty in Artifcial Intelligence -
Proceedings of the 34th Conference, UAI 2018, 2018.

Loshchilov, I. and Hutter, F. SGDR: Stochastic Gradient
Descent with Warm Restarts. In 5th International Con-
ference on Learning Representations, ICLR, 2017.

Metz, L., Maheswaranathan, N., Sun, R., Freeman, C. D.,
Poole, B., and Sohl-Dickstein, J. Using a thousand opti-
mization tasks to learn hyperparameter search strategies.
arXiv preprint: 2002.11887, 2020.

Schneider, F., Balles, L., and Hennig, P. DeepOBS: A Deep
Learning Optimizer Benchmark Suite. In 7th Interna-
tional Conference on Learning Representations, ICLR,
2019.

Sivaprasad, P. T., Mai, F., Vogels, T., Jaggi, M., and Fleuret,
F. Optimizer Benchmarking Needs to Account for Hyper-
parameter Tuning. In 37th International Conference on
Machine Learning, ICML, 2020.

http://tensorflow.org/
http://arxiv.org/abs/2002.11803
http://arxiv.org/abs/1910.05446
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/2002.11887

Descending through a Crowded Valley

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Attention
Is All You Need. In Advances in Neural Information
Processing Systems 30, NIPS, 2017.

Wilson, A. C., Roelofs, R., Stern, M., Srebro, N., and Recht,
B. The Marginal Value of Adaptive Gradient Methods in
Machine Learning. In Advances in Neural Information
Processing Systems 30, NIPS, 2017.

Wolpert, D. H. and Macready, W. G. No free lunch theorems
for optimization. IEEE Trans. Evol. Comput., 1(1):67–82,
1997.

Xing, C., Arpit, D., Tsirigotis, C., and Bengio, Y. A Walk
with SGD. arXiv preprint: 1802.08770, 2018.

Zhang, A., Lipton, Z. C., Li, M., and Smola, A. J. Dive into
Deep Learning. 2020. https://d2l.ai.

http://arxiv.org/abs/1802.08770
https://d2l.ai

