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Benchmarking Deep Learning Optimizers 
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Abstract 

Choosing the optimizer is considered to be among 
the most crucial design decisions in deep learning, 
and it is not an easy one. The growing literature 
now lists hundreds of optimization methods. In 
the absence of clear theoretical guidance and con-
clusive empirical evidence, the decision is often 
made based on anecdotes. In this work, we aim 
to replace these anecdotes, if not with a conclu-
sive ranking, then at least with evidence-backed 
heuristics. To do so, we perform an extensive, 
standardized benchmark of ffteen particularly 
popular deep learning optimizers while giving 
a concise overview of the wide range of possible 
choices. Analyzing more than 50,000 individual 
runs, we contribute the following three points: 
(i) Optimizer performance varies greatly across 
tasks. (ii) We observe that evaluating multiple 
optimizers with default parameters works approx-
imately as well as tuning the hyperparameters of 
a single, fxed optimizer. (iii) While we cannot 
discern an optimization method clearly dominat-
ing across all tested tasks, we identify a signif-
cantly reduced subset of specifc optimizers and 
parameter choices that generally lead to competi-
tive results in our experiments: ADAM remains a 
strong contender, with newer methods failing to 
signifcantly and consistently outperform it. Our 
open-sourced results1 are available as challeng-
ing and well-tuned baselines for more meaningful 
evaluations of novel optimization methods with-
out requiring any further computational efforts. 
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1. Introduction 
Large-scale stochastic optimization drives a wide variety of 
machine learning tasks. Because choosing the right opti-
mization method and effectively tuning its hyperparameters 
heavily infuences the training speed and fnal performance 
of the learned model, it is an important, every-day challenge 
to practitioners. It is probably the task that requires the most 
time and resources in many applications. Hence, stochastic 
optimization has been a focal point of research, engender-
ing an ever-growing list of methods (cf. Figure 1), many of 
them targeted at deep learning. The hypothetical machine 
learning practitioner who is able to keep up with the litera-
ture now has the choice among hundreds of methods (see 
Table 2 in the appendix), each with their own set of tunable 
hyperparameters, when deciding how to train a model. 

There is limited theoretical analysis that clearly favors one 
of these choices over the others. Some authors have offered 
empirical comparisons on comparably small sets of pop-
ular methods (e.g. Wilson et al., 2017; Choi et al., 2019; 
Sivaprasad et al., 2020); but for most optimizers, the only 
empirical evaluation is offered by the original work intro-
ducing the method. Many practitioners and researchers, 
meanwhile, rely on personal and anecdotal experience, and 
informal discussion with colleagues or on social media. 
The result is an often unclear, ever-changing “state of the 
art” occasionally driven by hype. The key obstacle for an 
objective benchmark is the combinatorial cost of such an 
endeavor posed by comparing a large number of methods 
on a large number of problems, with the high resource and 
time cost of tuning each method’s parameters and repeating 
each (stochastic) experiment repeatedly for fdelity. 

We conduct a large-scale benchmark of optimizers to ground 
the ongoing debate about deep learning optimizers on em-
pirical evidence, and to help understand how the choice of 
optimization methods and hyperparameters infuences the 
training performance. Specifcally, we examine whether 
recently proposed methods show an improved performance 
compared to more established methods such as SGD or 
ADAM. Additionally, we assess whether there exist opti-
mization methods with well-working default hyperparame-
ters that are able to keep up with tuned optimizers. To this 
end, we evaluate ffteen optimization methods, selected for 
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Figure 1: Number of times ArXiv titles and abstracts men-
tion specifc optimizer per year. All non-selected optimizers 
from Table 2 in the appendix are grouped into Other. This 
fgure illustrates not only the expected increase in both meth-
ods and mentions, but also that our selection covers the most 
popular methods. In 2020, the excluded methods accounted 
for < 4% of the mentions (see Figure 9). 

their perceived popularity, on a range of representative deep 
learning problems (see Figure 4) drawing conclusions from 
tens of thousands of individual training runs. 

Right up front, we want to state that it is impossible to 
include all optimizers (see Table 2 in the appendix), and to 
satisfy any and all expectations readers may have on tuning, 
initialization, or the choice of problems—not least because 
everyone has different expectations in this regard. In our 
personal opinion, what is needed is an empirical comparison 
by a third party not involved in the original works. As the 
target audience of our work, we assume a careful practitioner 
who does not have access to near-limitless resources, nor 
to a broad range of personal experiences. As such, the core 
contributions of our work are: 

1. Assessing the progress in deep learning optimization. 
A literature review provides a compact but extensive list 
of recent advances in stochastic optimization. We identify 
more than a hundred optimization methods (see Table 2 in 
the appendix) and more than 20 families of hyperparameter 
schedules (see Table 3 in the appendix) proposed for deep 
learning. We conduct a large-scale optimizer benchmark, 
specifcally focusing on problems arising in deep learning. 
We evaluate ffteen optimizers on eight deep learning prob-
lems using four different schedules, tuning over dozens 
of hyperparameter settings. To our knowledge, this is the 
most comprehensive empirical evaluation of deep learning 
optimizers to date (see Section 1.1 on related work). 

2. Insights from more than 50,000 optimization runs. 
Our empirical experiments indicate that an optimizer’s per-
formance highly depends on the problem (see Figure 4). 
But some high-level trends emerge, too: (1) Evaluating 
multiple optimizers with default hyperparameters works 
approximately as well as tuning the hyperparameters for 
a fxed optimizer. (2) Using an additional untuned learn-
ing rate schedule helps on average, but its effect varies 
greatly depending on the optimizer and the problem. (3) 
While there is no optimizer that clearly dominates across all 
tested workloads, some of the methods we tested exhibited 
highly variable performance. Others demonstrated decent 
performance consistently. We deliberately abstain from rec-
ommending a single one among them, because we could not 
fnd a clear winner with statistical confdence. 

3. An open-source baseline for future optimizer bench-
marks and meta-learning approaches. Our results are 
available in an open and easily accessible form (see Foot-
note 1 on Page 1). This data set contains 53,760 unique runs, 
each consisting of thousands of individual data points, such 
as the mini-batch training losses of every iteration or epoch-
wise performance measures, for example, the loss on the full 
validation set or test set accuracy. These results can be used 
as competitive and well-tuned baselines for future bench-
marks of new optimizers, drastically reducing the amount of 
computational budget required for a meaningful optimizer 
comparison. This collection of training curves could also be 
used for meta-learning novel optimization methods, hyper-
parameter search strategies, or hyperparameter adaptation 
strategies. To encourage researches to contribute to this 
collection, we made our baselines easily expandable. 1 

The high-level result of our benchmark is, perhaps expect-
edly, not a clear winner. Instead, our comparison shows 
that, while some optimizers are frequently decent, they also 
generally perform similarly, often switching their positions 
in the ranking. This result is reminiscent, albeit not formally 
a rigorous result of the No Free Lunch Theorem (Wolpert & 
Macready, 1997). A key insight of our comparison is that 
a practitioner with a new deep learning task can expect to 
do about equally well by taking almost any method from 
our benchmark and tuning it, as they would by investing the 
same computational resources into running a set of optimiz-
ers with their default settings and picking the winner. 

Possibly the most important takeaway from our comparison 
is that “there are now enough optimizers”. Methods re-
search in stochastic optimization should focus on signifcant 
(conceptual, functional, performance) improvements—such 
as methods specifcally suited for certain problem types, 
inner-loop parameter tuning or structurally novel methods. 
We make this claim not to discourage research but, quite 
on the contrary, to offer a motivation for more meaningful, 
non-incremental research. 
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1.1. Related work 

Following the rapid increase in publications on optimiz-
ers, benchmarking these methods for the application in 
deep learning has only recently attracted signifcant interest. 
Schneider et al. (2019) introduced a benchmarking frame-
work called DEEPOBS, which includes a wide range of 
realistic deep learning problems together with standardized 
procedures for evaluating optimizers. Metz et al. (2020) pre-
sented TASKSET, another collection of optimization prob-
lems focusing on smaller but more numerous problems. For 
the empirical analysis presented here, we use DEEPOBS as 
it provides optimization problems closer to real-world deep 
learning tasks. In contrast to our evaluation of existing meth-
ods, TASKSET and its analysis focuses on meta-learning 
new optimizers or hyperparameters. 

Both Choi et al. (2019) and Sivaprasad et al. (2020) analyzed 
specifc aspects of the benchmarking process. Sivaprasad 
et al. (2020) used DEEPOBS to illustrate that the relative 
performance of an optimizer depends signifcantly on the 
used hyperparameter tuning budget. The analysis by Choi 
et al. (2019) supports this point, stating that “the hyper-
parameter search space may be the single most important 
factor explaining the rankings”. They further stress a hierar-
chy among optimizers, demonstrating that, given suffcient 
hyperparameter tuning, more general optimizers can never 
be outperformed by special cases. In their study, however, 
they manually defned a hyperparameter search space per 
optimizer and problem basing it either on prior published 
results, prior experiences, or pre-tuning trials. 

Here, we instead aim to identify well-performing general-
purpose optimizers for deep learning, especially when there 
is no prior knowledge about well-working hyperparameter 
values for each specifc problem. We further elaborate on the 
infuence of our chosen hyperparameter search strategy in 
Section 4 discussing the limitations of our empirical study. 

Our work is also related to empirical generalization studies 
of adaptive methods, such as that of Wilson et al. (2017) 
which sparked an extensive discussion whether adaptive 
methods (e.g. ADAM) tend to generalize worse than stan-
dard frst-order methods (i.e. SGD). By focusing on and 
reporting the test set accuracy we implicitly include the 
generalization capabilities of different optimizers in our 
benchmark results, an important characteristic of deep learn-
ing optimization. 

2. Benchmarking process 
Any benchmarking effort requires tricky decisions on the 
experimental setup that infuence the results. Evaluating on 
a specifc task or picking a certain tuning budget may favor 
or disadvantage certain methods (Sivaprasad et al., 2020). It 
is impossible to avoid these decisions or to cover all possible 

choices. Aiming for generality, we evaluate the performance 
on eight diverse real-world deep learning problems from 
different disciplines (Section 2.1). From a collection of 
more than a hundred deep learning optimizers (Table 2 in 
the appendix) we select ffteen of the most popular choices 
(see Figure 1) for this benchmark (Section 2.2). For each 
problem and optimizer we evaluate all possible combina-
tions of four different tuning budgets (Section 2.3) and four 
selected learning rate schedules (Section 2.4), covering the 
following combinatorial space: 

Problem Optimizer Tuning Schedule ⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫
P1 ADAM one-shot constant ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬P2 NAG small cosine × × × . 
. . . . . . medium cosine wr⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭
P8 SGD large trapez.

8 15 4 4 

Combining those options results in 1,920 confgurations, 
where each of the ffteen optimizers is evaluated in 128 
settings (i.e. on eight problems, with four budgets and four 
schedules). Including hyperparameter search and estimating 
the confdence interval, our main benchmark consists of 
53,760 unique training curves. 

2.1. Problems 

We consider the eight optimization tasks summarized in 
Table 1, available as the “small” (P1–P4) and “large” (P5– 
P8) problem sets in DEEPOBS. A detailed description of 
these problems, including architectures, training parameters, 
etc. can be found in the work of Schneider et al. (2019).2 

DEEPOBS provides several performance metrics, includ-
ing the training and test loss, and the validation accuracy. 
While these are all relevant, any comparative evaluation 
of optimizers requires picking only a few, if not just one 
particular performance metric. For our analysis (Section 3), 
we focus on the fnal test accuracy (or the fnal test loss, if 
accuracy is not defned for this problem). This metric cap-
tures the optimizer’s ability to generalize and is thus highly 
relevant for practical use. Our publicly released results in-
clude all metrics for completeness. An example of training 
loss performance is shown in Figure 17 in the appendix. 
Accordingly, the tuning (Section 2.3) is done with respect 
to the validation metric. We discuss possible limitations 
resulting from these choices in Section 4. 

2.2. Optimizer 

In Table 2 in the appendix we collect over a hundred opti-
mization methods introduced for or used in deep learning. 
This list was collected by multiple researchers trying to keep 
up with the feld over recent years. It is thus necessarily 

2All experiments were performed using version 1.2.0-beta 
of DEEPOBS and TensorFlow version 1.15 (Abadi et al., 2015). 
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Table 1: Summary of problems used in our experiments. Exact model confgurations can be found in Schneider et al. (2019). 

Data set Model Task Metric Batch Budget Approx. 
size in epochs run time3 

P1 Artifcial Noisy quadratic Minimization Loss 128 100 < 1 min 
P2 MNIST VAE Generative Loss 64 50 10 min 
P3 Fashion-MNIST Simple CNN: 2c2d Classifcation Accuracy 128 100 20 min 
P4 CIFAR-10 Simple CNN: 3c3d Classifcation Accuracy 128 100 35 min 

P5 Fashion-MNIST VAE Generative Loss 64 100 20 min 
P6 CIFAR-100 All-CNN-C Classifcation Accuracy 256 350 4 h 00 min 
P7 SVHN Wide ResNet 16-4 Classifcation Accuracy 128 160 3 h 30 min 
P8 War and Peace RNN Character Prediction Accuracy 50 200 5 h 30 min 

incomplete, although it may well represent one of the most 
exhaustive of such collections. Even this incomplete list, 
though, contains too many entries for a benchmark with 
the degrees of freedom collected above. This is a serious 
problem for research: Even an author of a new optimizer, 
let alone a practitioner, cannot be expected to compare their 
work with every possible previous method. 

We thus select a subset of ffteen optimizers, which we con-
sider to be currently the most popular choices in the commu-
nity (see Table 4 in the appendix). These do not necessarily 
refect the “best” methods, but are either commonly used by 
practitioners and researchers, or have recently generated at-
tention. Our selection is focused on frst-order optimization 
methods, both due to their prevalence for non-convex opti-
mization problems in deep learning as well as to simplify 
the comparison. Whether there is a signifcant difference 
between these optimizers or if they are inherently redundant 
is one of the questions this work investigates. 

Our list focuses on optimizers over optimization techniques, 
although the line between the two is admittedly blurry. Tech-
niques such as averaging weights (Izmailov et al., 2018, e.g.) 
or ensemble methods (Garipov et al., 2018, e.g.) have been 
shown to be simple but effective at improving the optimiza-
tion performance. Those methods, however, can be applied 
to all methods in our lists, similar to regularization tech-
niques, learning rate schedules, or tuning method. We have, 
therefore, decided to omit them from Table 2. 

2.3. Tuning 

Budget Optimization methods for deep learning regularly 
expose hyperparameters to the user. The user either relies 
on the default suggestion or sets them using experience 
from previous experiments, or using additional tuning runs 
to fnd the best-performing setting. All optimizers in our 
benchmark have tunable hyperparameters, and we consider 
four different tuning budgets. 

3All approximations are for ADAM on a Tesla K80 GPU. 

The frst budget consists of just a single run. This one-
shot budget uses the default values proposed by the original 
authors, where available (Table 4 in the appendix lists the 
default parameters). If an optimizer performs well in this 
setting, this has great practical value, as it drastically reduces 
the computational resources required for successful training. 

The small, medium and large budgets consist of 25, 50, and 
75 tuning runs, where the parameters for each setting are 
sampled using random search. Tuning runs for the small 
and medium budget were sampled using the distributions 
defned in Table 4. The additional 25 tuning runs of the 
large budget, however, were sampled using refned bounds: 
For each combination of optimizer, problem, and learning 
rate schedule we use the same distribution as before, but 
restrict the search space, to contain all hyperparameter con-
fgurations of the top-performing 20 % tuning runs from the 
medium budget are included. 

We use a single seed for tuning, but for all confgurations 
repeat the best setting with ten different seeds. This allows 
us to report standard deviations in addition to means, assess-
ing stability. Our tuning process can sometimes pick “lucky” 
seeds, which do not perform well when averaging over mul-
tiple runs. This is arguably a feature rather than a bug, since 
it refects practical reality. If an optimizer is so unstable 
that ten random seeds are required for tuning—which would 
render this benchmark practically infeasible—it would be 
impractical for the end-user as well. Our scoring naturally 
prefers stable optimizers. Appendices C and D provide fur-
ther analysis of these cases and the general stability of our 
benchmark, showing amongst other things that failing seeds 
occur in less than 0.5% of the tuning runs. 

Tuning method We tune parameters by random search 
without early-stopping for the small, medium and large 
budget. Random search is a popular choice due to its ef-
fciency over grid search (Bergstra & Bengio, 2012) and 
its ease of implementation and parallelization compared to 
Bayesian optimization (further discussed in Section 4). A 
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minor complication of random search is that the sampling 
distribution affects the performance of the optimizer. The 
sampling distribution acts as a prior over good parameter 
settings, and bad priors consequently ruin performance. We 
followed the valid interval and intuition provided by the 
optimizers’ authors for relevant hyperparameters. The re-
sulting sampling distributions can be found in Table 4 in 
the appendix. Even though a hyperparameter might have a 
similar name in different optimization methods (e.g. learn-
ing rate α), its appropriate search space can differ. How-
ever, without grounded heuristics guiding the practitioner 
on how the hyperparameters differ between optimizers, the 
most straightforward approach for any user is to use the 
same search space. Therefore, in case there was no prior 
knowledge provided in the cited work we chose similar 
distributions for similar hyperparameters across different 
optimizers. 

What should be considered a hyperparameter? There 
is a fuzzy boundary between (tunable) hyperparameters and 
(fxed) design parameters. A recently contentious example 
is the ε in adaptive methods like ADAM. It was originally 
introduced as a safeguard against division by zero, but has 
recently been re-interpreted as a problem-dependent hyper-
parameter (see Choi et al. (2019) for a discussion). Un-
der this view, one can actually consider several optimizers 
called ADAM: From an easy-to-tune but potentially limited 
ADAMα, only tuning the learning rate, to the tricky-to-tune 
but all-powerful ADAMα,β1,β2,ε, which can approximate 
SGD in its hyperparameter space. While both share the 
update rule, we consider them to be different optimizers. 
For each update rule, we selected one popular choice of 
tunable parameters, e.g. ADAMα,β1,β2 (see Table 4). 

2.4. Schedules 

The literature on learning rate schedules is now nearly as 
extensive as that on optimizers (see Table 3 in the appendix). 
In theory, schedules can be applied to all hyperparameters 
of an optimization method but to keep our confguration 
space feasible, we only apply schedules to the learning rate, 
by far the most popular practical choice (Goodfellow et al., 
2016; Zhang et al., 2020). We choose four different learning 
rate schedules, trying to cover all major types of schedules 
(see Appendix E): 

• A constant learning rate; 
• A cosine decay (Loshchilov & Hutter, 2017) as an 

example of a smooth decay; 
• A cosine with warm restarts schedule (Loshchilov & 

Hutter, 2017) as a cyclical schedule; 
• A trapezoidal schedule (Xing et al., 2018) from the 

warm-up schedules introduced in Goyal et al. (2017). 

3. Results 
How well do optimizers work out-of-the-box? By com-
paring each optimizer’s one-shot results against the tuned 
versions of all ffteen optimizers, we can construct a 15×15 
matrix of performance gains. Figure 2 illustrates this on fve 
problems showing improvements by a positive sign and an 
orange cell. Detailed plots for all problems are in Figures 10 
and 11 in the appendix. For example, the bottom left cell of 
the largest matrix in Figure 2 shows that AMSBOUND (1) 
tuned using a small budget performs 2.4% better than SGD 
(15) with default parameters on this specifc problem. 

An orange row in Figure 2 indicates that an optimizer’s de-
fault setting is performing badly, since it can be beaten 
by any well-tuned competitor. We can observe badly-
performing default settings for MOMENTUM, NAG and 
SGD, advocating the intuition that non-adaptive optimiza-
tion methods require more tuning, but also for AMSGRAD 
and ADADELTA. This is just a statement about the default 
parameters suggested by the authors or the popular frame-
works; well-working default parameters might well exist 
for those methods. Conversely, a white & blue row signals 
a well-performing default setting, since even tuned opti-
mizers do not signifcantly outperform it. ADAM, NADAM 
and RADAM, as well as AMSBOUND, ADABOUND and 
ADABELIEF all have white or blue rows on several (but not 
all!) problems, supporting the rule of thumb that adaptive 
methods have well-working default parameters. Conversely, 
orange (or blue) columns highlight optimizers that, when 
tuned, perform better (or worse) than all untuned optimiza-
tion methods. We do not observe such columns consistently 
across tasks. This supports the conclusion that an opti-
mizer’s performance is heavily problem-dependent and that 
there is no single best optimizer across workloads. 

Figures 10 to 13 in the appendix suggest an interesting alter-
native approach for machine learning practitioners: Instead 
of picking a single optimizer and tuning its hyperparame-
ters extensively, trying out a few optimizers with default 
settings and picking the best one yields competitive results 
with less computational and tuning choice efforts. How-
ever, this might not hold for more complicated, structurally 
different tasks such as GANs (Goodfellow et al., 2014) or 
Transformer models (Vaswani et al., 2017). The similarity 
of those two approaches might be due to the fact that opti-
mizers have implicit learning rate schedules (Agarwal et al., 
2020) and trying out different optimizers is similar to trying 
out different (well-tested) schedules. 

How much do tuning and schedules help? We consider 
the fnal performance achieved by varying budgets and 
schedules to quantify the usefulness of tuning and apply-
ing parameter-free schedules (Figure 3). While there is no 
clear trend for any individual setting (gray lines), in the 
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Figure 2: The test set performance improvement after switching from any untuned optimizer (y-axis, one-shot) to any tuned 
optimizer (x-axis, small budget) as an average over 10 random seeds for the constant schedule. For example, the bottom 
left cell of the largest matrix indicates that the tuned version of AMSBOUND (1) reaches a 2.4% higher test accuracy than 
untuned SGD (15). We discuss the unintuitive occurrence of negative diagonal entries in Appendix G. The colormap is 
capped at ±3 to improve presentation, although larger values occur. 

median we observe that increasing the budget improves per-
formance, albeit with diminishing returns. For example, 
using the medium budget without any schedule leads to a 
median relative improvement of roughly 3.4% compared to 
the default parameters (without schedule). 

Applying an untuned schedule improves median perfor-
mance as well. For example, the large tuning budget cou-
pled with a trapezoidal learning rate schedule leads to a 
median relative improvement of the performance of roughly 
5.2% compared to the default parameters. However, while 
these trends hold in the median, their individual effect varies 
wildly among optimizers and problems, as is apparent from 
the noisy structure of the individual lines shown in Figure 3. 

Which optimizers work well after tuning? Figure 4 
compares the optimizers’ performance across all eight prob-
lems. There is no single optimizer that dominates its com-
petitors across all tasks. Nevertheless, some optimizers gen-
erally perform well, while others can vary greatly in their 
behavior, most notably performing poorly on VAEs. Fur-
ther supporting the hypothesis of previous sections, we note 
that taking the best out of a small set of untuned optimiz-
ers — for example, ADAM and ADABOUND — frequently 
results in competitive performance. Except for the two VAE 

problems, the best of those two untuned optimizers gener-
ally falls within the distribution of the well-tuned methods. 
Combining these runs with a tuned version of ADAM (or 
a variant thereof) provides stable and slightly improved re-
sults across many problems in our benchmark. To further 
increase the performance, our results suggest trying a dif-
ferent optimizer next, such as RMSPROP or NAG. Across 
multiple budgets and schedules, both optimizers show a con-
sistently good performance on the RNN and ALL-CNN-C 
model, respectively. 

Nevertheless, achieving (or getting close to) the absolute 
best performance still requires testing numerous optimiz-
ers. Which optimizer wins in the end is problem-dependent: 
optimizers that achieve top scores on one problem can per-
form poorly on other tasks. We note in passing that the 
individual optimizer rankings changes when considering 
e.g. a smaller budget or an additional learning rate schedule 
(see Figures 14 to 16 in the appendix). However, the overall 
trends described here are consistent. 

The idea that optimizers perform consistently better or worse 
for specifc model architectures or tasks has been regularly 
theorized and mentioned in the literature. Indeed, our results 
support this hypothesis, with NAG often beating ADAM on 
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image classifcation tasks, and RMSPROP being consis-
tently on top for the natural language modeling task (see 
Tables 6 to 9). Understanding whether and why certain 
optimizers favor specifc problem types presents an interest-
ing research avenue and might lead to more sophisticated 
optimizers that utilize the problem characteristics. 

4. Limitations 
Any empirical benchmark has constraints and limitations. 
Here we highlight some of ours’ and characterize the context 
within which our results should be considered. 

Generalization of the results By using the problems 
from DEEPOBS, which span models and data sets of vary-
ing complexity, size, and different domains, we aim for 
generalization. Our results are, despite our best efforts, 
refective of not just these setups, but also of the chosen 
training parameters, the software framework, and further 
unavoidable choices. The design of our comparisons aims to 
be close to what an informed practitioner would encounter 
for a relatively novel problem in practice. It goes with-
out saying that even a carefully curated range of problems 
cannot cover all challenges of machine learning or even 
just deep learning. In particular, our conclusions may not 
generalize to other workloads such as GANs, reinforcement 
learning, or applications where e.g. memory usage is crucial. 

Similarly, our benchmark does not cover more large-scale 
problems such as ImageNet (Deng et al., 2009) or trans-
former models (Vaswani et al., 2017). While there is oft-
mentioned anecdotal evidence that the characteristics of 

deep learning problems change for larger models, it would 
simply be impossible to perform the kind of combinatorial 
exploration of choices covered in our benchmark, even with 
signifcant hardware resources. The inclusion of larger mod-
els would require reducing the number of tested optimizers, 
schedules or tuning methods and would thus shift the focus 
of the benchmark. Studying whether there are systematic 
differences between different types of deep learning prob-
lems presents an interesting avenue for further research. 

We do not consider this study the defnitive work on bench-
marking deep learning optimizers, but rather an important 
and signifcant step in the right direction. While our compar-
ison includes many “dimensions” of deep learning optimiza-
tion, e.g. by considering different problems, tuning budgets, 
and learning rate schedules, there are certainly many more. 
To keep the benchmark feasible, we chose to use the fxed 
L2 regularization and batch size that DEEPOBS suggests 
for each problem. We also did not include optimization 
techniques such as weight averaging or ensemble methods 
as they can be combined with all evaluated optimizers and 
hence would increase the computational cost further. Future 
works could study how these techniques interact with differ-
ent optimization methods. However, to keep our benchmark 
feasible, we have selected what we believe to be the most 
important aspects affecting an optimizer comparison. We 
hope, that our study lays the groundwork so that other works 
can build on it and analyze these questions. 

Infuence of the hyperparameter search strategy As 
noted by, e.g., Choi et al. (2019) and Sivaprasad et al. (2020), 
the hyperparameter tuning method, its budget, and its search 
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domain, can signifcantly affect performance. By report-
ing results from four different hyperparameter optimization 
budgets (including the tuning-free one-shot setting) we try 
to quantify the effect of tuning. We argue that our random 
search process presents a realistic setting for many but cer-
tainly not all deep learning practitioners. One may criticize 
our approach as simplistic, but note that more elaborate 
schemes, in particular Bayesian optimization, would multi-
ply the number of design decisions (kernels, search utilities, 
priors, etc.) and thus signifcantly complicate the analysis. 

The individual hyperparameter sampling distributions sig-
nifcantly affect the relative rankings of the optimizers. A 
poorly chosen search space can make successful tuning next 
to impossible. In our benchmark, we use relatively broad 
initial search spaces, dozens of tuning runs and a refning 
of those search spaces for the large budget. Note, though, 
that the problem of fnding appropriate search spaces is in-
herited by practitioners. It is arguably an implicit faw of 
an optimization method that expects hyperparameter tuning 
not to come with well-identifed search spaces for those 
parameters and this should thus be refected in a benchmark. 

5. Conclusion 
Faced with an avalanche of research developing new stochas-
tic optimization methods, practitioners are left with the near-
impossible task of not just picking a method from this ever-
growing list, but also to guess or tune hyperparameters for 
them, even to continuously tune them during training. De-
spite efforts by the community, there is currently no method 
that clearly dominates the competition. 

We have provided an extensive empirical benchmark of op-
timization methods for deep learning. It reveals structure 
in the crowded feld of training methods for deep learning: 
First, although many methods perform competitively, a sub-
set of methods tends to come up near the top across the 
spectrum of problems. Despite years of new research by 
many committed authors, ADAM remains a viable (but also 
not a clearly superior) choice for many problems, with NAG 
or RMSPROP being interesting alternatives that were able 
to boost performance on individual problems. Secondly, 
tuning helps about as much as trying other optimizers. Our 
open and extendable data set allows many, more technical 
observations, for example, that the stability to re-runs is an 
often overlooked challenge. 

Perhaps the most important takeaway from our study is 
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hidden in plain sight: the feld is in danger of being drowned 
by noise. Different optimizers exhibit a surprisingly similar 
performance distribution compared to a single method that 
is re-tuned or simply re-run with different random seeds. 
It is thus questionable how much insight the development 
of new methods yields, at least if they are conceptually 
and functionally close to the existing population. We hope 
that benchmarks like ours can help the community to move 
beyond inventing yet another optimizer and to focus on 
key challenges, such as automatic, inner-loop tuning for 
truly robust and effcient optimization. We are releasing 
our data to allow future authors to ensure that their method 
contributes to such ends. 
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