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Abstract

Message passing neural networks have become a
method of choice for learning on graphs, in par-
ticular the prediction of chemical properties and
the acceleration of molecular dynamics studies.
While they readily scale to large training data sets,
previous approaches have proven to be less data
efficient than kernel methods. We identify lim-
itations of invariant representations as a major
reason and extend the message passing formu-
lation to rotationally equivariant representations.
On this basis, we propose the polarizable atom
interaction neural network (PAINN) and improve
on common molecule benchmarks over previous
networks, while reducing model size and infer-
ence time. We leverage the equivariant atomwise
representations obtained by PAINN for the predic-
tion of tensorial properties. Finally, we apply this
to the simulation of molecular spectra, achieving
speedups of 4-5 orders of magnitude compared to
the electronic structure reference.

1. Introduction
Studying dynamics of chemical systems allows insight into
processes such as reactions or the folding of proteins, and
constitutes a fundamental challenge in computational chem-
istry. Since the motion of atoms is governed by the laws of
quantum mechanics, accurate ab initio molecular dynam-
ics (MD) simulations may require solving the Schrödinger
equation for millions of time steps. While the exact solution
is infeasible to compute for all but the smallest systems,
even fast approximations such as density functional the-
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ory quickly become prohibitive for large systems and the
prediction of accurate spectra.

Recently, machine learning potentials (Behler, 2016; Unke
et al., 2020; von Lilienfeld et al., 2020) have gained popu-
larity for studying systems ranging from small molecules
at high levels of theory (Chmiela et al., 2018; Wester-
mayr et al., 2020) to systems with thousands or millions
of atoms (Morawietz et al., 2016; Bartók et al., 2018; Lu
et al., 2020). In particular, message-passing neural net-
works (Gilmer et al., 2017) (MPNNs) yield accurate pre-
dictions for chemical properties across chemical compound
space and can handle large amounts of training data. Albeit
MPNNs have significantly increased in accuracy over the
years (as well as in computational cost), kernel methods
with manually crafted features (Chmiela et al., 2017; Chris-
tensen et al., 2020; Bartók et al., 2010) have still proven to
perform better when only small training sets are available.

While molecules are often represented as graphs, they are
in fact interacting particles in a continuous 3d space. Con-
sequently, SchNet (Schütt et al., 2017) modeled message
passes as continuous-filter convolutions over that space, al-
beit with rotationally invariant filters. As Miller et al. (2020)
pointed out, this leads to a loss of relevant directional, equiv-
ariant information. Klicpera et al. (2020a) have introduced
directional message-passing, the angular information here is
restricted to the messages while the representation of nodes
(atoms) remains rotationally invariant. While equivariant
convolutions have been successfully applied in computer
vision (Cohen & Welling, 2017; Weiler et al., 2018b; Wor-
rall & Brostow, 2018), previous approaches to molecular
prediction (Thomas et al., 2018; Anderson et al., 2019) have
not reached the accuracy of their rotationally invariant coun-
terparts.

In this work, we propose rotationally equivariant message
passing and the polarizable atom interaction neural network
(PAINN) architecture as one instance of it. We examine the
limited capability of rotation-invariant representations to
propagate directional information and show that equivariant
representations do not suffer from this issue. PAINN out-
performs invariant message passing networks on common
molecular benchmarks and performs at small sample sizes
on par with kernel methods that have been deemed to be
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more data-efficient than neural networks. Beyond that, the
rotationally equivariant representation of PAINN enables
the prediction of tensorial properties which we apply to the
ring-polymer MD simulation of infrared and Raman spec-
tra. By an acceleration of 4-5 orders of magnitude, PAINN
makes the simulation of these spectra feasible, reducing the
runtime in one case from projected 25 years to one hour.

2. Related work
Behler & Parrinello (2007) introduced neural network po-
tentials taking atom-centered symmetry functions based
on distances and angles as features. Graph neural net-
works (Scarselli et al., 2008) for molecular graphs (Du-
venaud et al., 2015; Kearnes et al., 2016) and 3d geome-
tries (Schütt et al., 2017; Gilmer et al., 2017; Schütt et al.,
2018; Unke & Meuwly, 2019; Lubbers et al., 2018) do not
require such manually crafted features, but learn embed-
dings of atom types and use graph convolutions or, more
general, message passing (Gilmer et al., 2017), to model
atom interactions based on interatomic distances. Klicpera
et al. (2020a) introduced directional message passing by
including additional angular information in the message.

Steerable CNNs (Cohen & Welling, 2017; Weiler et al.,
2018a) allow to build equivariant filter banks according
to known symmetries of associated feature types. While
these approaches work on grids, architectures such as Tensor
Field Networks (Thomas et al., 2018), Cormorant (Ander-
son et al., 2019) and NEQUIP (Batzner et al., 2021) use
equivariant convolutions based on spherical harmonics (SH)
and Clebsch-Gordon (CG) transforms for point clouds. Kon-
dor & Trivedi (2018) have described a general framework on
equivariance and convolutions in neural networks focusing
on irreducible representations. In contrast, PAINN models
equivariant interactions in Cartesian space which is con-
ceptually simpler and does not require tensor contractions
with CG coefficients. A similar approach was proposed by
Jing et al. (2021) with the GVP-GNN. Both approaches are
designed for distinct applications resulting in crucial differ-
ences in the design of the neural network architectures, most
notably the message functions. The GVP-GNN has been
designed for single-point protein sequence predictions, e.g.,
allowing the use of non-smooth components. In contrast,
PAINN is designed for simulations with millions of infer-
ence steps, requiring a fast message function and a smoothly
differentiable model.

3. Equivariant message passing
Notation. To clearly distinguish between the two con-
cepts, we write feature vectors as x ∈ RFx1 and vectors in
3d coordinate space as ~r ∈ R1x3. Vectorial features will be
written as ~x ∈ RFx3. Norms ‖ · ‖, scalar products 〈·, ·〉 and

tensor products ⊗ are calculated along the spatial dimen-
sion. All other operations are calculated along the feature
dimension, if not stated otherwise. We write the Hadamard
product as ◦.

3.1. Message passing for 3d-embedded graphs

MPNNs build complex representations of nodes within
their local neighborhood in a graph through a repeated
exchange of messages followed by updates of node fea-
tures. Here, we consider graphs embbedded in 3d Euclidean
space, where edges are specified by the relative positions
~rij = ~rj − ~ri of nodes i, j within a local neighborhood
N (i) = {j | ‖~rij‖ ≤ rcut}. In a chemistry context, this
agrees with the fact that a large part of the energy variations
can be attributed to local interactions, often conceptualized
as bond lengths and angles. Thus, only nodes within that
range can interact directly, so the number of messages does
not scale quadratically with the number of the nodes. A
general MPNN for embedded graphs can be written as

mt+1
i =

∑
j∈N (i)

Mt(s
t
i, s

t
j , ~rij) (1)

st+1
i = Ut

(
sti,m

t+1
i

)
. (2)

with the update and message functions Ut and Mt, respec-
tively (Gilmer et al., 2017). Many neural network potentials
and even conventional CNNs can be cast in this general
framework. Rotational invariance of the representation can
be ensured by choosing rotationally invariant message and
update functions, which by definition need to fulfill

f(~x) = f(R~x), (3)

for any rotation matrix R ∈ R3×3.

3.2. Building equivariant MPNNs

To obtain more expressive representations of local environ-
ments, neurons do not have to be scalar, but can be geometric
objects such as vectors and tensors (Hinton et al., 2011; Co-
hen & Welling, 2017; Thomas et al., 2018; Anderson et al.,
2019). For the purpose of this work, we restrict ourselves to
scalar and vectorial representations sti and ~vti , respectively,
such that a corresponding message pass can be written as

~mv,t+1
i =

∑
j∈N (i)

~Mt(s
t
i, s

t
j , ~v

t
i , ~v

t
j , ~rij) (4)

Message and update functions for scalar features can be
defined analogously. Rotational equivariance of vector fea-
tures ~vt+1

i can be ensured by employing rotationally equiv-
ariant functions ~Ut and ~Mt, fulfilling

R~f(~x) = ~f(R~x) (5)
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Table 1. Comparison of expressiveness and computational com-
plexity of distances, angles and directions for a simple message
function of the oxygen atom of a water molecule.

Features Distances Angles Directions

H2O

MessageM at
atom i

∑
j∈Ni

‖~rij‖
∑

j∈Ni

∑
k∈Ni

αjik
∑

j∈Ni

~rij

‖~rij‖

Scaling with
neighbors O(|N |) O(|N |2) O(|N |)

Resolve change
of ‖~r1j‖

yes no no

Resolve change
of α213

no yes yes

for any rotation matrix R ∈ R3×3, where the matrix-vector
product is applied over the spatial dimension. This consti-
tutes essentially a linearity constraint for directional infor-
mation. Therefore, any nonlinearities of the model need
to be applied to scalar features. In particular, equivariant
MPNNs may use the following operations:

• Any (nonlinear) function of scalars: f(s)

• Scaling of vectors: s ◦ ~v

• Linear combinations of equivariant vectors: W~v

• Scalar products: s = ‖~v‖2, s = 〈~v1, ~v2〉

• Vector products: ~v1 × ~v2

Thus, directional information is preserved during message
passing while invariant representations can be recovered
from scalar products to obtain rotationally invariant predic-
tions.

3.3. Limits of rotationally invariant representations

In the following, we examine the expressiveness of invariant
and equivariant representations at the example of simple
2d molecular structures. To ensure rotational invariance
of a predicted property, the message function is often re-
stricted to depend only on rotationally invariant inputs such
as distances (Schütt et al., 2017; Lubbers et al., 2018) or
angles (Klicpera et al., 2020a;b). While a single pass is lim-
ited to interactions within a local environment, successive
message passes are supposed to construct more complex
representations and propagate local information beyond the
neighborhood. This raises the question whether rotation-
ally invariant representations of atomic environments hi are
sufficient here.

Figure 1. Illustration of message passing using angles and direc-
tions for two structures. All edges within the cutoff range (dashed
lines) have equal length. The representations of the blue and red
node are the same using angles (left), while directions allow to
distinguish both structures (right).

Tab. 1 compares three simplified message functions for the
example of a water molecule. Using a distance-based mes-
sage function, the representation of the atom 1 (oxygen) is
able to resolve changing bond lengths to atoms 2 and 3 (hy-
drogens), however it is not sensitive to changes of the bond
angle. On the other hand, using the angle directly as part of
the message function can not resolve the distances. There-
fore, a combination of distances and angles is required to
obtain a more expressive message function (Klicpera et al.,
2020a). Unfortunately, including angles in the messages
scales O(|N |2) with the number of neighbors. Alterna-
tively, directions to neighboring atoms may be used as mes-
sages ~Mt(~rij) = ~rij/‖~rij‖. Employing the update function
Ut(m) = ‖m‖2, this is related to angles as follows:∥∥∥∥∥∥
N∑
j=1

~rij
‖~rij‖

∥∥∥∥∥∥
2

=
∑
j,k

〈
~rij
‖~rij‖

,
~rik
‖~rik‖

〉
=

N∑
j=1

N∑
k=1

cosαjik.

Thus, using equivariant messages, the runtime complexity
remains O(|N |) while angular information can be resolved.
Note that this update function contracts the equivariant mes-
sages to a rotationally invariant representation.

Beyond the computational benefits, equivariant representa-
tions allow to propagate directional information beyond the
neighborhood which is not possible in the invariant case.
Fig. 1 illustrates this at a minimal example, where four
atoms are arranged in an equidistant chain with the cutoff
chosen such that only neighboring atoms are within range.
We observe that for the two arrangements the angles are
equal as well (Fig. 1, left). Therefore, they are indistinguish-
able for invariant message passing with distances and angles.
In contrast, the equivariant representations differ in sign of
their components (Fig. 1, right). When contracting them to
invariant representations, as in the previous example, this
information is lost. However, we may instead retain equiv-
ariance in the representation and design a message function
~Mt that does not only propagate directions to neighboring
atoms, but those of equivariant representations as well. This
enables the efficient propagation of directional information
by scaling linearly with the number of neighbors and keep-
ing the required cutoff small.
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Note that neither many-body representations, using angles,
dihedral angles etc., nor equivariant representations corre-
sponding to a multipole expansion are complete. It has been
shown that even when including up to 4-body invariants,
there are structures with as few as eight atoms which cannot
be distinguished (Pozdnyakov et al., 2020) and that a many-
body expansion up to n-body contributions is necessary to
guarantee convergence for a system consisting of n atoms
(Hermann et al., 2007). The same holds for multipole ex-
pansions, where scalars and vectors correspond to the 0th
and 1st order. Thus, even spherical harmonics expansions
with less than infinite degree are unable to represent arbi-
trary equivariant n-body functions. Instead, a practically
sufficient and computationally efficient approach for the
problem at hand is desirable.

In the following, we propose a neural network architec-
ture that takes advantage of these properties. It over-
comes the limitations of invariant representations discussed
above, which we will demonstrate at the example of an
organometallic compound in Section 5.3.2.

4. Polarizable atom interaction neural
network (PAINN)

The potential energy surface E(Z1, . . . , ZN , ~r1, . . . , ~rN ),
with nuclear charges Zi ∈ N and atom positions ~ri ∈ R3

exhibits certain symmetries. Generally, they include invari-
ance of the energy towards the permutation of atom indices
i, as well as rotations and translations of the molecule. A
neural network potential should encode these constraints to
ensure the symmetries of the predicted energy surface and
increase data efficiency. A common inductive bias of the
neural network potential is a decomposition of the energy
into atomwise contributions E =

∑N
i=1 ε(si), where an

output network ε predicts energy contributions from atoms
embedded within their chemical environment, represented
by si ∈ RF (Behler & Parrinello, 2007; Bartók et al., 2013).

While properties of chemical compounds may be such ro-
tationally invariant scalars, they can also be equivariant
tensorial properties, e.g. the multipole expansion of the
electron density

n(~r) = q + ~µ>~r + ~r>Q~r + . . . , (6)

with charge q, dipole ~µ, quadrupole Q and so on. Similarly,
one can interpret invariant and equivariant atomwise rep-
resentations as local charges and dipole moments of atom-
centered multipole expansions (Gastegger et al., 2020). We
leverage this in Section 4.2 to predict tensorial molecular
properties. We coin our proposed architecture polarizable
atom interaction neural network (PAINN).

4.1. Representation

The inputs to PAINN are the nuclear charges Zi ∈ N and
positions ~ri ∈ R3 for each atom i. Similar to previous ap-
proaches, the invariant atom representations are initialized
to learned embeddings of the atom type s0

i = aZi
∈ RF×1.

We keep the number of features F constant throughout
the network. The equivariant representations are set to
~v0
i = ~0 ∈ RF×3, since there is no directional information

available initially.

Next, we define message and update functions as introduced
in Sec. 3. We use a residual structure of interchanging mes-
sage and update blocks (Fig. 2a), resulting in coupled scalar
and vectorial representations. For the residual of the scalar
message function, we adopt the feature-wise, continuous-
filter convolutions introduced by Schütt et al. (2017)

∆smi = (φs(s) ∗Ws)i (7)

=
∑
j

φs(sj) ◦Ws(‖~rij‖),

where φs consists of atomwise layers as shown in Fig. 2b.
The roationally-invariant filtersWs are linear combinations
of radial basis functions sin(nπrcut

‖~rij‖)/‖~rij‖ as proposed
by Klicpera et al. (2020a) with 1 ≤ n ≤ 20. Additionally,
we apply a cosine cutoff to the filters (Behler, 2011).

Analogously, we use continuous-filter convolutions for the
residual of the equivariant message function

∆~vmi =
∑
j

~vj ◦ φvv(sj) ◦Wvv(‖~rij‖) (8)

+
∑
j

φvs(sj) ◦W ′vs(‖~rij‖)
~rij
‖~rij‖

,

where the first term is a convolution of an invariant filter
with scaled, equivariant features

∑
j ~vj ◦ φs(sj), related to

the gating proposed by Weiler et al. (2018a) as an equivari-
ant nonlinearity. This propagates directional information
obtained in previous message passes to neighboring atoms.
The second term is a convolution of invariant features with
an equivariant filter. This can be derived as the gradient of
an invariant filter

∇Wvs(‖~rij‖) =W ′vs(‖~rij‖)
~rij
‖~rij‖

.

SinceW ′vs(‖~rij‖) is another invariant filter, we can model it
directly without taking the derivative. Furthermore, we use
a shared network φ to perform the transform of all message
functions and split the features afterwards (see Fig. 2b).

After the features-wise message blocks, the update blocks
are applied atomwise across features. The residual of the
scalar update function is given by

∆sui = ass(si, ‖V~vi‖) (9)
+ asv(si, ‖V~vi‖) 〈U~vi,V~vi〉.
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Figure 2. The architecture of PAINN with the full architecture (a) as well as the message (b) and update blocks (c) of the equivariant
message passing. In all experiments, we use 128 features for si and ~vi throughout the architecture. Other layer sizes are annotated in grey.

Figure 3. Gated equivariant block.

Again, we use a scaling functions computed by a shared
network a(si, ‖V~vi‖) as nonlinearity. In this case, the norm
of a linear combination of features is also used to obtain
the scaling, thus, coupling the scalar representations with
contracted equivariant features. In a second term, we use
the scalar product of two linear combinations of equivariant
features. Similarly, we define the residual for the equivariant
features

∆~vui = avv(si, ‖V~vi‖)U~vi, (10)

which is again a nonlinear scaling of linearly combined
equivariant features.

4.2. Prediction of tensorial properties

PAINN is able to predict scalar properties using atomwise
output layers of rotationally invariant representations si, in
the same manner as previous approaches (Schütt et al., 2017;
Unke & Meuwly, 2019). Beyond that, the additional equiv-
ariant representations enable the prediction of equivariant

tensors of order M that can be constructed using a rank-1
tensor decomposition

T =

N∑
i=1

R∑
k=1

λ(si)~ν(~vi)k,1 ⊗ · · · ⊗ ~ν(~vi)k,M . (11)

The scalar and vectorial components of this decomposition
can be obtained from an output network of gated equivari-
ant blocks, as shown in Fig. 3. These components again
make use gated equivariant nonlinearities (Weiler et al.,
2018b) and show similarities to geometric vector percep-
trons (GVP) (Jing et al., 2021). However, while GVP blocks
are used as message functions, PAINN keeps the pairwise
message functions comparatively lightweight. Instead com-
plex transformations are restricted to the atomwise update
function and tensor output network.

Depending on the chemical property of interest, one may
want to include additional constraints or replace ~νk,m with
the atom positions to include the global molecular geom-
etry. In the following, we demonstrate how this can be
employed for two tensorial properties that are important for
the simulation of molecular spectra.

The molecular dipole moment ~µ is the response of the molec-
ular energy to an electric field∇~FE and, at the same time,
the first moment of the electron density (see Eq. 6). It is
often predicted using latent atomic charges (Gastegger et al.,
2017):

~µ =

N∑
i=1

qatom(si)~ri. (12)

This assumes the center of mass at ~r = ~0 for brevity. While
this only leverages invariant representations, we can take
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advantage of the equivariant features of PAINN. In this
picture, the molecular dipole is constructed from polarized
atoms, i.e. both atomic dipoles and charges (Veit et al.,
2020), yielding

~µ =

N∑
i=1

~µatom(~vi) + qatom(si)~ri. (13)

In terms of Eq. 11, this is a simple case with M = 1, R = 2,
where the first term predicts the latent local dipoles and
the second term computes the dipole generated by the local
charges.

As an example with order M = 2, we consider the polariz-
ability tensor, which describes the response of the molecular
dipole to an electric field J~F (~µ) = H~F (E). We construct
polarizability tensors using

α =

N∑
i=1

α0(si) I3 + ~ν(~vi)⊗ ~ri + ~ri ⊗ ~ν(~vi), (14)

where the first term of the sum models isotropic, atomwise
polarizabilities. The other two terms add the anisotropic
components of the polarizability tensor. Similar to the
charges in Eq. 13, here the atom positions are used to incor-
porate the global structure of the molecule.

5. Results
PAINN has been implemented using PYTORCH (Paszke
et al., 2019) and SCHNETPACK (Schütt et al., 2018). All
models use F = 128 and two output layers as shown in
Fig. 2 (blue) with the type of output layers depending on
the property of interest. They were trained using the Adam
optimizer (Kingma & Ba, 2014), the squared loss and weight
decay λ = 0.01 (Loshchilov & Hutter, 2019), if not stated
otherwise. We decay the learning rate by a factor of 0.5 if the
validation loss plateaus. We apply exponential smoothing
with factor 0.9 to the validation loss to reduce the impact of
fluctuations which are particularly common when training
with both energies and forces. Please refer to the supplement
for further details on training parameters.

5.1. Chemical compound space

We use the QM9 dataset of ≈130k small organic
molecules (Ramakrishnan et al., 2014) with up to nine heavy
atoms to evaluate the performance of PAINN for the predic-
tion of scalar properties across chemical compound space.
We predict the magnitude of the dipole moment using Eq. 13
and the electronic spatial extent by

〈
R2
〉

=

N∑
i=1

qatom(si)‖~ri‖2,

as implemented by SCHNETPACK. The remaining proper-
ties are predicted as sums over atomic contributions. PAINN
is trained on 110k examples while 10k molecules are used as
a validation set for decaying the learning rate and early stop-
ping. The remaining data is used as test set and results are
averaged over three random splits. For the isotropic polar-
izability α, we first observed validation MAEs of 0.054 a0.
Upon closer inspection, we notice that for this property both
the squared loss as well as the MAE can be reduced when
minimizing the MAE directly (as done by Klicpera et al.
(2020b)). This yields both validation and test MAEs of
0.045a0 that are comparable to those of DIMENET++.

Tab. 2 shows the mean absolute error (MAE) of PAINN
for 12 target properties of QM9 in comparison with pre-
vious approaches. SCHNET (Schütt et al., 2017) and
PHYSNET (Unke & Meuwly, 2019) are MPNNs with
distance-based interactions, DIMENET++ (Klicpera et al.,
2020b) includes additional angular information and is an
improved variant of DIMENET (Klicpera et al., 2020a).
L1NET (Miller et al., 2020) and CORMORANT (Ander-
son et al., 2019) are equivariant neural networks based on
spherical harmonics and Clebsch-Gordon coefficients.

PAINN achieves state-of-the-art results in six target prop-
erties and yields comparable results to DIMENET++ on
another two targets. On the remaining properties, PAINN
achieves the second best results after DIMENET++. Note
that PAINN using about 600k parameters is significantly
smaller than DIMENET++ with about 1.8M parameters. For
random batches of 50 molecules from QM9, the inference
time is reduced from 45 ms to 13 ms, i.e. an improvement
of more than 70%, when comparing PAINN to the reference
implementation of DIMENET++1 using an NVIDIA V100.

5.2. Molecular dynamics trajectories

We evaluate the ability to predict combined energies and
forces on the MD17 benchmark (Chmiela et al., 2017) in-
cluding molecular dynamics trajectories of small organic
molecules. While the atomic forces could be predicted di-
rectly from vectorial features, we employ the gradients of
the energy model ~Fi = −∂E/∂~ri to ensure conservation
of energy. This property is crucial to run stable molecular
dynamics simulations. To demonstrate the data efficiency of
PAINN, we use the more challenging setting with 1k known
structures of which we use 950 for training and 50 for val-
idation, where a separate model is trained for each trajec-
tory. Tab. 3 shows the comparison with SGDML (Chmiela
et al., 2018) and NEQUIP (Batzner et al., 2021), which
were trained on forces only, as well as SCHNET, PHYS-
NET, DIMENET and FCHL19 (Christensen et al., 2020),
that were trained on a combined loss of energies and forces.
Christensen & von Lilienfeld (2020) have found that the en-

1https://github.com/klicperajo/dimenet

https://github.com/klicperajo/dimenet
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Table 2. Mean absolute errors on QM9 dataset for various chemical properties. Results for PAINN are averaged over three random splits.
Best in bold.

Target Unit SCHNET PHYSNET DIMENET++ CORMORANT L1NET PAINN

µ D 0.033 0.053 0.030 0.038 0.043 0.012
α a30 0.235 0.062 0.044 0.085 0.088 0.045
εHOMO meV 41 32.9 24.6 34 46.0 27.6
εLUMO meV 34 24.7 19.5 38 34.6 20.4
∆ε meV 63 42.5 32.6 38 67.5 45.7
〈R2〉 a20 0.073 0.765 0.331 0.961 0.354 0.066
ZPVE meV 1.7 1.39 1.21 2.03 1.56 1.28
U0 meV 14 8.15 6.32 22 13.46 5.85
U meV 19 8.34 6.28 21 13.83 5.83
H meV 14 8.42 6.53 21 14.36 5.98
G meV 14 9.40 7.56 20 13.99 7.35
cv

cal
mol K 0.033 0.028 0.023 0.026 0.031 0.024

Table 3. Mean absolute errors on MD17 dataset for energy and force predictions in kcal/mol and kcal/mol/Å, respectively. Batzner et al.
(2021) only reported force errors for NEQUIP. Results for PAINN are averaged over three random splits. Best in bold.

SGDML NEQUIP PAINN SCHNET PHYSNET DIMENET FCHL19 PAINN
trained on forces only trained on energies & forces

ASPIRIN
energy 0.19 – 0.167 0.37 0.230 0.204 0.182 0.159
forces 0.68 0.348 0.338 1.35 0.605 0.499 0.478 0.371

ETHANOL
energy 0.07 – 0.064 0.08 0.059 0.064 0.054 0.063
forces 0.33 0.208 0.224 0.39 0.160 0.230 0.136 0.230

MALONDIALDEHYDE
energy 0.10 – 0.100 0.13 0.094 0.104 0.081 0.091
forces 0.41 0.337 0.344 0.66 0.319 0.383 0.245 0.319

NAPHTHALENE
energy 0.12 – 0.116 0.16 0.142 0.122 0.117 0.117
forces 0.11 0.096 0.077 0.58 0.310 0.215 0.151 0.083

SALICYLIC ACID
energy 0.12 – 0.116 0.20 0.126 0.134 0.114 0.114
forces 0.28 0.238 0.195 0.85 0.337 0.374 0.221 0.209

TOLUENE
energy 0.10 – 0.095 0.12 0.100 0.102 0.098 0.097
forces 0.14 0.101 0.094 0.57 0.191 0.216 0.203 0.102

URACIL
energy 0.11 – 0.106 0.14 0.108 0.115 0.104 0.104
forces 0.24 0.172 0.139 0.56 0.218 0.301 0.105 0.140

ergies of MD17 are noisy. Thus, depending on the molecule
and chosen tradeoff, using energies for training is not always
beneficial. For this reason, we train two PAINN models per
trajectory: only on forces and on a combined loss includ-
ing energy with a force error weight of ρ = 0.95. PAINN
achieves the lowest mean absolute errors for 12 out 14 tar-
gets on models trained only on forces and exhibits errors in
a similar range as Gaussian regression with the FCHL19
kernel. Overall, PAINN performs best or equal to FCHL19
on 9 out of 14 targets. This demonstrates that equivariant
neural networks approaches such as PAINN are able to com-
pete with kernel methods in the small data regime, while
being able to scale to large data sets at the same time.

5.3. Advantages of equivariant features

5.3.1. ABLATION STUDIES

We evaluate the impact of equivariant vector features at the
example of the aspirin MD trajectory from the previous
section. Compared to the full model, we remove the scalar
product of vector features in Eq. 9 from the update block and
the convolution over vector features in Eq. 8 (i.e.,Wvv = 0).

Table 4. Ablation study for the prediction of energies [kcal/mol]
and forces [kcal/mol/Å] for aspirin trajectories from MD17.

Ablation # params F energy MAE force MAE

no ablation 588.3k 128 0.159 0.371

no scalar product of 589.1k 134 0.173 0.420
vector features in Eq. 8
no vector propagation 589.2k 135 0.183 0.441
(Wvv = 0 in Eq. 7)
remove both 590.1k 142 0.200 0.507

no vector features 590.3k 174 0.449 1.194

Table 4 show the results for the various ablations. The num-
ber of parameters is kept approximately constant by raising
the number of node features F accordingly. We observe that
all ablated components contribute to the final accuracy of
the model, where the convolution over equivariant features
in the message function has a slightly larger impact. This
component also enables the propagation of directional in-
formation, which will be examined in Sec. 5.3.2. Finally,
we remove all vector features from the model, resulting in
an invariant model. Despite keeping the number of param-



Equivariant Message Passing for the Prediction of Tensorial Properties and Molecular Spectra

Figure 4. Rotational energy profile of substituted ferrocene ob-
tained by varying the rotation angle θ while keeping all bond
distances fixed at their equilibrium values (H: white, C: black, F:
purple, Fe: grey). For small cutoffs rcut (dashed grey circles),
MPNNs with scalar feature representations are unable to represent
information about θ.

eters constant by increasing the number of atoms features
to F = 174, the mean absolute error of the forces increases
beyond 1 kcal/mol/Å.

5.3.2. PROPAGATION OF DIRECTIONAL INFORMATION IN
SUBSTITUTED FERROCENE

To demonstrate the advantages of equivariant over invariant
representations in practice, we consider a ferrocene deriva-
tive where one hydrogen atom in each cyclopentadienyl
ring is substituted by fluorine (see Fig. 4). This molecule
has been chosen as it features small energy fluctuations
(<1 kcal/mol) when the rings rotate relative to each other.
Since the torsional energy profile depends mainly on the
orientation of the distant fluorine atoms (measured by the
rotation angle θ), it is a challenging prediction target for
models without equivariant representations. Fig. 4 shows
the predicted energy profiles for a full rotation of the cy-
clopentadienyl ring using cutoffs rcut ∈ {2.5, 3.0, 4.0} Å.
All models are trained on energies of 10k structures sam-
pling thermal fluctuations (300 K) and ring rotations of
substituted ferrocene. Another 1k structures are used for
validation. SchNet (Schütt et al., 2017), which uses scalar
features, predicts a flat energy profile for rcut ≤ 3.0 Å,
because it is unable to resolve θ. Although it is possible
to encode the relevant information when using a larger cut-
off, the learned representation seems to be susceptible to
noise, as indicated by the deviations of the predicted energy
profile. Since DimeNet (Klicpera et al., 2020a) includes
terms that explicitly depend on angles between triplets of
atoms, θ can be resolved for smaller cutoffs, but still fails

for rcut = 2.5 Å. In contrast, the equivariant environment
representation of PAINN allows to faithfully reproduce the
torsional energy profile even for very small cutoffs.

5.4. Molecular Spectra

We apply PAINN to the efficient computation of infrared
and Raman spectra of ethanol and aspirin. Although these
spectra can in principle be obtained from a single molecular
structure via the harmonic oscillator approximation, such an
approach tends to neglect important effects, e.g. different
molecular conformations (Thomas et al., 2013). In order to
obtain high quality spectra, molecular dynamics simulations
have to be performed, requiring the prediction of forces at
each time step. Additionally, one needs to compute dipole
moments and polarizabilities along the generated trajectory.
The infrared and Raman spectra are obtained as the Fourier
transform of the time auto-correlation functions of the re-
spective property. Using electronic structure methods, such
simulations become prohibitively expensive due to the large
number of successive computations required. Since nuclear
quantum effects (NQE) need to be considered to obtain high
quality spectra (Sauceda et al., 2021), ring-polymer molec-
ular dynamics (RPMD) simulations need to be performed,
which treat multiple copies of a molecule simultaneously
and further increase computational cost.

We train a joined model for energies, forces, dipole moments
and polarizability tensors on 8k ethanol conformations using
additional 1k molecules each as validation and test set. A
second model is trained for aspirin with 16k training exam-
ples and 2k molecules for validation and testing. Energies
and forces are predicted as described above for MD17. The
dipole moments and polarizability tensors are obtained as
described in Section 4.2, employing two gated equivariant
blocks each yielding atomwise scalars and vectors, that are
used to compute the outputs as described in Eqs. 13 and 14.
The joined model exhibits accurate predictions for energy,
forces, dipole moments and polarizabilities, as shown in the
inset table of Fig 5. To evaluate the importance of equiv-
ariant features for the dipole prediction, we have trained an
alternative model using only latent partial charges, but no
local dipoles. The results show that predicting molecular
dipoles using vector features (Eq. 13) reduces the mean abs.
error by more than 50%, reaching 0.009 D compared to
0.020 D using only scalars and positions (Eq. 12). Simu-
lated infrared and Raman spectra using classical MD and
RPMD with 64 replicas and the respective PAINN mod-
els are shown for both molecules in Fig. 5, alongside har-
monic spectra obtained with the electronic structure refer-
ence and, for ethanol, experimental spectra recorded in the
gas phase (Linstrom & Mallard, 2020; Kiefer, 2017).

The peak positions and intensities of ethanol infrared spec-
tra (Fig. 5a, top) computed with classical MD and PAINN
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Figure 5. IR (top) and Raman (bottom) spectra of ethanol and aspirin. Spectra calculated with the reference method using the harmonic
oscillator approximation are shown in black (QM harmonic). The inset table shows the mean absolute errors on the respective test set.

agree closely with the static electronic structure reference,
e.g. in the C-H and O-H stretching regions at 3000 cm−1

and 3900 cm−1. This indicates, that PAINN faithfully re-
produces the original electronic structure method in general.
However, when compared to experiment, both spectra are
shifted towards higher frequencies. The PAINN RPMD
spectrum, on the other hand shows excellent agreement with
experiment, illustrating the importance of NQEs. Similar
observations can be made for the ethanol Raman spectrum
(Fig. 5a, bottom), where the PAINN RMPD spectrum once
again offers the most faithful reproduction of the experiment.
We observe similar trends for aspirin (Fig. 5b). RPMD spec-
tra are once again shifted to lower frequencies while the
classical MD closely resembles the static electronic struc-
ture spectrum.

PAINN reduces the time required to obtain these spectra
by several orders of magnitude. For ethanol, an individual
reference computation takes ≈ 140 seconds compared to
14 ms for a PAINN evaluation on a V100 GPU. This corre-
sponds to a reduction of the overall simulation time from
400 days to approximately one hour. The speedup offered
by PAINN is even more pronounced for aspirin, where a
simulation that would have taken 25 years (3140 seconds /
step) now takes one hour (15 ms / step).

6. Conclusions
We have given general guidelines to design equivariant
MPNNs and discussed the advantages of equivariant repre-
sentations over angular features in terms of computational
efficiency as well as their ability to propagate directional
information. On this basis, we have proposed PAINN that
yields fast and accurate predictions of scalar and tensorial

molecular properties. Thereby, equivariant message pass-
ing allows us to significantly reduce both model size and
inference time compared to directional message-passing
while retaining accuracy. Finally, we have demonstrated
that PAINN can be applied to the prediction of tensorial
properties, which we leverage to accelerate the simulation
of molecular spectra by 4-5 orders of magnitude – from
years to hours.

In future work, the equivariant representation of PAINN
as well as the ability to predict tensorial properties may be
leveraged in generative models of 3d geometries (Gebauer
et al., 2019; Köhler et al., 2019; Simm et al., 2020) or the
prediction of wavefunctions (Hegde & Bowen, 2017; Schütt
et al., 2019; Hermann et al., 2020). We see further applica-
tions of equivariant message passing in 3d shape recognition
and graph embedding (Goyal & Ferrara, 2018).

Many challenges remain for the fast and accurate prediction
of molecular properties, e.g. modeling of enzymatic active
sites or surface reactions. To describe such phenomena,
highly accurate reference methods are required. Due to their
computational cost, reference data generation can become a
bottleneck, making data-efficient MPNNs such as PAINN
invaluable for future chemistry research.
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