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Abstract
In this supplementary, we show the performance
of our approach using different embedding sizes
on Stanford Online Products and In-Shop Clothes
(Section 1), show the performance of our approach
on using larger images (Section 2), compare the
test time settings presented in the main work to
other possible settings (Section 3), show more
qualitative results (Section 4), visualize our re-
sults using t-SNE (van der Maaten & Hinton,
2012) (Section 5), visualize embeddings of the
backbone CNN when trained with and without
MPN (Section 6), give an analysis on different
numbers of message passing steps and attentions
heads on Stanford Online Products (Section 7),
analyse the impact of the batch construction pro-
cess (Section 8), provide a reality check of our
approach (Section 9) and, finally, show how our
method can be used with a large number of classes
(Section 10).

1. Different Embedding Sizes
To investigate the robustness of our approach concerning
different embedding sizes, we present the performance for
several embedding dimensions on Stanford Online Products
and In Shop Clothes, which complement the results pre-
sented on CUB-200-2011 and Cars196 in the main paper
(see Figure 6 in the main paper). The results with embedding
dimension up to 1024 can be found in Table 1. As one can
see, the performance on the smaller datasets increases with
increasing embedding dimension similar to Proxy Anchor
(Kim et al., 2020) while the performance on Stanford Online
Products remains the same. On the other hand, similar to the
Multi-Similarity loss (Wang et al., 2019) the performance is
shown to decrease on the In-Shop dataset if the size of the
embedding layer becomes larger than 512.
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2. Large Images and ProxyNCA++
Different from most approaches in the field of deep metric
learning, (Teh et al., 2020; Jacob et al., 2019) crop the im-
ages during training to size 256×256, while at test time they
first resize to 288×288 before again cropping to 256×256.
Naturally, larger images are expected to lead to an increased
performance. In the main work, for fair comparison, we
report the performance of (Teh et al., 2020) on the typi-
cal image size, i.e., 227 × 227. To obtain these numbers
we ran their provided code1 and compared the results to
the Recall@1 given in their supplementary to validate the
correctness, see Table 2.

We also evaluate the performance of our approach on im-
ages of size 256 × 256 to show that our performance also
increases when using larger images. As can be seen in Ta-
ble 3, when we use larger images, our performance increases
by 1.4pp Recall@1 and 0.3pp NMI on CUB-200-2011 and
1.9pp Recall@1 and 0.6pp NMI on Cars196. This leads to a
even larger increase in performance compared to (Teh et al.,
2020; Jacob et al., 2019). We also outperform (Kim et al.,
2020) who also gave additional results for larger-size images
(we already showed in the main paper that we outperform
(Kim et al., 2020) on regular-sized images).

3. Different Settings during Test Time
In this section, we detail three methods for batch construc-
tion when using the MPN during inference, as well as a
teacher-student approach to avoid batch construction at test
time.

3.1. Batch Construction Based on Clustering

Ideally, we imitate the batch construction process that hap-
pens during training, i.e., sampling n classes and taking k
samples for each. As we can not access ground truth labels
during test time, we are not able to construct batches in this
manner.

To this end, we first use randomly sampled batches to gen-
erate initial feature vectors using the backbone CNN. We

1https://github.com/euwern/proxynca_pp

https://github.com/euwern/proxynca_pp
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CUB-200-2011 Cars196 Stanford Online Products In-Shop Clothes
R@1 NMI R@1 NMI R@1 NMI R@1

Dimension 64 61.8 68.8 76.3 68.1 73.8 91.2 87.5
Dimension 128 65.1 69.3 81.6 69.4 79.1 92.3 91.3
Dimension 256 68.4 73.4 86.3 72.1 80.8 92.6 92.5
Dimension 512 70.3 74.0 88.1 74.8 81.4 92.6 92.8
Dimension 1024 71.8 72.8 89.5 75.0 81.4 92.5 91.7

Table 1. Performance of our approach using different embedding sizes on CUB-200-2011, Cars196, Stanford Online Products and In-Shop
Clothes datasets.

CUB-200-2011 Cars196 Stanford Online Products In-Shop Clothes
Our results on (Teh et al., 2020) 66.3 84.9 79.8 90.4
Results in (Teh et al., 2020) 64.7 ± 1.6 85.1 ± 0.3 79.6 ± 0.6 87.6 ± 1.0

Table 2. Comparison of Recall@1 on images of size 227× 227 using ProxyNCA ++ (Teh et al., 2020) of the results reported in (Teh
et al., 2020) and our results obtained by running their code.

CUB-200-2011 Cars196 Stanford Online Products In-Shop Clothes
R@1 NMI R@1 NMI R@1 NMI R@1

Horde512† (Jacob et al., 2019) 66.3 - 83.9 - 80.1 - 90.4
Proxy NCA++512† (Teh et al., 2020) 69.0 73.9 86.5 73.8 80.7 - 90.4
Proxy Anchor512† (Kim et al., 2020) 71.1 - 88.3 - 80.3 - 92.6
Ours512 70.3 74.0 88.1 74.8 81.4 92.6 92.8
Ours512† 71.7 74.3 90.2 75.4 81.7 92.3 92.9

Table 3. Performance of our approach using larger images compared to the approaches that only report their results on larger images. †
indicates results on larger images. Proxy Anchor (Kim et al., 2020) presents the results both in regular (shown in the tables in the main
paper) and large size images.

then use an approximation of the ground truth class as-
signment by using a clustering algorithm. We compare 6
common clustering algorithms as can be seen in Table 4.
Based on these clusters, we construct batches by sampling
from n clusters, k samples each, analogous to the training
procedure. This way, we ensure that every sample in the
mini-batch communicates with samples from its own cluster
(similar) and other clusters (dissimilar). We call the k sam-
ples belonging to one cluster a chunk. Finally, we compute
refined feature vectors using MPNs and use those features
for retrieval and clustering.

In general, clustering algorithms can be divided into two
groups: the ones that require a fixed number of clusters to
be generated, and the density-based cluster algorithms that
need a minimum number of samples per cluster as well as a
maximum distance ε between two samples to be considered
as neighbors.

As in theory, we do not know the ground truth number of
clusters during test time, we cannot use it for the cluster
construction in the first group. Therefore, we conduct exper-
iments on several different numbers of clusters and report
the results on the number that performs best. To be spe-
cific, the algorithms achieve the best performance if we set
the number of clusters to 900. This number is significantly

larger than the number of ground truth classes which is 100
and 98 for CUB-200-2011 and Cars196, respectively. In-
tuitively, using at least as many clusters as the number of
classes is necessary since otherwise samples of different
classes will be assigned to the same clusters. As overcluster-
ing constructs more clusters than the ground truth number of
classes and, therefore, smaller clusters than the ground truth
class sizes, the cluster assignment is less prone to outliers.
The performance of the algorithms that need a fixed number
of classes can be seen in Table 4, indicated by †. However,
they do not lead to a performance increase compared to the
performance using solely the backbone architecture.

While we can bypass the oversampling issue by using the
density-based algorithms (indicated by the ∗ in Table 4),
none of the used clustering algorithms assigns clusters in a
sufficiently accurate way such that the performance of the
backbone CNN gets improved.

3.2. Batch Construction Based on Nearest Neighbors

As another option, we sample chunks by randomly choosing
one anchor and finding its k − 1 nearest neighbors. Then
we construct batches consisting of n of these chunks and
feed them through the MPN. In every batch, we only update
the feature vectors of the anchors, meaning that we build
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CUB-200-2011 CARS196
R@1 NMI R@1 NMI

backbone only 70.3 74.0 88.1 74.8
K-means† 66.1 69.6 85.1 70.5
Ward clustering† 67.9 68.8 86.6 69.5
Spectral Clustering† 63.1 69.6 85.1 69.2
Birch† 65.5 69.5 86.1 70.0
DBSCAN* 65.7 72.0 85.0 70.3
Optics* 66.5 71.1 85.4 69.6
Nearest neighbors 62.1 69.2 84.8 70.2
Reciprocal kNN 70.8 74.5 88.6 76.2
Knowledge Distillation 65.7 70.3 85.6 71.6
Feature Imitation 65.3 70.1 85.6 70.9
Relational TS 64.9 68.7 84.7 70.5

Table 4. Performance of different settings of using the MPN during
test time as well as the performance of teacher student approaches.
† indicates clustering algorithms that need a fixed number of clus-
ters (900 clusters), * indicates density-based clustering algorithms
(eps=0.9, min sample=5)

one chunk for each image in the test set. As these chunks
again can be highly noisy, the performance after the MPN
drops compared to simply taking the embeddings from the
backbone (see ”nearest neighbors” in Table 4).

3.3. Reciprocal-kNN Batch Construction

Since imitating the training batch construction during test
time and simply using a sample’s k − 1 nearest neighbors
does not lead to a performance increase, we propose to con-
struct batches more strictly during test time. To that end, we
suggest constructing reciprocal k-nearest neighbor batches
inspired by (Zhong et al., 2017). Different from (Zhong
et al., 2017) who use reciprocal k-nearest neighbor for eval-
uation, we use a similar idea for batch construction (we
still do the final evaluation regularly, by simply evaluating
Recall@K and NMI). Knowing that samples that are highly
similar to the query sample are more likely to be of the
same class as the query image cq than dissimilar samples,
we first compute the k-nearest neighbor set Nk

q of a given
query q (see the upper part in Figure 3.3). However, Nk

q

still might contain noisy samples. Therefore, we reduce
Nk

q to a reciprocal k-nn set Nk
r,q by only taking samples

g ∈ Nk
q into account that also contain q in their own k-nn

set Nk
g (indicated by the green frames in the middle part

of Figure 3.3). Up to this step Nk
r,q only contains samples

that are already highly similar to the query image. Some
gallery samples g of class cq might not be directly contained
in Nk

r,q , but in Nk
r,g of some samples g ∈ Nr

q , k. Therefore,
we expand Nk

r,q to Ñk
r,q by the reciprocal 1

2k-nn set N0.5k
r,g

of the samples g ∈ Nk
r,q , if the following holds:

Figure 1. Reciprocal k-nearest neighbor batch sampling for MPN
during inference.

|Nk
r,q ∩N0.5k

r,g | ≥ α|N0.5k
r,g | (1)

where α ∈ [0, 1], |Ñk
r,q| = kr and kr is a constant. In the

expansion step of Figure 3.3, samples that fulfill the above
mentioned constraint for α = 2

3 are visualized by a green
frame, those who do not by a red frame. If |Ñk

r,q| < kr,
we add the closest samples to q that are not yet contained
in Ñk

r,q. Finally, we feed Ñk
r,q into the Message Passing

Network to refine the feature vector of q. As we have shown
(see Tab. 3 in the main paper) this approach improved the
performance during test time by 0.5pp Recall@1 and 0.5pp
NMI on CUB-200-2011 dataset and 0.5pp (Recall@1) and
1.4pp (NMI) on the Cars196 dataset.

3.4. Teacher Student Approach

As the latter approach requires the usage of additional
parameters during test time, we develop several teacher-
student approaches to transfer the knowledge of the MPN,
acting as a teacher, to the backbone CNN, acting as a stu-
dent.
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Figure 2. More qualitative results on CUB-200-2011

Figure 3. More qualitative results on Cars196

Knowledge Distillation. As our approach is based on the
cross-entropy loss function, we first use knowledge dis-
tillation (Hinton et al., 2015), where the class probability
distributions of the teacher are imitated by the student. The
advantage of this technique is that these probability dis-
tributions also contain information about the similarities
between classes. However, the usage of this approach does
not increase the performance compared to solely using the
backbone CNN, but decreases it by 4.6pp Recall@1 on
CUB-200-2011 and 2.5pp Recall@1 on Cars196 (see Ta-
ble 4)

Feature Imitation. Since we are not directly interested in
the class prediction quality of our network, but in the feature
vectors themselves, our second approach forces the student
to directly imitate the feature vectors. Further, those feature
vectors of the training data after the MPN are highly discrim-
inative. We apply the Huber Loss which is less sensitive to
outliers. Again, the performance drops by 5pp Recall@1 on
CUB-200-2011 and 2.5pp Recall@1 on Cars196 compared
to solely using the backbone CNN.

Figure 4. More qualitative results on Stanford Online Products

Figure 5. More qualitative results on In-Shop

Relational Teacher Student. Lastly, we utilize relational
knowledge distillation (Park et al., 2019), where the student
does not directly imitate the feature vectors, but the relations
between different feature vectors. This also supports the
paradigm of our MPN-based approach, where we refine
feature vectors by taking the relations between samples into
account. The performance, though, does not increase but
drops even more by 5.4pp Recall@1 on CUB-200-2011 and
3.4pp Recall@1 on Cars196.

4. Qualitative Results
In the main work, we already showed several examples
for our qualitative results. To show the robustness of our
approach, we will now show several more samples of quali-
tative results on CUB-200-2011 (Figure 2), Cars196 (Fig-
ure 3), Stanford Online Products (Figure 4) and In-Shop
Clothes (Figure 5). As can be seen, our approach is able to
retrieve images of the same class even for harder examples,
like in the first example of CUB-200-2011 (Figure 2).
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Figure 6. Comparison of the embeddings of a given batch after one epoch of training without and with MPN.

5. T-SNE
We now show a visualization of the embedding space ob-
tained by our approach on CUB-200-2011 using the t-
distributed stochastic neighbor embedding (t-SNE) (van der
Maaten & Hinton, 2012) in Figure 12. Every scatter point
represents a sample and different colors represent different
classes. As can be seen, our approach is able to achieve rep-
resentative clusters of many classes. We highlight several
groups of samples, that can be best viewed when zoomed
in.

6. MPN Matters 2.0 - Comparison of
Performance of Training with and without
MPN

In addition to the ablation studies in the main paper where
we showed the performance increase of the backbone CNN
trained with MPN over not using the MPN but solely cross-
entropy loss during training (see MPN matters) as well
as some visualizations of how the class prediction after the
MPN is influenced by other samples in the batch, we provide
some more visualizations that support these findings.

Firstly, we visualize the difference between the embeddings
after the backbone CNN of a given batch after one epoch of
training without and with MPN using t-distributed stochastic
neighbor embedding (t-SNE) (van der Maaten & Hinton,
2012). As can be seen in Figure 6, the features after the
backbone CNN are much more clustered than when training
without MPN.

Secondly, we again utilize t-SNE (van der Maaten & Hinton,
2012) to get low dimensional representations of the embed-
dings of all samples in a given test set after the whole train-
ing without as well as with MPN and sample 10 classes for
the sake of clarity. In Figure 7 and Figure 8 we show three
such subsets of classes for CUB-200-2011 and Cars196,
respectively. The upper rows in both figures represent em-
beddings generated by the backbone CNN trained without
MPN while the lower ones show embeddings generated
by the backbone trained with MPN. The backbone CNN

Figure 7. Visualization of 10 sampled classes from CUB-200-2011
test dataset when trained without MPN (upper row) and with MPN
(lower row).

Figure 8. Visualization of 10 sampled classes from Cars196 test
dataset when trained without MPN (upper row) and with MPN
(lower row).

trained using solely cross-entropy loss performs well on
many samples. However, our approach is able to better
divide more difficult classes from the remaining classes in
the embedding space as can be seen for example from the
dark blue class in the first column of Figure 7. Further, it is
less prone to outliers as can be seen in the second column in
Figure 8, where there are fewer outliers in all classes in the
lower row that shows the visualizations of the embeddings
trained with MPN. Finally, the embeddings of samples of
the same class most often lie closer together and are further
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Figure 9. Relative Difference with respect to Best Recall@1 on
Stanford Online Products.

apart from other classes as can be seen from the red and pink
classes in the central column of Figure 7 or the dark blue,
orange, and pink classes in the first column of Figure 8.

7. Analysis of Number of Message Passing
Steps and Heads on Stanford Online
Products

Additionally to the analysis of different numbers of message
passing steps and attention heads on CUB-200-2011 and
Cars196 in the main paper, we provide an equal analysis
on Stanford Online Products. Investigating the results on
CUB-200-2011 and Cars196 datasets one could assume that
with increasing size of the dataset an increasing number
of message passing steps is needed, as the best performing
model on CUB-200-2011 utilizes only one message passing
step while the best performing model on Cars196 utilizes
two message passing steps and CUB-200-2011 is smaller
than Cars196. However, as can be seen in Figure 9 this
is not the case, and the performance of our approach on
Stanford Online Products drops with an increasing number
of message passing steps and attention heads. As already
mentioned in the main paper, this is in line with (Velickovic
et al., 2018), who also utilize few message passing steps
when applying graph attention.

8. Different Number of Classes
We also conduct experiments to investigate the impact of
the composition of the batches concerning the number of
classes and the number of samples per class. Therefore
we vary the number of classes and samples on CUB-200-
2011 and Cars196 between five and ten. As can be seen
in Figure 10, the performance on CUB-200-2011 tends

CUB CARS SOP In-Shop
Ours 70.3 88.1 81.4 92.8
Ours reality check 67.1±0.69 86.7±0.48 81.1±0.13 92.5±0.11

Table 5. Performance of our approach following (Musgrave et al.,
2020) to find the hyperparameters (e.g., number of epochs) without
feedback from the test set.

to go down with an increasing number of classes while
on Cars196 (see Figure 11) the performance drops when
only a few samples per class are used. However, it can be
said that the performance is stable with the biggest drop in
performance on CUB-200-2011 being 2.8pp and 3.4pp on
Cars196.

9. Metric Learning Reality Check
(Musgrave et al., 2020) claim that the huge improvements
of recent metric learning approaches over prior works is
mainly caused by flaws in the experimental methodology
like utilizing a more powerful backbone, unsuitable evalua-
tion metrics or training with test set feedback. The authors
show, that the performance of ResNet50 is worse on CUB-
200-2011 and Cars196 than when using BN-Inception. To
prove that our approach is robust to the hyperparameter
choice we followed (Musgrave et al., 2020) to find the hy-
perparameters (e.g., number of epochs) without feedback
from the test set and report the results here. We get state-
of-the-art results in Cars196, Stanford Online Products, and
In-Shop datasets, and competitive results on CUB-200-2011
dataset compared to results mentioned in (Musgrave et al.,
2020) as can be seen in Table 5.

10. Large Number of Classes
Our method uses a fully connected layer to compute the
final loss function. In cases where the number of classes
increases, then the size of the classification layer increases
too. While this typically is not a problem for metric learning
datasets which contain from hundreds to tens of thousands of
classes, it can become a problem for the closely related prob-
lem of face recognition, where datasets typically contain mil-
lions of classes. Unlike our method (and other classification-
based methods (Zhai & Wu, 2019; Zheng et al., 2019; Qian
et al., 2019; Elezi et al., 2020)), methods that use a pair-
wise (e.g. contrastive/triplet) loss function do not have this
problem.

Nevertheless, there are ways of facing the problem. Nor-
malized Softmax (Zhai & Wu, 2019) tackles the problem
by sampling a mini-batch only from a certain number of
classes, a strategy proposed also in Group Loss (Elezi et al.,
2020). Our method uses this sampling strategy in default
mode (in each mini-batch, we sample only a certain number
of classes). Consequently, we know in advance which units
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Figure 10. Relative Difference with respect to Best Recall@1 on
CUB-200-2011.

Figure 11. Relative Difference with respect to Best Recall@1 on
Cars196.

of the last layer need to be modified, and all the other units
can easily get masked out for a more efficient tensor-tensor
multiplication.

Dealing with datasets that contain a large number of classes
is a problem that has been widely studied in natural language
processing (Mikolov et al., 2013), typically solved by replac-
ing the softmax layer with hierarchical-softmax (Mnih &
Hinton, 2008). Considering that the problem is similar, we
could envision replacing softmax with hierarchical-softmax
for our problem to have a more efficient method.
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Figure 12. t-SNE (van der Maaten & Hinton, 2012) visualization of our embeddings on the CUB-200-2011 (Wah et al., 2011) dataset
with some clusters highlighted. Best viewed on a monitor when zoomed in.



Supplementary Material: Learning Batch Connections for Deep Metric Learning

References
Elezi, I., Vascon, S., Torchinovich, A., Pelillo, M., and Leal-
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