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A. Extended Related Work
The relevant prior work can be broadly classified under the following three categories:

General Contextual Bandits: The general contextual bandit problem has been studied for more than two
decades. In the agnostic setting where the mean reward of the arms given a context is not fully captured by
the function class F , the problem was studied in the adversarial setting leading to the well-known EXP-4 class
of algorithms (Auer et al., 2002; McMahan & Streeter, 2009; Beygelzimer et al., 2011). These algorithms can
achieve the optimal Õ(

√
AT log(T |F|)) regret bound but the computational cost per time-step can be O(|F|).

This paved the way for oracle-based contextual bandit algorithms in the stochastic setting (Agarwal et al., 2014;
Langford & Zhang, 2007). The algorithm in (Agarwal et al., 2014) can achieve optimal regret bounds while
making only Õ(

√
AT ) calls to a cost-sensitive classification oracle, however the algorithm and the oracle are not

easy to implement in practice. In more recent work, it has been shown that algorithms that use regression oracles
work better in practice (Foster et al., 2018). In this paper we will be focused on the realizable (or near-realizable)
setting, where there exists a function in the function class, which can model the expected reward of arms given
context. This setting has been studied with great practical success under specific instances of the function classes,
such as linear. Most of the successful approaches are based on Upper Confidence Bound strategies or Thompson
Sampling (Filippi et al., 2010; Chu et al., 2011; Krause & Ong, 2011; Agrawal & Goyal, 2013), both of which lead
to algorithms which are heavily tailored to the specific function class. The general realizable case was modeled
in (Agarwal et al., 2012) and recently there has been exciting progress in this direction. The authors in (Foster
& Rakhlin, 2020) identified that a particular exploration scheme that dates back to (Abe & Long, 1999) can lead
to a simple algorithm that reduces the contextual bandit problem to online regression and can achieve optimal
regret guarantees. The same idea was extended for the stochastic realizable contextual bandit problem with
an offline batch regression oracle (Simchi-Levi & Xu, 2020; Foster et al., 2020b). We build on the techniques
introduced in these works. However all the literature discussed so far only address the problem of selecting one
arm per time-step, while we are interested in selection the top-k arms at each time step.

Exploration in Combinatorial Action Spaces: In (Qin et al., 2014) authors study the k-arm selection problem in
contextual bandits where the function class is linear and the utility of a set of arms chosen is a set function with
some monotonicity and Lipschitz continuity properties. In (Yue & Guestrin, 2011) the authors study the problem
of retrieving k-arms in contextual bandits in the context of a linear function class and the assumption that the
utility of a set of arms is sub-modular. Both these approaches do not extend to general function classes and are
not applicable to the extreme setting. In the context of off-policy learning from logged data there are several
works that address the top-k arms selection problem under the context of slate recommendations (Swaminathan
et al., 2017; Narita et al., 2019). We will now review the combinatorial action space literature in multi-armed
bandit (MAB) problems. Most of the work in this space deals with semi-bandit feedback (Chen et al., 2016;
Combes et al., 2015; Kveton et al., 2015; Merlis & Mannor, 2019). This is also our feedback model, but we
work in a contextual setting. There is also work in the full-bandit feedback setting, where one gets to observe
only one representative reward for the whole set of arms chosen. This body of literature can be divided into
the adversarial setting (Merlis & Mannor, 2019; Cesa-Bianchi & Lugosi, 2012) and the stochastic setting (Dani
et al., 2008; Agarwal & Aggarwal, 2018; Lin et al., 2014; Rejwan & Mansour, 2020).

Learning in eXtreme Output Spaces: The problem of learning from logged bandit feedback when the number
of arms is extreme was studied recently in (Lopez et al., 2020). In (Majzoubi et al., 2020) the authors address
the contextual bandit problem for continuous action spaces by using a cost sensitive classification oracle for
large number of classes, which is itself implemented as a hierarchical tree of binary classifiers. In the context
of supervised learning the problem of learning under large but correlated output spaces has been studied under
the banner of eXtreme Multi-Label Classification/Ranking (XMC/ XMR) (see (Bhatia et al., 2016) and refer-
ences). Tree based methods for XMR have been extremely successful (Jasinska et al., 2016; Prabhu et al., 2018;
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Khandagale et al., 2020; Wydmuch et al., 2018; You et al., 2019; Yu et al., 2020). In particular our assumptions
about arm hierarchy and the implementation of our algorithms have been motivated by (Prabhu et al., 2018; Yu
et al., 2020).

B. Continuation of the Motivating Example
We introduce a hierarchical decomposition T for A, which in this case is a balanced 2d-ary tree. At the leaf level,
each tree node has a maximum number of m arms from the extreme arm space A. The height of such a tree is
H ≈ dlogdA/mee under some mild assumptions on the distributions of the arms in A. For a specific depth h, we
use eh,i to denote a node with index i at depth h and Ch,i to denote the 2d children of eh,i at depth h+ 1. Each
node eh,i of the tree is further equipped with a routing function gh,i(x) =

radh,i

‖x−ctrh,i‖ , where ctrh,i is the center of
the node eh,i and radh,i is the radius of the smallest ball at ctrh,i that contains eh,i. The center ctrh,i serves as
a representative for the set of arms in eh,i. Figure 1 (left) illustrates the hierarchical decomposition for the 1D
case.

Given a context x, we perform an adaptive search through this hierarchical decomposition T , parameterized by
a constant β ∈ (0, 1). Initially, the sets Ix and Sx are set to be empty and the search starts from the root of
the tree. When a node eh,i is visited, it is considered far from x if gh,i(x) =

radh,i

‖x−ctrh,i‖ ≤ β and close to x if
gh,i(x) =

radh,i

‖x−ctrh,i‖ > β. If eh,i is far from x, we simply place it in Ix. If eh,i close to x, we visit its children in
Ch,i recursively if eh,i is an internal node or place it in Sx if it is a leaf. At the end of the search, Ix consists of
a list of nodes and Sx is a list of singleton arms.

We claim that the union of the singleton arms in Sx and the nodes in Ix form an x-dependent decomposition
Ax. First, the disjoint union of Ix and Sx covers the whole arm space A. Sx contains only O(1) singleton arms
with arm features close to the context feature x while the size of Ix is bounded by O(logA) as there are at most
O(1) nodes eh,i inserted into Ix at each of the O(logA) levels. Hence, the sum of the cardinalities of Sx and Ix
is bounded by Z = O(logA), i.e., logarithmic in the size A of the extreme arm space A.

Second, for any two original arms a1, a2 corresponding to a node eh,i ∈ Ix,

|r(x, a1)− r(x, a2)| ≤ ‖∂lr(x, a′)‖ · ‖a1 − a2‖ ≤
η

‖x− a′‖
· (2 radh,i),

where a′ lies on the segment between a1 and a2. Since

‖x− a′‖ ≥ ‖x− ctrh,i‖ − ‖a′ − ctrh,i‖ ≥ (1/β − 1)radh,i

holds for eh,i ∈ Ix,

|r(x, a1)− r(x, a2)| ≤ η

(1/β − 1)radh,i
· (2 radh,i) =

2ηβ

1− β
.

Hence, if one chooses β so that 2ηβ/(1 − β) ≤ ε, then |r(x, a1) − r(x, a2)| ≤ ε for any two arms a1, a2 in any
eh,i ∈ Ix.

Therefore for each x, the union of the singleton arms in Sx and the nodes in Ix form an x-dependent decomposition
of A that satisfies the conditions (2) and (3). Figure 1 (middle) shows the decomposition for a given context x,
while Figure 1 (right) shows how the decomposition varies with the context x. In what follows, we shall refer to
the members of Ix node effective arms and the ones of Sx singleton effective arms.

C. Top-k Analysis

Notation: Let l denote epoch index with nl time steps. Define Nl =
∑l
i=1 ni. At the beginning of each epoch

l, we compute ŷl(x, a) as regression with respect to past data,

ŷl = argmin
f∈F

Nl−1∑
t=1

∑
a∈Φt

(f(xt, a)− rt(a))2,
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where Φt is the subset for which the learner receives feedback.

Let {φl}l≥2 be a sequence of numbers. The analysis in this section will be carried out under the event

E =

l ≥ 2 :
2

Nl−1

Nl−1∑
s=1

Exs,As

{
1

k

∑
a∈As

(ŷl(xs, a)− f∗(xs, a))2|Hs−1

}
≤ φ2

l

 (4)

Lemmas 5 and 7 compute φl for finite class F , such that event E holds with high probability.

We define γl =
√
A− k + 1/(32φl), the scaling parameter used by Algorithm 1. In this paper, we analyze

Algorithm 1 with r = 1, i.e. our procedure deterministically selects top k − 1 actions of ŷl and selects the
remaining action according to Inverse Gap Weighting on the remaining coordinates.

A deterministic strategy α is a map α : X → A. Throughout the proofs, we employ the following shorthand
to simplify the presentation. We shall write ŷi(x, α) and f∗(x, α) in place of ŷi(x, α(x)) and f∗(x, α(x)). We
reserve the letter α for a strategy and a for an action.

Given x, we let α̂jl (x) be the j-th highest action according to ŷl(x, ·). Similarly, α∗,j(x) is the j-th highest
action according to f∗(x, ·). We say that the set of strategies α1, . . . , αk is non-overlapping if for any x the set
{α1(x), . . . , αk(x)} is a set of distinct actions. Let e(s) denote the epoch corresponding to time step s.

Our argument is based on the beautiful observation of (Simchi-Levi & Xu, 2020) that one can analyze IGW
inductively, by controlling the differences between estimated gaps (to the best estimated action) and the true
gaps (to the best true action in the given context), with a mismatched factor of 2. We extend this technique to
top-k selection, which introduces a number of additional difficulties in the analysis.

Induction hypothesis (l): For any epoch i < l, and all non-overlapping strategies α1, . . . , αk ∈ AX ,

Ex


k∑
j=1

[ŷi(x, α̂
j
i )− ŷi(x, α

j)]− 2

k∑
j=1

[f∗(x, α∗,j)− f∗(x, αj)]

 ≤ k(A− k + 1)

γi

and

Ex


k∑
j=1

[f∗(x, α∗,j)− f∗(x, αj)]− 2

k∑
j=1

[ŷi(x, α̂
j
i )− ŷi(x, α

j)]

 ≤ k(A− k + 1)

γi
.

Lemma 1. Suppose event (4) holds. For all non-overlapping strategies α1, . . . , αk,

Ex
1

k

k∑
j=1

|ŷl(x, αj)− f∗(x, αj)| ≤ φl ·

(A− k + 1) +

l−1∑
i=1

ni
Nl−1

γiEx
1

k

k∑
j=1

[
ŷi(x, α̂

j
i )− ŷi(x, α

j)
]1/2

Hence, by the induction hypothesis (l),

Ex
1

k

k∑
j=1

|ŷl(x, αj)− f∗(x, αj)| ≤
√

2φl ·

(A− k + 1) + γlEx
1

k

k∑
j=1

[
f∗(x, α∗,j)− f∗(x, αj)

]1/2

assuming γi are non-decreasing.

Proof. Given x, let Tx(ŷi) ⊂ [A] denote the indices of top k − 1 actions according to ŷi(x, ·). Let pi(·|x) denote the IGW
distribution on epoch i, with support on the remaining A− k + 1 actions. On round s in epoch e(s), given xs, Algorithm 1
with r = 1 chooses As by selecting Txs

(ŷe(s)) determistically and selecting the last action according to pe(s)(·|xs). We
write pe(s)(α|xs) as a shorthand for pe(s)(α(xs)|xs).

For non-overlapping strategies α1, . . . , αk,

Ex
1

k

k∑
j=1

|ŷl(x, αj)− f∗(x, αj)| =
1

Nl−1

Nl−1∑
s=1

Exs

1

k

k∑
j=1

∣∣ŷl(xs, αj)− f∗(xs, αj)∣∣
.



Top-k Extreme Contextual Bandits

This sum can be written as

1

Nl−1

Nl−1∑
s=1

Exs

1

k

k∑
j=1

∣∣ŷl(xs, αj)− f∗(xs, αj)∣∣ · 1{αj(xs) ∈ Txs
(ŷe(s))

}

+
1

k

k∑
j=1

|ŷl(xs, αj)− f∗(xs, αj)|
√
pe(s)(αj |xs)

1√
pe(s)(αj |xs)

· 1
{
αj(xs) /∈ Txs

(ŷe(s))
}.

By the Cauchy-Schwartz inequality, the last expression is upper-bounded by

 1

Nl−1

Nl−1∑
s=1

Exs

1

k

k∑
j=1

|f∗(xs, αj)− ŷl(xs, αj)|21
{
αj(xs) ∈ Txs(ŷe(s))

}1/2

+

 1

Nl−1

Nl−1∑
s=1

Exs

1

k

k∑
j=1

|f∗(xs, αj)− ŷl(xs, αj)|2pe(s)(αj |xs)1
{
αj(xs) /∈ Txs

(ŷe(s))
}1/2

×

 1

Nl−1

Nl−1∑
s=1

Exs

1

k

k∑
j=1

1

pe(s)(αj |xs)
1
{
αj(xs) /∈ Txs

(ŷe(s))
}1/2

≤

 1

Nl−1

Nl−1∑
s=1

Exs

1

k

∑
a∈Txs (ŷe(s))

|f∗(xs, a)− ŷl(xs, a)|2
1/2

+

 1

Nl−1

Nl−1∑
s=1

1

k
Exs,a∼pe(s)(·|xs)|f∗(xs, a)− ŷl(xs, a)|2

1/2

×

 l−1∑
i=1

ni
Nl−1

Ex
1

k

k∑
j=1

1

pi(αj |x)
1
{
αj(x) /∈ Tx(ŷi)

}1/2

.

We further upper bound the above by
 1

Nl−1

Nl−1∑
s=1

Exs

1

k

∑
a∈Txs (ŷe(s))

|f∗(xs, a)− ŷl(xs, a)|2
1/2

+

 1

Nl−1

Nl−1∑
s=1

1

k
Exs,a∼pe(s)(·|xs)|f∗(xs, a)− ŷk(xs, a)|2

1/2


×

1 ∨
l−1∑
i=1

ni
Nl−1

Ex
1

k

k∑
j=1

1

pi(αj |x)
1
{
αj /∈ Tx(ŷi)

}1/2

≤

 2

Nl−1

Nl−1∑
s=1

1

k
Exs

 ∑
a∈Txs (ŷe(s))

|f∗(xs, a)− ŷl(xs, a)|2 + Ea∼pe(s)(·|xs)|f∗(xs, a)− ŷl(xs, a)|2
1/2

(5)

×

1 ∨
l−1∑
i=1

ni
Nl−1

Ex
1

k

k∑
j=1

1

pi(αj |x)
1
{
aj(x) /∈ Tx(ŷi)

}1/2

(6)
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where we use (
√
a+
√
b)2 ≤ 2(a+ b) for nonnegative a, b. Now, observe that

Exs

 ∑
a∈Txs (ŷe(s))

|f∗(xs, a)− ŷl(xs, a)|2 + Ea∼pe(s)(·|xs)|f∗(xs, a)− ŷl(xs, a)|2
 (7)

= Exs,As

{∑
a∈As

(ŷl(xs, a)− f∗(xs, a))2|Hs−1

}
(8)

by the definition of the selected set As in Algorithm 1 with r = 1. Under the event (4), the expression in (5) is at most φl.
We now turn to the expression in (6). Note that by definition, for any strategy αj

1

pi(αj |x)
1
{
aj(x) /∈ Tx(ŷi)

}
=
[
(A− k + 1) + γi(ŷi(x, α̂

k
i )− ŷi(x, αj))

]
1
{
αj(x) /∈ Tx(ŷi)

}
≤ (A− k + 1) + γi

[
ŷi(x, α̂

k
i )− ŷi(x, αj)

]
+
,

where [a]+ = max{a, 0}. Therefore, by Lemma 3, for any non-overlapping strategies α1, . . . , αk,

1

k

k∑
j=1

1

pi(αj |x)
1
{
αj(x) /∈ Tx(ŷi)

}
≤ (A− k + 1) +

1

k

k∑
j=1

γi
[
ŷi(x, α̂

k
i )− ŷi(x, αj)

]
+

≤ (A− k + 1) +
1

k

k∑
j=1

γi

[
ŷi(x, α̂

j
i )− ŷi(x, α

j)
]
.

Since the above expression is at least (A−k+ 1) ≥ 1, we may drop the maximum with 1 in (6). Putting everything together,

Ex
1

k

k∑
j=1

|ŷl(x, αj)− f∗(x, αj)| ≤ φl ·

(A− k + 1) +

l−1∑
i=1

ni
Nl−1

γiEx
1

k

k∑
j=1

[
ŷi(x, α̂

j
i )− ŷi(x, α

j)
]1/2

To prove the second statement, by induction we upper bound the above expression by

φl ·

(A− k + 1) + max
i<l

γi

2Ex
1

k

k∑
j=1

[
f∗(x, α∗,j)− f∗(x, αj)

]
+
A

γi


1/2

≤ φl ·

2(A− k + 1) + 2γlEx
1

k

k∑
j=1

[
f∗(x, α∗,j)− f∗(x, αj)

]1/2

.

We now prove that inductive hypothesis holds for each epoch l.
Lemma 2. Suppose we set γl =

√
A− k + 1/(32φl) for each l, and that event E in (4) holds. Then the induction hypothesis

holds for each l ≥ 2.

Proof. The base of the induction (l = 2) is satisfied trivially if γ2 = O(1) since functions are bounded. Now suppose the
induction hypothesis (l) holds for some l ≥ 2. We shall prove it for (l + 1).

Denote by α = (α1, . . . , αk) any set of non-overlapping strategies. We also use the shorthand A′ = A− k + 1 for the size
of the support of the IGW distribution. Define

R(α) = Ex
1

k

k∑
j=1

[
f∗(x, α∗,j)− f∗(x, αj)

]
, R̂l(α) = Ex

1

k

k∑
j=1

[
ŷl(x, α̂

j
l )− ŷk(x, αj)

]
.
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Since [
f∗(x, α∗,j)− f∗(x, a)

]
=
[
ŷl(x, α

∗,j)− ŷl(x, a)
]

+
[
f∗(x, α∗,j)− ŷl(x, α∗,j)

]
+ [ŷl(x, a)− f∗(x, a)],

it holds that
k∑
j=1

[
f∗(x, α∗,j)− f∗(x, αj)

]
=

k∑
j=1

[
ŷl(x, α

∗,j)− ŷl(x, αj)
]

+

k∑
j=1

[
f∗(x, α∗,j)− ŷl(x, α∗,j)

]
+

k∑
j=1

[
ŷl(x, α

j)− f∗(x, αj)
]

≤
k∑
j=1

[
ŷl(x, α̂

j
l )− ŷl(x, α

j)
]

+

k∑
j=1

[
f∗(x, α∗,j)− ŷl(x, α∗,j)

]
+

k∑
j=1

[
ŷl(x, α

j)− f∗(x, αj)
]
.

Therefore, for any α,

R(α) ≤ Ex
1

k

k∑
j=1

[
ŷl(x, α

∗,j)− ŷl(x, αj)
]

+ Ex
1

k

k∑
j=1

[
f∗(x, α∗,j)− ŷl(x, α∗,j)

]
+ Ex

1

k

k∑
j=1

[
ŷl(x, α

j)− f∗(x, αj)
]
. (9)

For the middle term in (9), we apply the last statement of Lemma 1 to α∗,1, . . . , α∗,k. We have:

Ex
1

k

k∑
j=1

[
f∗(x, α∗,j)− ŷl(x, α∗,j)

]
≤
√

2A′φl·

For the last term in (9),

1

k

k∑
j=1

Ex
[
ŷl(x, α

j)− f∗(x, αj)
]
≤
√

2φl · (A′ + γlR(α))
1/2
.

Hence, we have the inequality

R(α) ≤ R̂l(α) +
√

2A′φl +
√

2φl · (A′ + γlR(α))
1/2

≤ R̂l(α) + 2φl
√

2A′ + φl
√

2γlR(α)

≤ R̂l(α) + 2φl
√

2A′ + γlφ
2
l +

1

2
R(α)

and thus

R(α) ≤ 2R̂l(α) + 4φl
√

2A′ + 2γlφ
2
l ≤ 2R̂l(q) +A′/(2γl)

On the other hand,[
ŷl(x, α̂

j
l )− ŷl(x, α

j)
]

=
[
f∗(x, α̂jl )− f

∗(x, αj)
]

+
[
ŷl(x, α̂

j
l )− f

∗(x, α̂jl )
]

+
[
f∗(x, αj)− ŷl(x, αj)

]
and so

k∑
j=1

[
ŷl(x, α̂

j
l )− ŷl(x, α

j)
]

=

k∑
j=1

[
f∗(x, α̂jl )− f

∗(x, αj)
]

+

k∑
j=1

[
ŷl(x, α̂

j
l )− f

∗(x, α̂jl )
]

+

k∑
j=1

[
f∗(x, αj)− ŷl(x, αj)

]
≤

k∑
j=1

[
f∗(x, α∗,j)− f∗(x, αj)

]
+

k∑
j=1

[
ŷl(x, α̂

j
l )− f

∗(x, α̂jl )
]

+

k∑
j=1

[
f∗(x, αj)− ŷl(x, αj)

]
.
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Therefore, for any α

R̂l(α) ≤ R(α) + Ex
1

k

k∑
j=1

[ŷl(x, α̂
j
l )− f

∗(x, α̂jl )] + Ex
1

k

k∑
j=1

[f∗(x, αj)− ŷl(x, αj)]. (10)

The last term in (10) is bounded by Lemma 1 by

Ex
1

k

k∑
j=1

|f∗(x, αj)− ŷl(x, αj)| ≤
√

2φl · (A′ + γlR(α))
1/2

≤
√

2φl ·
(
A′ + 2γlR̂l(α) +A′/2

)1/2

≤ 2φl
√
A′ + 2φ2

l γl +
1

2
R̂l(α)

≤ A′

4γl
+

1

2
R̂l(α).

Now, for the middle term in (10), we use the above inequality with α̂l = (α̂1
l , . . . , α̂

k
l ):

Ex
1

k

k∑
j=1

[ŷl(x, α̂
j
l )− f

∗(x, α̂jl )] ≤
A′

4γl
+

1

2
R̂l(α̂l) =

A′

4γl
.

Putting the terms together,

R̂l(α) ≤ 2R(α) +
A′

γl
.

Since α is arbitrary, the induction step follows.

Lemma 3. For v ∈ RA, let â1, . . . , âk be indices of largest k coordinates of v in decreasing order. Let a1, . . . , ak be any
other set of distinct coordinates. Then

k∑
j=1

[v(âk)− v(aj)]+ ≤
k∑
j=1

v(âj)− v(aj)

Proof. We prove this by induction on r. For r = 1,

[v(â1)− v(a1)]+ = v(â1)− v(a1)

Induction step: Suppose
k−1∑
j=1

[v(âk)− v(bj)]+ ≤
k−1∑
j=1

v(âj)− v(bj)

for any b1, . . . , bk−1. Let am = argminj=1,...,k v(aj). Since all the values are distinct, it must be that v(âk) ≥ v(am).
Applying the induction hypothesis to {a1, . . . , ak} \ {am} and adding

[v(âk)− v(am)]+ = v(âk)− v(am)

to both sides concludes the induction step.

Proof of Theorem 1. Recall that on epoch l, the strategy is α1
l = α̂1

l , . . . , α
k−1
l = α̂k−1

l for the first k − 1 arms, and then
sampling αkl (x) from IGW distribution pl. Observe that for any x and any draw αkl (x), the set of k arms is distinct (i.e. the
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strategies are non-overlapping), and thus under the event E in (4), Lemma 1 and inductive statements hold. Hence, expected
regret per step in epoch l is bounded as

Ex,αk
l (x)

k∑
j=1

[f∗(x, α∗,j)− f∗(x, αjl )] (11)

≤ k(A− k + 1)

γl
+ 2Ex,αk

l (x)

k∑
j=1

[ŷl(x, α̂
j
l ))− ŷl(x, α

j)]

=
k(A− k + 1)

γl
+ 2Ex,αk

l (x)[ŷl(x, α̂
k
l ))− ŷl(x, αkl )]

≤ k(A− k + 1)

γl
+ 2Ex

∑
a/∈Tx(ŷl)

ŷl(x, α̂
k
l )− ŷl(x, a)

(A− k + 1) + γl[ŷl(x, α̂kl )− ŷl(x, a)]

≤ k(A− k + 1)

γl
+

2(A− k + 1)

γl
(12)

From Lemma 5, the event E in (4) holds with probability at least 1− δ if we set

φl =

√
162

cNl−1
log

( |F|N3
l−1

δ

)
.

Now recall that we set Nl = 2l ≤ 2T and γl =
√
A− k + 1/(32φl). Combining this with equation (12), we find that the

cumulative regret is bounded with probability at least 1− δ by

R(T ) ≤
e(T )∑
l=2

(k + 2)(A− k + 1)Nl−1

γl

≤ c−1/2408(k + 2)

√
(A− k + 1) log

(
|F|T 3

δ

) log2(2T )∑
l=2

2(l−1)/2

≤ c−1/22308(k + 2)

√
(A− k + 1)T log

(
|F|T 3

δ

)
.

Proof of Theorem 2. The proof is essentially the same as the proof of Theorem 1.

From Lemma 7, the event E in (4) holds with probability at least 1− δ if we set

φl =

√
420

cNl−1
log

( |F|N3
l−1

δ

)
+ 2ε2.

Combining this with equation (12) we get that the regret is bounded by,

R(T ) ≤
e(T )∑
l=2

(k + 2)(A− k + 1)Nl−1

γl

≤ c−1/2656(k + 2)

√
(A− k + 1) log

(
|F|T 3

δ

) log2(2T )∑
l=2

2(l−1)/2 + 46(k + 2)
√

(A− k + 1)ε2
e(T )∑
l=2

Nl−1

≤ c−1/23711(k + 2)

√
(A− k + 1)T log

(
|F|T 3

δ

)
+ 46(k + 2)T

√
(A− k + 1)ε2

given E is true.
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D. Regression Martingale Bound
Recall that we have the following dependence structure in our problem. On each round s, context xs is drawn
independently of the past Hs−1 and rewards rs = {rs(a)}a∈A are drawn from the distribution with mean
f∗(xs, a). The algorithm selects a random set As given xs, and feedback is provided for a (possibly random)
subset Φs ⊆ A. Importantly, As and Φs are independent of rs given xs.

The next lemma considers a single time step s, conditionally on the past Hs−1.
Lemma 4. Let xs, rs = {rs(a)}a∈A be sampled from the data distribution, and letAs ⊆ A be conditionally independent of
rs given xs. Let Φs ⊆ As be a random subset given As and xs, but independent of rs. Fix an arbitrary f : X ×A → [0, 1]
and define the following random variable,

Ys =
1

k

∑
a∈A

(
(f(xs, a)− rs(a))2 − (f∗(xs, a)− rs(a))2

)
× 1{a ∈ Φs}.

Then, under the realizability assumption (Assumption 1), we have the following,

Exs,rs,As,Φs
[Ys] =

1

k

∑
a∈A

Exs,As,Φs

{
(f(xs, a)− f∗(xs, a))2 × 1{a ∈ Φs}

}
and

Varxs,rs,As,Φs
[Ys] ≤ 4Exs,rs,As,Φs

[Ys].

Proof. By the conditional independence assumptions,

Exs,rs,As,Φs
[Ys] =

1

k

∑
a∈A

Exs,rs,As,Φs
{(f(xs, a)− f∗(xs, a))(f(xs, a) + f∗(xs, a)− 2rs(a))× 1{a ∈ Φs}}

=
1

k

∑
a∈A

Exs,As,Φs

{
(f(xs, a)− f∗(xs, a))2 × 1{a ∈ Φs}

}
.

We also have

Y 2
s ≤

1

k

∑
a∈A

(f(xs, a)− f∗(xs, a))2(f(xs, a) + f∗(xs, a)− 2rs(a))2 × 1{a ∈ Φs}

≤ 4

k

∑
a∈A

(f(xs, a)− f∗(xs, a))2 × 1{a ∈ Φs}.

Lemma 5. Let ŷl be the estimate of the regression function f∗ at epoch l. Assume the conditional independence structure
in Lemma 4 and suppose Assumption 1 holds. LetHt−1 denote history (filtration) up to time t− 1. Then for any δ < 1/e,

E =

l ≥ 2 :

Nl−1∑
s=1

Exs,As

{
1

k

∑
a∈As

(ŷl(xs, a)− f∗(xs, a))2|Hs−1

}
≤ c−181 log

( |F|N3
l−1

δ

)
holds with probability at least 1− δ.

Proof. Following Lemma 4, let

Ys(f) =
1

k

∑
a∈A

(
(f(xs, a)− rs(a))2 − (f∗(xs, a)− rs(a))2

)
× 1{a ∈ Φs}.
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The argument proceeds as in (Agarwal et al., 2012). Let Es and Vars denote the conditional expectation and conditional
variance givenHs−1. By Freedman’s inequality (Bartlett et al., 2008), for any t, with probability at least 1− δ′ log t, we
have

t∑
s=1

Es[Ys(f)]−
t∑

s=1

Ys(f) ≤ 4

√√√√ t∑
s=1

Vars[Ys(f)] log(1/δ′) + 2 log(1/δ′)

Let X(f) =
√∑t

s=1 Es[Ys(f)], Z(f) =
∑t
s=1 Ys(f) and C =

√
log(1/δ′). In view of Lemma 4, with probability at

least 1− δ′ log t,

X(f)2 − Z(f) ≤ 8CX(f) + 2C2

and hence

(X(f)− 4C)2 ≤ Z(f) + 18C2.

Consequently, with the aforementioned probability, for all functions f ∈ F (and, in particular, for ŷl),

(X(f)− 4C ′)2 ≤ Z(f) + 18C ′2

where C ′ =
√

log(|F|/δ′). Now recall that

ŷl = argmin
f∈F

Nl−1∑
t=1

∑
a∈Φt

(f(xt, a)− rt(a))2

where Φt is a random feedback set satisfying Assumption 3. Hence, Z(ŷl) ≤ 0 for t = Nl−1, implying that with probability
at least 1− δ′/(N2

l−1),

Nl−1∑
s=1

1

k

∑
a∈A

Exs,As,Φs

{
(ŷl(xs, a)− f∗(xs, a))2 × 1{a ∈ Φs}|Hs−1

}
≤ 81 log

( |F|N2
l−1 log(Nl−1)

δ′

)
.

We now take a union bound over l and recall that
∑
i≥1 1/i2 = π2/6 < 2.

Finally, observe that by Assumption 3,

Exs,As,Φs

{
(ŷl(xs, a)− f∗(xs, a))2 × 1{a ∈ Φs}|Hs−1

}
= Exs,As

{
(ŷl(xs, a)− f∗(xs, a))2 × 1{a ∈ As} × P(a ∈ Φs|xs,As)|Hs−1

}
≥ c · Exs,As

{
(ŷl(xs, a)− f∗(xs, a))21{a ∈ As}|Hs−1

}
.

We conclude that with probability at least 1− 2δ′, for all l ≥ 2,

Nl−1∑
s=1

1

k
Exs,As

{∑
a∈As

(ŷl(xs, a)− f∗(xs, a))2|Hs−1

}
≤ c−181 log

( |F|N2
l−1 log(Nl−1)

δ′

)
.

E. Regression Martingale Bound with Misspecification
Lemma 6. Under the notation and assumptions of Lemma 4, but in the case of misspecified model (Assumption 2 replacing
Assumption 1), it holds that

Varxs,rs,As,Φs [Ys] ≤ 8Exs,rs,As,Φs [Ys] + 16ε2.
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Proof. The proof is along the lines of Lemma 4 (see also (Foster & Rakhlin, 2020)). We have for any f : X ×A → [0, 1],

Exs,rs,As,Φs
[Ys] =

1

k

∑
a∈A

Exs,rs,As,Φs
{(f(xs, a)− f∗(xs, a))(f(xs, a) + f∗(xs, a)− 2rs(a))× 1{a ∈ Φs}}

=
1

k

∑
a∈A

Exs,As,Φs

{
(f(xs, a)− f∗(xs, a))2 × 1{a ∈ Φs}

}
+

2

k

∑
a∈A

Exs,As,Φs
{(f(xs, a)− f∗(xs, a))(f∗(xs, a)− Ers

[r(a)|xs])× 1{a ∈ Φs}}.

Rearranging, using AM-GM inequality, and Assumption 2,

1

k

∑
a∈A

Exs,As,Φs

{
(f(xs, a)− f∗(xs, a))2 × 1{a ∈ Φs}

}
= Exs,rs,As,Φs

[Ys]−
2

k

∑
a∈A

Exs,As,Φs
{(f(xs, a)− f∗(xs, a))(f∗(xs, a)− Ers

[r(a)|xs])× 1{a ∈ Φs}}

≤ Exs,rs,As,Φs [Ys] +
1

2k

∑
a∈A

Exs,As,Φs

{
(f(xs, a)− f∗(xs, a))2 × 1{a ∈ Φs}

}
+ 2ε2.

Rearranging,

1

k

∑
a∈A

Exs,As,Φs

{
(f(xs, a)− f∗(xs, a))2 × 1{a ∈ Φs}

}
≤ 2Exs,rs,As,Φs

[Ys] + 4ε2.

On the other hand,

Y 2
s ≤

1

k

∑
a∈A

(f(xs, a)− f∗(xs, a))2(f(xs, a) + f∗(xs, a)− 2rs(a))2 × 1{a ∈ Φs}

≤ 4

k

∑
a∈A

(f(xs, a)− f∗(xs, a))2 × 1{a ∈ Φs}.

Combining the two inequalities concludes the proof.

Lemma 7. Let ŷl be the estimate of the regression function f∗ at epoch l. Assume the conditional independence structure
in Lemma 4 and suppose Assumption 2 holds. LetHt−1 denote history (filtration) up to time t− 1. Then for any δ < 1/e,

E =

l ≥ 2 :

Nl−1∑
s=1

Exs,As

{
1

k

∑
a∈As

(ŷl(xs, a)− f∗(xs, a))2|Hs−1

}
≤ c−1210 log

( |F|N3
l−1

δ

)
+ ε2Nl−1


holds with probability at least 1− δ.

Proof. We follow the proof of Lemma 5 to see how the misspecification level ε2 enters the bounds.

Let X(f) =
∑t
s=1 Es[Ys(f)], Z(f) =

∑t
s=1 Ys(f), C = log(1/δ′) and M = ε2t. Now using Lemma 6 and Freedman’s

inequality in the proof of Lemma 5, we find that with probability at least 1− δ′ log t,

X(f)− Z(f) ≤ 8
√
C(2X(f) + 4ε2t) + 2C

=⇒ (X(f)− Z(f)− 2C)2 ≤ 128X(f)C + 256MC

=⇒ (X(f)− 66C − Z(f))2 ≤ 4352C2 + 256MC + 128Z(f)C.

The above bound holds for a fixed function f . We now apply an union bound to conclude that for all functions f ∈ F , with
probability at least 1− δ′ log t,

(X(f)− 66C ′ − Z(f))2 ≤ 4352C ′2 + 256MC ′ + 128Z(f)C ′

≤ 20736C ′2 +M2 + 128Z(f)C ′
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where C ′ = log(|F|/δ′). As in Lemma 5, Z(ŷl) ≤ 0 when t = Nl−1 and thus with probability at least 1− δ′ log(Nl−1),

X(ŷl) ≤ 210C ′ + ε2Nl−1.

Hence, with probability at least 1− δ′/N2
l−1,

Nl−1∑
s=1

1

k

∑
a∈A

Exs,As,Φs

{
(ŷl(xs, a)− f∗(xs, a))2 × 1{a ∈ Φs}|Hs−1

}
≤ 210 log

( |F|N2
l−1 log(Nl−1)

δ′

)
+ ε2Nl−1.

The rest of the proof proceeds exactly as in Lemma 5.

F. Reduction from eXtreme to log(A)-armed Contextual Bandits
In this section we will prove Corollary 1 which is a reduction style argument. We reduce the A armed top-k
contextual bandit problem under Definition 1 to a Z armed top-k contextual bandit problem where Z = O(logA).

Proof of Corollary 1. Note that the proof of Theorem 1 does not require the physical definition of an arm being consistent
across all contexts as long as realizability holds. Let us assume w.l.o.g that Algorithm 2 returns the internal and leaf effective
arms for any context x in Ax in a deterministic ordering. Let us call the j-th effective arm in this ordering for any context as
arm j. This defines a system with Z arms where Z ≤ (p− 1)b(H − 1) + bm as Z is the number of effective arms returned
by the beam-search in Algorithm 2. Recall the definition of the new function class F̃ from Section 4.1. We can thus say
that when Definition 1 holds this new system is a Z armed top-k contextual bandit system with realizablity (Assumption 1)
with function class F̃ . Therefore the first part of coroallary 1 is implied by Theorem 1. Similarly when Definition 1 holds
along with Assumption 2, this new system is a Z armed top-k contextual bandit system with ε-realizablity (Assumption 2)
with function class F̃ . Therefore the second part of corollary 1 is implied by Theorem 2. Note that we have used the fact
|F̃ | = |F|.

G. More Experiments
In Figure 4 we plot the progressive mean rewards vs time for all the experiments using simulated bandit feedback
on eXtreme datasets.

H. Implementation Details
For the realizable experiment on Eurlex-4k shown in Figure 3(a), the optimal weights ν∗’s are obtained by
training ridge regression on the rewards vs context for each arm in the dataset. During the experiment we also
use the same function class, that is one ridge regression is trained per arm on all collected data during the course
of the algorithm. The reward for arm a given context x is chosen as rt(a) = [x; 1.0]T ν∗a + εt, where εt is a
zero-mean Gaussian noise.

Simulated Bandit Feedback: A sample in a multi-label dataset can be described as (x,y) where x ∈ X can be
thought of as the context while y ∈ {0, 1}L denotes the correct classes. We can shuffle such a dataset into an
ordering {(xt,y(t))}Tt=1. Then we feed one sample from the dataset at each time step to the contextual bandit
algorithm that we are evaluating, in the following manner,

• at time t, send the input xt to the contextual bandit algorithm,
• the contextual bandit algorithm then chooses an action corresponding to k arms at,
• the environment then reveals the reward for only the k arms chosen rt(at), i.e. whether the arms chosen are

among the correct classes or not.

Note that the algorithm is free to optimize its policy for choosing arms based on everything it has seen so far.
In practice however, most contextual bandit algorithms will improve their policy (the ŷ it has learnt) in batches.
The total number of positive classes selected by the algorithm in this process is the total reward collected by the
algorithm.
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Figure 4: We plot the progressive mean rewards collected by each algorithm as a function of time. All algorithms are implemented under our eXtreme reduction framework.
The initialization held out set for each dataset is used to train the hierarchy and the routing functions. Then the regressors for all nodes are trained on collected data at the
beginning of each epoch. In all our experiments we have k = 5. In Algorithm 3 we set the number of explore slots r = 3. The common legend for all the plots is provided in
(d). The beam-size used is b = 10.

eXtreme Framework: We follow the framework described in Section 4. We first form the tree and the routing
functions from the held out portion of each dataset. The assumption is that there is a small supervised dataset
available to each algorithm before proceeding with the simulated bandit feedback experiment. This dataset is
used to form a balanced binary tree over the labels till the penultimate level. The nodes in the penultimate level
can have a maximum of m children which are the original arms. The value of m is specified in Table 1 for each
dataset. The division of the labels in each level of the tree is done through hierarchical 2-means clustering over
label embeddings, where at each clustering step we use the algorithm from (Dhillon, 2001). The specific label
embedding technique that we use is called Positive Instance Feature Aggregation (PIFA) (see and (Prabhu et al.,
2018) for more details). The routing functions for each internal node in the tree is essentially a one-vs-all linear
classifier trained on the held out set. The classifiers are trained using a SVM `2-hinge loss. The positive and
negative examples for each internal node is selected similar to the strategy in (Prabhu et al., 2018). Finally for
the regression function f̃(x, ã) where ã can be an original arm or an internal node in the tree, we train a linear
regressor f̃(x, ã) = νTã [x; 1] as we progress through the experiment as in Algorithm 3. Note that the held out
dataset is only used to train the tree and the routing function for each of the algorithms, while the regression
functions are trained from scratch only using the samples observed during the bandit feedback experiment. The
details are as follows:

• Tree: Initially a small part of the dataset is supplied to the algorithms in full-information mode. The size
of this portion is captured in Table 1 in the Initialization Size column. This portion is used to construct
an approximately balanced binary tree over the labels. A supervised multilabel dataset can be represented
as (X,Y ) where X ∈ Rn×d and Y ∈ Rn×L. We form an embedding for each label using PIFA (Jasinska
et al., 2016; Prabhu et al., 2018; Yu et al., 2020). Essentially the embedding for each label is the average of
all instances that the label is connected to, normalized to `2 norm 1. Then we use approximately balanced
2-means recursively to form the tree until each leaf has less than a predefined maximum number of labels. The
exact clustering algorithm used at each step is (Dhillon, 2001).

• Routing Functions: The routing functions are essentially one-vs-all linear classifiers at each internal node
of the tree. The positive examples for the classifier at an internal node are the input instances in the small
supervised dataset that have a positive label in the subtree of that node. The negative instances are the set
of all instances that has a positive label in the subtree of the parent of that node but not in that node’s
subtree. This is the same methodology as in (Prabhu et al., 2018). The routing functions are trained using
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LinearSVC (Fan et al., 2008).
• Regression Functions: After creating the tree and the routing function from the small held out set, they

are held fixed. The function class F̃ as Algorithm 3 progresses is a set of linear regression functions at each
internal and leaf node of the tree. They are trained on past data collected during the course of the previous
epochs. Note that the examples for training the regressor for an internal node are only from the singleton
arms that were shown when the algorithm selected that particular internal node in the IGW sampling. The
regression functions are trained using LinearSVR (Fan et al., 2008).

• Hyper-parameter Tuning: For all the exploration algorithms in the eXtreme experiments the parameters
are tuned over the eurlex-4k dataset and then held fixed. For the IGW scheme C is tuned over a grid of
{1e − 7, 1e − 6, · · · , 1e7}. The same is done for the β in the Boltzmann scheme. For ε-greedy the ε value is
tuned between [1e − 7, 1.0] in a equally spaced grid in the logarithmic scale. The best parameters that are
found are β = 1.0, C = 1.0 and ε = 0.167.

• Inference: Inference using a trained model is done exactly according to Algorithm 3. The beam-search over
the routing function yields effective arms. Then we evaluate the linear regression functions for each of the
effective arms (singleton arms or the internal nodes in the tree). If a non-singleton effective arm is chosen
among the k arms we randomly sample a singleton arm in it’s subtree. The beam search and IGW sampling
is implemented in C++ where the linear operations are implemented using the Eigen package (Guennebaud
et al., 2010).


