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Abstract

Motivated by modern applications, such as on-
line advertisement and recommender systems,
we study the top-k eXtreme contextual ban-
dits problem, where the total number of arms
can be enormous, and the learner is allowed
to select k arms and observe all or some of
the rewards for the chosen arms. We first pro-
pose an algorithm for the non-eXtreme realiz-
able setting, utilizing the Inverse Gap Weight-
ing strategy for selecting multiple arms. We
show that our algorithm has a regret guarantee
of O(k

√
(A− k + 1)T log(|F|T )), where A is

the total number of arms and F is the class con-
taining the regression function, while only re-
quiring Õ(A) computation per time step. In the
eXtreme setting, where the total number of arms
can be in the millions, we propose a practically-
motivated arm hierarchy model that induces a
certain structure in mean rewards to ensure sta-
tistical and computational efficiency. The hi-
erarchical structure allows for an exponential
reduction in the number of relevant arms for
each context, thus resulting in a regret guarantee
of O(k

√
(logA− k + 1)T log(|F|T )). Finally,

we implement our algorithm using a hierarchical
linear function class and show superior perfor-
mance with respect to well-known benchmarks
on simulated bandit feedback experiments using
eXtreme multi-label classification datasets. On
a dataset with three million arms, our reduction
scheme has an average inference time of only 7.9
milliseconds, which is a 100x improvement.

1Google Research, Mountain View (work done while at Ama-
zon) 2Massachusetts Institute of Technology, Boston 3Amazon
4Stanford University, Palo Alto 5Department of Computer Sci-
ence, University of Texas, Austin. Correspondence to: Rajat Sen
<rajat.sen@utexas.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

1. Introduction
The contextual bandit is a sequential decision-making
problem, in which, at every time step, the learner ob-
serves a context, chooses one of the A possible actions
(arms), and receives a reward for the chosen action.
Over the past two decades, this problem has found a
wide range of applications, from e-commerce and rec-
ommender systems (Yue & Guestrin, 2011; Li et al.,
2016) to medical trials (Durand et al., 2018; Villar
et al., 2015). The aim of the decision-maker is to
minimize the difference in total expected reward col-
lected when compared to an optimal policy, a quantity
termed regret. As an example, consider an advertise-
ment engine in an online shopping store, where the con-
text can be the user’s query, the arms can be the set of
millions of sponsored products and the reward can be
a click or a purchase. In such a scenario, one must bal-
ance between exploitation (choosing the best ad (arm)
for a query (context) based on current knowledge) and
exploration (choosing a currently unexplored ad for the
context to enable future learning).

The contextual bandits literature can be broadly di-
vided into two categories. The agnostic setting (Agar-
wal et al., 2014; Langford & Zhang, 2007; Beygelzimer
et al., 2011; Rakhlin & Sridharan, 2016) is a model-
free setting where one competes against the best pol-
icy (in terms of expected reward) in a class of poli-
cies. On the other hand, in the realizable setting it is
assumed that a known class F contains the function
mapping contexts to expected rewards. Most of the
algorithms in the realizable setting are based on Up-
per Confidence Bound or Thompson sampling (Filippi
et al., 2010; Chu et al., 2011; Krause & Ong, 2011;
Agrawal & Goyal, 2013) and require specific paramet-
ric assumptions on the function class. Recently there
has been exciting progress on contextual bandits in
the realizable case with general function classes. Fos-
ter & Rakhlin (2020) analyzed a simple algorithm for
general function classes that reduced the adversarial
contextual bandit problem to online regression, with
a minimax optimal regret scaling. The algorithm was
then analyzed for i.i.d. contexts using offline regres-
sion in (Simchi-Levi & Xu, 2020). The proposed algo-
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rithms are general and easily implementable but have
two main shortcomings.

First, in many practical settings the task actually in-
volves selecting a small number of arms per time in-
stance rather than a single arm. For instance, in our
advertisement example, the website can have multi-
ple slots to display ads and one can observe the clicks
received from some or from all the slots. It is not im-
mediately obvious how the techniques in (Simchi-Levi
& Xu, 2020; Foster & Rakhlin, 2020) can be extended
to selecting k of a total of A arms while avoiding the
combinatorial explosion from

(
A
k

)
possibilities. Second,

the total number of arms A can be in tens of millions
and we need to develop algorithms that only require
o(A) computation per time-step and also have a much
smaller dependence on the total number of arms in the
regret bounds. Therefore, in this paper, we consider
the top-k eXtreme contextual bandit problem where
the number of arms is potentially enormous and at
each time-step one is allowed to select k ≥ 1 arms.

This extreme setting is both theoretically and prac-
tically challenging, due to the sheer size of the arm
space. On the theoretical side, most of the existing re-
sults on contextual bandit problems address the small
arm space case, where the complexity and regret typ-
ically scales polynomially (linearly or as square root)
in terms of the number of arms (with the notable ex-
ception of the case when arms are embedded in a d-
dimensional vector space (Foster et al., 2020a)). Such
a scaling inevitably results in large complexity and re-
gret in the extreme setting. On the implementation
side, most contextual bandit algorithms have not been
shown to scale to millions of arms. The goal of this pa-
per is to bridge the gaps both in theory and in practice.
We show that the freedom to present more than one
arm per time step provides valuable exploration oppor-
tunities. Moreover in many applications, for a given
context, the rewards from the arms that are correlated
to each other but not directly related to the context
are often quite similar, while large variations in the
reward values are only observed for the arms that are
closely related to the context. For instance in the ad-
vertisement example, for an electronics query (context)
there might be finer variation in rewards among com-
puter accessories related display ads while very little
variation in rewards among items in an unrelated cat-
egory like culinary books. This prior knowledge about
the structure of the reward function can be modeled
via a judicious choice of the model class F , as we show
in this paper.

The main contributions of this paper are as follows:

• We define the top-k contextual bandit problem in

Section 3.1. We propose a natural modification of
the inverse gap weighting (IGW) sampling strategy
employed in (Foster & Rakhlin, 2020; Simchi-Levi
& Xu, 2020; Abe & Long, 1999) as Algorithm 1. In
Section 3.3 we show that our algorithm can achieve a
top-k regret bound of O(k

√
(A− k + 1)T log(|F|T ))

where T is the time-horizon. Even though the ac-
tion space is combinatorial, our algorithm’s compu-
tational cost for a time-step is O(A) as it can lever-
age the additive structure in the total reward ob-
tained from a set of arms chosen. We also prove that
if the problem setting is only approximately realiz-
able then our algorithm can achieve a regret scaling
of O(k

√
(A− k + 1)T log(|F|T ) + εk

√
A− k + 1T ),

where ε is a measure of the approximation.
• Inspired by success of tree-based approached for eX-

treme output space problems in supervised learn-
ing (Prabhu et al., 2018; Yu et al., 2020; Khandagale
et al., 2020), in Section 4 we introduce a hierarchical
structure on the set of arms to tackle the eXtreme
setting. This allows us to propose an eXtreme reduc-
tion framework that reduces an extreme contextual
bandit problem with A arms (A can be in millions)
to an equivalent problem with only O(logA) arms.
Then we show that our regret guarantees from Sec-
tion 3.3 carry over to this reduced problem.

• We implement our eXtreme contextual bandit algo-
rithm with a hierarchical linear function class and
test the performance of different exploration strate-
gies under our framework on eXtreme multi-label
datasets (Bhatia et al., 2016) in Section 5, under
simulated bandit feedback (Bietti et al., 2018). On
the amazon-3m dataset, with around three million
arms, our reduction scheme leads to a 100x improve-
ment in inference time over a naively evaluating the
estimated reward for every arm given a context. We
show that the eXtreme reduction also leads to a 29%
improvement in progressive mean rewards collected
on the eurlex-4k dataset. More over we show that
our exploration scheme has the highest win percent-
age among the 6 datasets w.r.t the baselines.

2. Related Work
The general contextual bandits problem has been stud-
ied both in the agnostic setting (Auer et al., 2002;
McMahan & Streeter, 2009; Beygelzimer et al., 2011;
Agarwal et al., 2014; Langford & Zhang, 2007) where
the mean rewards of the arms are not fully captured
by the function class as well as in the realizable set-
ting (Filippi et al., 2010; Chu et al., 2011; Krause &
Ong, 2011; Agrawal & Goyal, 2013). Most algorithms
in the latter setting are based on Upper Confidence
Bound strategies or Thompson Sampling leading to
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exploration schemes that depend heavily on the para-
metric function class. Recently there has been some
notable advancement in the realizable setting where
the exploration strategy can be independent of the
specific function class used while providing optimal re-
gret guarantees (Foster & Rakhlin, 2020; Simchi-Levi
& Xu, 2020; Foster et al., 2020b). We build on these
techniques and extend them to the top-k problem.

The top-k problem has been studied in contextual
bandits under specific assumptions on the function
class as well as the value derived from a set of arms
(for instance the set function being submodular) (Qin
et al., 2014; Yue & Guestrin, 2011). In the context of
off-policy learning from logged data there are several
works that address the top-k arms selection problem
under the context of slate recommendations (Swami-
nathan et al., 2017; Narita et al., 2019). There is a
large body of literature on combinatorial multi-armed
bandits and we refer the reader to Appendix A for
a more in depth discussion. The problem of learn-
ing from logged bandit feedback when the number of
arms is extreme was studied recently in (Lopez et al.,
2020). In (Majzoubi et al., 2020) the authors address
the contextual bandit problem for continuous action
spaces by using a cost sensitive classification oracle for
large number of classes, which is itself implemented as
a hierarchical tree of binary classifiers. Our arm hier-
archy model for the eXtreme case is inspired by tree
search based models for eXtreme Multi-Label Classi-
fication/Ranking (XMC/ XMR) (Bhatia et al., 2016;
Jasinska et al., 2016; Prabhu et al., 2018; Khandagale
et al., 2020; Wydmuch et al., 2018; You et al., 2019;
Yu et al., 2020).

3. Top-k Stochastic Contextual Bandit Under
Realizability

In the standard contextual bandit problem, at each
round, a context is revealed to the learner, the learner
picks a single arm, and the reward for only that arm is
revealed. In this section, we will study the top-k ver-
sion of this problem, i.e. at each round the learner se-
lects k distinct arms, and the total reward corresponds
to the sum of the rewards for the subset. As feedback,
the learner observes some of the rewards for actions in
the chosen subset, and we allow this feedback to be as
rich as the rewards for all the k selected arms or as
scarce as no feedback at all on the given round.

3.1. The Top-k Problem

Suppose that at each time step t ∈ {1, . . . , T}, the en-
vironment generates a context xt ∈ X and rewards
{rt(a)}a∈[A] for the A arms. The set of arms will

be denoted by A = [A] := {1, 2, · · · , A}. As stan-
dard in the stochastic model of contextual bandits,
we shall assume that (xt, rt(1), · · · rt(A)) are generated
i.i.d. from a fixed but unknown distribution D at each
time step. In this work we will assume for simplicity
that rt(a) ∈ [0, 1] almost surely for all t and a ∈ [A].
We will work under the realizability assumption (Agar-
wal et al., 2012; Foster et al., 2018; Foster & Rakhlin,
2020). We also provide some results under approx-
imate realizabilty or the misspecified setting similar
to (Foster & Rakhlin, 2020).
Assumption 1 (Realizability). There exists an f∗ ∈ F
such that, E[rt(a)|X = x] = f∗(x, a) ∀x ∈ X , a ∈ [A],
where F is a class of functions X × A → [0, 1] known to
the decision-maker.

Assumption 2 (ε-Realizability). There exists an f∗ ∈ F
s.t. |E[rt(a)|X = x]− f∗(x, a)| ≤ ε ∀x ∈ X , a ∈ [A].

We assume that the misspecification level ε is known
to the learner and refer to (Foster et al., 2020a) for
techniques on adapting to this parameter.

Feedback Model and Regret. At the beginning of the
time step t, the learner observes the context xt and
then chooses a set of k distinct arms At ⊆ A, |At| = k.
The learner receives feedback for a subset Φt ⊆ At,
that is, rt(a) is revealed to the learner for every a ∈ Φt.
Assumption 3. Conditionally on xt,At and the history
Ht−1 up to time t − 1, the set Φt ⊆ At is random and
for any a ∈ At, P(a ∈ Φt|xt,At,Ht−1) ≥ c for some
c ∈ (0, 1] which we assume to be known to the learner.

For the advertisement example, Assumption 3 means
that the user providing feedback has at least some non-
zero probability c > 0 of choosing each of the presented
ads, marginally. The choice c = 1 corresponds to the
most informative case – the learner receives feedback
for all the k chosen arms. On the other hand, for c < 1
it may happen that no feedback is given on a particular
round (for instance, if Φt includes each a ∈ At inde-
pendently with probability c). When At is a ranked
list, behavioral models postulate that the user clicks
on an advertisement according to a certain distribution
with decreasing probabilities; in this case, c would cor-
respond to the smallest of these probabilities. A more
refined analysis of regret bounds in terms of the distri-
bution of Φt is beyond the scope of this work.

The total reward obtained in time step t is given by
the sum

∑
a∈At

rt(a) of all the individual arm rewards
in the chosen set, regardless of whether only some of
these rewards are revealed to the learner. The perfor-
mance of the learning algorithm will be measured in
terms of regret which is the difference in mean rewards
obtained as compared to an optimal policy which al-
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ways selects the top k distinct actions with the highest
mean reward. To this end, let A∗t be the set of k dis-
tinct actions that maximizes

∑
a∈A∗t

f(xt, a) for the
given xt. Then the expected regret is

R(T ) :=

T∑
t=1

E

∑
a∈A∗t

f∗(xt, a)−
∑
a∈At

f∗(xt, a)

. (1)

Regression Oracle. As in (Foster et al., 2018; Simchi-
Levi & Xu, 2020), we will rely on the availabil-
ity of an optimization oracle regression-oracle for
the class F that can perform least-squares regres-
sion argminf∈F

∑
(x,a,r)(f(x, a)−r)2, where (x, a, r) ∈

X ×A× [0, 1] ranges over the collected data.

3.2. IGW for top-k Contextual Bandits

Our proposed algorithm for top-k arm selection in gen-
eral contextual bandits in a non-extreme setting is pro-
vided as Algorithm 1. It is a natural extension of the
Inverse Gap Weighting (IGW) sampling scheme (Abe
& Long, 1999; Foster & Rakhlin, 2020; Simchi-Levi &
Xu, 2020). In Section 3.3 we will show that this algo-
rithm with r = 1 has good regret guarantees for the
top-k problem even though the action space is combi-
natorial, thanks to the linearity of the regret objective
in terms of rewards of individual arms in the subset.
Note that a naive extension of IGW by treating each
action in Ak as a separate arm would require a com-
putation of O

((
A
k

))
per time step and a similar regret

scaling. In contrast, Algorithm 1 only requires Õ(A)
computation for the sampling per time step.

The Inverse Gap Weighting strategy was introduced
in (Abe & Long, 1999) and has since then been used for
contextual bandits in the realizable setting with gen-
eral function classes (Foster & Rakhlin, 2020; Simchi-
Levi & Xu, 2020; Foster et al., 2020b). Given a set
of arms A, an estimate ŷ : X × A → R of the
reward function, and a context x, the distribution
p = IGW(A; ŷ(x, ·)) over arms is given by

p(a|x) =

{
1

|A|+γl(ŷ(x,a?)−ŷ(x,a)) if a 6= a?

1−
∑
a′∈A:a′ 6=a? p(a

′|x) otherwise

where a? = argmaxa∈A ŷ(x, a), γl is a scaling factor.

Algorithm 1 proceeds in epochs, indexed by l =

1, . . . , e(T ). Note that Ne(T ) =
∑e(T )
l=1 nl = T . The

regression model is updated at the beginning of the
epoch with all the past data and used throughout the
epoch (nl time steps). The arm selection procedure
for the top-k problem involves selecting the top (k−r)
arms greedily according to the current estimate ŷl and

Algorithm 1 Top-k Contextual Bandits with IGW
1: Arguments: k and r (number of explore slots, 1 ≤
r ≤ k)

2: for l← 1 to e(T ) do
3: Fit regression oracle to all past data
4: ŷl = argminf∈F

∑Nl−1

t=1

∑
a∈Φt

(f(xt, a)− rt(a))2

5: for s← Nl−1 + 1 to Nl−1 + nl do
6: Receive xs
7: Let â1

s, . . . , â
A
s be the arms ordered in decreasing

order according to ŷl(xs, ·) values.
8: As = {â1

s, · · · , âk−rs }.
9: for cnt← 1 to r do

10: Compute randomization distribution
11: p = IGW({A \ As}; ŷl(xs, ·)).
12: Sample a ∼ p. Let As = As ∪ {a}.
13: end for
14: Obtain rewards rs(a) for actions a ∈ Φs ⊆ As.
15: end for
16: Let Nl = Nl−1 + nl
17: end for

then selecting the rest of the arms at random accord-
ing to the Inverse Gap Weighted distribution over the
set of remaining arms. For r > 1, the distribution is
recomputed over the remaining support every time an
arm is selected.

3.3. Regret of IGW for top-k Contextual Bandits

In this section we show that our algorithm has favor-
able regret guarantees. Our regret guarantees are only
derived for the case when Algorithm 1 is run with
r = 1. However, we will see that other values of r
also work well in practice in Section 5. For ease of
exposition we assume F is finite; our results can be ex-
tended to infinite function classes with standard tech-
niques (see e.g. (Simchi-Levi & Xu, 2020)). We first
present the bounds under exact realizability.1

Theorem 1. Algorithm 1 under Assumptions 1 and 3, when
run with parameters

r = 1; Nl = 2l; γl =
1

32

√√√√c(A− k + 1)Nl−1

162 log
(
|F|T 3

δ

) ,

has regret bound

R(T ) = O

(
k

√
c−1(A− k + 1)T log

(
|F|T
δ

))

with probability at least 1− δ, for a finite function class F .

1We have not optimized the constants in the definition of γl.
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In the next theorem we bound the regret under ε-
realizability.
Theorem 2. Algorithm 1 under Assumptions 2 and 3, when
run with parameters

r = 1; Nl = 2l; γl =

√
c(A− k + 1)

32

√
420
Nl−1

log
(
|F|T 3

δ

)
+ 2ε2

has regret bound

R(T ) = O

(
k

√
c−1(A− k + 1)T log

(
|F|T
δ

)
+εkT

√
A− k + 1

)
with probability at least 1− δ, for a finite function class F .

The proofs for both of our main theorems are provided
in Appendix C. One of the key ingredients in the proof
is an induction hypothesis which helps us relate the
top-k regret of a policy with respect to the estimated
reward function ŷl ∈ F at the beginning of epoch l
to the actual regret with respect to f∗ ∈ F . The
argument can be seen as a generalization of (Simchi-
Levi & Xu, 2020) to k > 1.
Remark 1. Note that the constant c which denotes the low-
est probability of choosing a presented arm can be made
context dependent i.e the probability can be c(x) for a con-
text x ∈ X . Observe that if c(x) is low or 0, it is not possible
to guarantee low regret for such an x. A natural approach
is to scale the distribution p(x) by c(x) in the definition of
regret. If Ex∼p[c(x)] = 1, the problem is identical to the
one with c = 1, but now wrt the tilted measure c(x)p(x). If
E[c(x)] is not 1, by rescaling, the regret bound is enlarged
by the factor (E[c(x)])−1, an inverse average propensity.
Under the above argument the knowledge of c(x) would not
be required by the algorithm.

4. eXtreme Contextual Bandits and Arm
Hierarchy

When the number of arms A is large, the goal is to
design algorithms so that the computational cost per
round is poly-logarithmic in A (i.e. O(polylog(A)))
and overall regret as well. However, owing to known
lower bounds (Foster & Rakhlin, 2020), this cannot be
achieved without imposing further assumptions on the
contextual bandit problem.

Main idea. A key observation is that the regression-
oracle framework does not impose any restriction on
the structure of the arms and in fact the set of arms
can even be context-dependent. We assume that

• For each x, there is an x-dependent decomposition

Ax := {ax,1, · · · ,ax,Z}, (2)

where ax,1, · · · ,ax,Z form a disjoint union of A with
Z = O(logA).

• For any two arms a and a′ from any subset ax,i, the
expected reward function r(x, a) = E[r(a)|X = x]
satisfies the following consistency condition

|r(x, a)− r(x, a′)| ≤ ε. (3)

By treating ax,1, · · · ,ax,Z as effective arms, the re-
sults of Section 3.3 can be applied by working with
functions that are piecewise constant over each ax,i.
Such a context-dependent arm space decomposition is
a reasonable assumption, because often the rewards
from a large subset of arms exhibit minor variations
for a given context x.

Motivating example. To motivate and justify the condi-
tions (2) and (3), consider a simple but representative
setting where the contexts in X and arms in A are
both represented as feature vectors in Rd for a fixed
dimension d and the distance between two vectors is
measured by the Euclidean norm ‖ · ‖. In many appli-
cations, the expected reward r(x, a) satisfies the gradi-
ent condition |∂ar(x, a)| ≤ η

‖x−a‖ , for some η > 0, i.e.,
r(x, a) is sensitive in a only when a is close to x and
insensitive when a is far away from x.

Figure 1 illustrates such a reward structure in the 1D
case. We can form a binary tree over the arms in A.
We can then associate each tree node eh,i (h for height
and i for index within this height) with a routing func-
tion gh,i(x) =

radh,i

‖x−ctrh,i‖ with radh,i and ctrh,i being
the radius and the center of eh,i. Given a context x,
we perform an adaptive traversal from the root that
further explores the children of a node eh,i only when
gh,i(x) =

radh,i

‖x−ctrh,i‖ > β for some β > 0. This traversal
breaks the arm space into the disjoint union of several
effective arms (dependent on x), each of which is either
a single arm (in Fig. 1) or a node not being further
explored. Condition (2) holds as the number of the ef-
fective arms is O(logA). By choosing β appropriately,
one can ensure Condition (3) is also satisfied. These
effective arms can then be used as the arms in Algo-
rithm 1 for IGW sampling. The details of this example
are given in Appendix B.

General setting. Based on the motivating example, we
propose an arm hierarchy for general X and A. We
assume access to a hierarchical partitioning T of A
that breaks progressively into finer subgroups of sim-
ilar arms. The partitioning can be represented by a
balanced tree that is p-ary till the leaf level. At the
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Figure 1: Left: an illustration of the hierarchical decomposition for A, where each gray dot indicates an arm. Middle: the adaptive
search for a given context x. The yellow nodes are further explored as they are close to x while the blue nodes are not as they are far from
x. The set of effective arms for x consists of the blue nodes and the singleton arms in the yellow leaf nodes. Right: For a fixed x, the
corresponding row shows the x-dependent hierarchical arm space decomposition. As x varies, the decomposition also changes. Each blue
block stands for a non-singleton effective arm, valid for a contiguous block of contexts. Each gray block contains the singleton effective
arms, valid again for a contiguous block of contexts.

Figure 2: Left: A (T , g, b)-constant predictor function f(x, a)
in the 1D motivating example with X ⊂ [0, 1] and A ⊂ [0, 1].
Within each blue block, f(x, a) is constant in a but varies with x.
Right: the function f̃ after the reduction.

leaf level, each node can have a maximum of m > p
children, each of which is a singleton arm in A. The
height of such a tree is H =

⌈
logpdA/me

⌉
. With a

slight abuse of notation, we use eh,i to denote a node
in the tree as well as the subset of singleton arms in
the subtree of the node.

Each internal node eh,i is assumed to be associated
with a routing function gh,i(x) mapping X → [0, 1]
and Ch,i is used to denote the immediate children of
node eh,i. Based on these routing functions and an
integer parameter b, we define a beam search in Algo-
rithm 2 for any context x ∈ X as an input. During
its execution, this beam search keeps at each level h
only the top b nodes that return the highest gh,i(x)
values. The output of the beam search, denoted also
by Ax, is the union of a set of nodes denoted as Ix
and a set of singleton arms denoted as Sx. The tree
structure ensures that there are at most bm singleton
arms in Sx and at most (p − 1)b(H − 1) nodes in Ix.
Therefore, |Ax| ≤ (p − 1)b(H − 1) + bm = O(logA),
implying that Ax satisfies (2). Though the cardinality
|Ax| can vary slightly depending on the context x, in
what follows we make the simplifying assumption that
|Ax| is equal to a constant Z = O(logA) independent

of x and denote Ax = {ax,1, . . . ,ax,Z}.

Algorithm 2 Beam search
1: Arguments: beam-size b, T , routing functions {g}, x
2: Initialize codes = [(1, 1)] and Ibx = ∅.
3: for h = 1, · · · , H − 1 do
4: Let labels = ∪(h−1,i)∈codesCh−1,i.
5: Let codes be top-b nodes in labels according to

the values gh,i(x).
6: Add the nodes in labels \ codes to Ix.
7: end for
8: Let Sx = ∪(H−1,i)∈codesCH−1,i.
9: Return Ax = Sx ∪ Ix.

To ensure the consistency condition (3) in the general
case, one requires the expected reward function r(x, a)
to be nearly constant over each effective arm ax,i and
work with a function class that is constant over each
ax,i. The following definition formalizes this.

Definition 1. Given a hierarchy T with routing function
family {gh,i(·)} and a beam-width b, a function f(x, a) is
(T , g, b)-constant if for every x ∈ X

f(x, a) = f(x, a′) for all a, a′ ∈ eh,i,

for any node eh,i in Ix ⊂ Ax. A class of functions F is
(T , g, b)-constant if each f ∈ F is (T , g, b)-constant.

Figure 2 (left) provides an illustration of a (T , g, b)-
constant predictor function for the simple case X ⊂
[0, 1] and A ⊂ [0, 1]. In the eXtreme setting, we always
assume that our predictor class F is (T , g, b)-constant.
By further assuming that the expected reward r(x, a)
satisfies either Assumption 1 or Assumption 2, Condi-
tion (3) is satisfied.
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4.1. IGW for top-k eXtreme Contextual Bandits

In this section we provide our algorithm for the eX-
treme setting. As Definition 1 reduces the eXtreme
problem with A arms to a non-extreme problem with
only Z = O(logA) effective arms, Algorithm 3 essen-
tially uses the beam-search method in Algorithm 2 to
construct this reduced problem. The IGW random-
ization is performed over the effective arms and if a
non-singleton arm (i.e., an internal node of T ) is cho-
sen, we substitute it with a randomly chosen single-
ton arm that lies in the sub-tree of that node. More
specifically, for a (T , g, b)-constant class F , we de-
fine for each f ∈ F a new function f̃ : X × [Z] →
[0, 1] s.t. for any z = 1, . . . , Z we have f̃(x, z) =
f(x, a) for some fixed a ∈ ax,z. Here, we assume that
for any x the beam-search process in Algorithm 2 re-
turns the effective arms in Ax in a fixed order and ax,z
is the z-th arm in this order. The collection of these
new functions over the context set X and the reduced
arm space Z = [Z] is denoted by F̃ = {f̃ : f ∈ F}.
Figure 2 (right) provides an illustration of a function
f̃(x, z) obtained after the reduction.

Algorithm 3 eXtreme Top-k Contextual Bandits with IGW
1: Arguments: k, number of explore slots: 1 ≤ r ≤ k
2: for l← 1 to e(T ) do
3: Fit regression oracle to all past data
4: ŷl = argminf̃∈F̃

∑Nl−1

t=1

∑
z∈Φt

(f̃(xt, z)− r̃t(z))2

5: for s← Nl−1 + 1 to Nl−1 + nl do
6: Receive xs
7: Use Algorithm 2 to get Axs

=
{axs,1, . . . ,axs,Z}.

8: Let z1, . . . , zZ be the arms in [Z] in the descending
order according to ŷl.

9: Zs = {z1, · · · , zk−r}.
10: for c← 1 to r do
11: Compute randomization distribution
12: p = IGW([Z] \ Zs; ŷl(xs, ·)).
13: Sample z ∼ p. Let Zs = Zs ∪ {z}.
14: end for
15: Bs = {}.
16: for z in Zs do
17: If axs,z is singleton arm, then add it to Bs.
18: Otherwise sample a singleton arm a in the sub-

tree rooted at the node axs,z and add a to Bs.
19: end for
20: Choose the arms in Bs.
21: Map the rewards back to the corresponding effec-

tive arms in Zs and record {r̃s(z), z ∈ Φs}.
22: end for
23: Let Nl = Nl−1 + nl
24: end for

As a practical example, we can maintain the function
class F such that each member f ∈ F is represented
as a set of regressors at the internal nodes as well as
the singleton arms in the tree. These regressors map
contexts to [0, 1]. For an f ∈ F , the regressor at each
node is constant over the arms a within this node and
is only trained on past samples for which that node was
selected as a whole in Zs in Algorithm 3; the regressor
at a singleton arm can be trained on all samples ob-
tained by choosing that arm. Note that even though
we might have to maintain a lot of regression functions,
many of them can be sparse if the input contexts are
sparse, because they are only trained on a small frac-
tion of past training samples.

4.2. Top-k Analysis in the eXtreme Setting

We can analyze Algorithm 3 under the realizability
assumptions (Assumption 1 or Assumption 2) when
the class of functions satisfies Definition 1). Our main
result is a reduction style argument that provides the
following corollary of Theorems 1 and 2.

Corollary 1. Algorithm 3 when run with parameter r = 1
has the following regret guarantees:

(i) If Assumptions 1 and 3 hold and the function class F
is (T , g, b)-constant (Definition 1), then setting parameters
as in Theorem 1 ensures that the regret bound stated in
Theorem 1 holds with A replaced by O(logA).

(ii) If Assumptions 2 and 3 hold and the function class F
is (T , g, b)-constant (Definition 1), then setting parameters
as in Theorem 2 ensures that the regret bound stated in
Theorem 2 holds with A replaced by O(logA).

5. Empirical Results
We compare our algorithm with well known baselines
on various real world datasets. We first perform a semi-
synthetic experiment in a realizable setting. Then we
use eXtreme Multi-Label Classification (XMC) (Bha-
tia et al., 2016) datasets to test our reduction scheme.
The different exploration sampling strategies used in
our experiments are 2: Greedy-topk: The top-k effec-
tive arms for each context are chosen greedily accord-
ing to the regression score; Boltzmann-topk: The top-
(k−r) arms are selected greedily. Then the next r arms
are selected one by one, each time recomputing the
Boltzmann distribution over the remaining arms. Un-
der this sampling scheme the probability of sampling
arm ã is proportional to exp(log(Nl−1)βf̃(x, ã)) (Cesa-

2Note that all these exploration strategies have been extended to
the top-k setting using the ideas in Algorithm 1 and many popular
contextual bandit algorithms like the ones in (Bietti et al., 2018)
cannot be easily extended to the top-k setting.
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Bianchi et al., 2017); ε-greedy-topk: Same as above
but the last r arms are selected one by one using a
scheme where the probability of sampling arm ã is pro-
portional to (1−ε)+ε/A′ if ã is the arm with the high-
est score, otherwise the probability is ε/A′ where A′ is
the number of arms remaining; IGW-topk: This is
essentially the sampling strategy in Algorithm 1. We
set γl =

√
CNl−1A′ for the l-th epoch where A′ is the

number of remaining arms.

Realizable Experiment. In order to create a realiz-
able setting that is realistic, we choose the eurlex-4k
XMC dataset (Bhatia et al., 2016) in Table 1 and for
each arm/label a ∈ A, we fit linear regressor weights
ν∗a that minimizes Ex[([x; 1.0]T ν∗a - E[ra(t)|x])2] over
the dataset. Then we consider a derived system where
E[ra(t)|x] = [x; 1.0]T ν∗a for all x, a that is the learnt
weights from before exactly represent the mean re-
wards of the arms. This system is then realizable for
Algorithm 1 when the function F is linear. Figure 3(a)
shows the progressive mean reward (sum of rewards
till time t divided by t) for all the sampling strategies
compared. We see that the IGW sampling strategy
in Algorithm 1 outperforms all the others by a large
margin. For more details please refer to Appendix H.
Note that the hyper-parameters of all the algorithms
are tuned on this dataset in order to demonstrate that
even with tuned hyper-parameter choices IGW is the
optimal scheme for this realizable experiment. The
experiment is done with k = 50, r = 25 and b = 10.

eXtreme Experiments. We now present our empiri-
cal results on eXtreme multi-label datasets. Our ex-
periments are performed under simulated bandit feed-
back using real-world eXtreme multi-label classifica-
tion datasets (Bhatia et al., 2016). This experiment
startegy is widely used in the literature (Agarwal et al.,
2014; Bietti et al., 2018) with non-eXtreme multi-class
datasets (see Appendix H for more details). Our im-
plementation uses a hierarchical linear function class
inspired by (Yu et al., 2020). The hyper-parameters in
all the algorithms are tuned on the eurlex-4k datasets
and then held fixed. This is in line with (Bietti et al.,
2018), where the parameters are tuned on a set of
datasets and then held fixed.

We follow the framework described in Section 4 using
a hierarchical linear function class. We first form the
tree and the routing functions from the held out por-
tion of each dataset. The assumption is that there is
a small supervised dataset available to each algorithm
before proceeding with the simulated bandit feedback
experiment. This dataset is used to form an approx-
imately balanced binary tree over the labels till the
penultimate level. The nodes in the penultimate level

can have a maximum of m children which are the orig-
inal arms. The value of m is specified in Table 1 for
each dataset. The division of the labels in each level of
the tree is done through hierarchical clustering over la-
bel embeddings, where at each clustering step we use
the algorithm from (Dhillon, 2001). The specific la-
bel embedding technique that we use is called Positive
Instance Feature Aggregation (PIFA) (see (Jasinska
et al., 2016) for more details).

The routing functions for each internal node in the
tree is essentially a one-vs-all linear classifier trained
on the held out set. The classifiers are trained using
a SVM `2-hinge loss. The positive and negative exam-
ples for each internal node is selected similar to the
strategy in (Prabhu et al., 2018). Finally for the re-
gression function f̃(x, ã) where ã can be an original
arm or an internal node in the tree, we train a linear
regressor f̃(x, ã) = νTã [x; 1] as we progress through the
experiment as in Algorithm 3. Note that the held out
dataset is only used to train the tree and the routing
function for each of the algorithms, while the regres-
sion functions are trained from scratch only using the
samples observed during the bandit feedback experi-
ment. In the interest of space we refer the readers
to Appendix H for more implementation details. We
provide our implementation here.

We use 6 XMC datasets for our experiments. Table 1
provides some basic properties of each dataset. We
can see that the number of arms in the largest dataset
is as large as 2.8MM. The column Initialization Size
denotes the size of the held out set used to intialize our
algorithms. Note that for the datasets eurlex-4k and
wiki10-31k we bootstrap the original training dataset
to a larger size by sampling with replacement, as the
original number of samples are too small to show no-
ticeable effects.

Dataset Initialization Size Time-Horizon No. of Arms Max. Leaf Size (m)

eurlex-4k 5000 154490 4271 10
amazoncat-13k 5000 1186239 13330 10
wiki10-31k 5000 141460 30938 10
wiki-500k 20000 1779881 501070 100
amazon-670k 20000 490449 670091 100
amazon-3m 50000 1717899 2812281 100

Table 1: Properties of eXtreme Datasets

X-Greedy X-IGW-topk X-Boltzmann-topk X-ε-greedy-topk

X-Greedy - 0W/0D/6L 1W/0D/5L 0W/1D/5L
X-IGW-topk 6W/0D/0L - 4W/1D/1L 6W/0D/0L
X-Boltzmann-topk 5W/0D/1L 1W/1D/4L - 3W/0D/3L
X-ε-greedy-topk 5W/1D/0L 0W/0D/6L 3W/0D/3L -

Table 2: Win/Draw/Loss statistics among algorithms for the 6
datasets. When the difference in results between two algorithms
is not significant according to the statistical significance formula
in (Bietti et al., 2018) then it is deemed to be a draw.

https://github.com/rajatsen91/XtremeContextualBandits.git
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(a) Realizable eurlex-4k

Beam Size (b) Inference Time (ms)

10 7.85
30 12.84
100 27.83
2.9K (all arms) 799.06

(b) Inference Time per context on
amazon-3m

(c) eurlex-4k (d) amazon-3m

Figure 3: In (a) we compare the different sampling strategies on a realizable setting with k = 50 and r = 25, derived from the eurlex-4k
dataset. In (b) we compare the avg. inference times per context vs different beam sizes on the amazon-3m dataset. Note that for this
dataset b = 290, 000 will include all arms in the beam in our setting and is order wise equivalent to no hierarchy. This comparison is done
for inference in a setting with k = 5, r = 3. Note that for larger datasets in Table 1 our implementation with b = 10, 30 remains efficient
for real-time inference as the time-complexity scales only with the beams-size and the height of the tree. We plot the progressive mean
rewards collected by each algorithm as a function of time in two of our 6 datasets in (c)-(d) where the algorithms are implemented under
our eXtreme reduction framework. In our experiments in (c)-(d) we have k = 5 and r = 3. The beam size is 10 except for IGW-topk
(b=400) in (c), which serves as a proxy for Algorithm 1 without the extreme reduction, as b = 400 includes all the arms in this dataset.

We plot the progressive mean rewards (total rewards
collected till time t divided by t) for all the algorithms
in Figure 3 (c)-(d) for two datasets. The rest of the
plots are included in Figure 4 in Appendix G due to
space constraints. The algorithm names are prepended
with an X to denote that the sampling is performed
under the reduction framework of Algorithm 3. In our
experiments the number of arms allowed to be chosen
each time is k = 5. In Algorithm 3 we set the number
of explore slots r = 3 and b = 10 (unless otherwise
specified). We see that all the exploratory algorithms
do much better than the greedy version i.e our eX-
treme reduction framework works for structured ex-
ploration when the number of arms are in thousands
or millions. The efficacy of the reduction framework
is further demonstrated by X-IGW-topk(b=10) being
better than IGW-topk (b=400) by 29% in terms of
the mean reward, in Figure 3(c). Note that here IGW-
topk(b=400) serves as a proxy for Algorithm 1 directly
applied without the hierarchy, as the beam includes
all the arms. The IGW scheme is always among the
top 2 strategies in all datasets. It is the only strat-
egy among the baselines that has optimal theoretical
performance and this shows that the algorithm is prac-
tical. Table 2 provides Win(W)/Draw(D)/Loss(L) for
each algorithm against the others. We use the same
W/D/L scheme as in (Bietti et al., 2018) to create
this table. Note that X-IGW-topk has the highest win
percentage overall. In Figure 3(b) we compare the
inference times for IGW of our hierarchical linear im-
plementation for different beam-sizes on amazon-3m.
Note that b = 2.9K will include all arms in this dataset
and is similar to a flat hierarchy. This shows that our
algorithm will remain practical for real time inference
on large datasets when b ≤ 30 is used.

6. Discussion
We provide regret guarantees for the top-k arm selec-
tion problem in realizable contextual bandits under
general function classes. The algorithm can be the-
oretically and practically extended to extreme num-
ber of arms under our proposed reduction framework
which models a practically motivated arm hierarchy.
We benchmark our algorithms on XMC datasets un-
der simulated bandit feedback.

There are interesting directions for future work, for in-
stance extending the analysis to a setting where the re-
ward derived from the k arms is a set function with in-
teresting structures like sub-modularity. It would also
be interesting to analyze the eXtreme setting where
the routing functions and hierarchy can be updated
in a data driven manner after every few epochs. The
routing function training can be potentially de-biased
from the effect of bandit feedback using importance
sampling approaches. It is an open problem to adapt
the clustering algorithm to data collected from ban-
dit feedback (or to principally show that the regular
training is sufficient).

We do not anticipate any negative ethical or social
impact of this work.
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