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A. Supplementary material for Section 4
In this section, we provide supplementary material for Section 4. First, we present two well-known lemmas which show
important properties of the RKSH regression techniques of Section 3.2. Then, we define the notions of average and
worst-case game curvature for (generally) non-differentiable welfare functions and state their main properties. Finally, we
use these results to prove Thm 1 and Thm 2.

A.1. Confidence lemma and bound on posterior standard deviations

The following main lemma from Srinivas et al. (2010); Abbasi-Yadkori (2013); Chowdhury & Gopalan (2017) shows that
the posterior mean and standard deviation functions computed in (4) can be used to construct a confidence interval around
the unknown welfare functions �r

(·).
Lemma 1. Assume �r is a member of a RKHS with kernel function kr and such that k�r

kkr  B. Consider the observation
model (2) and the posterior mean and standard deviation estimates µr

t (·) and �r
t (·) computed as in (4) with regularization

parameter � � 1. Then, for any � 2 (0, 1), with probability at least 1� �,

|µr
t (x, z)� �r

(x, z)|  �r
t �

r
t (x, z), 8(x, z) 2 X ⇥ Z, 8t � 1

where �r
t = B + ���1/2

p
2(grt + log(1/�)) and grt is the maximum information gain defined in (7).

Hence, according to Lemma 1, the ucb
r
t ’s functions defined in (5) represent a valid upper confidence bound on the true

welfare. The following second lemma from, e.g., (Chowdhury & Gopalan, 2017, Lemma 4), bounds the sum of posterior
standard deviations evaluated at the points selected by D-SUBUCB.
Lemma 2. Consider the setup of Lemma 1, let {zt}Tt=1

be the sequence of observed contexts and {xt}
T
t=1

be the allocations
selected by D-SUBUCB. Then,

TX

t=1

�r
t (xt, zt) 

p
4T�grT , (11)

where grt is the maximum information gain defined in (7).

A.2. Game curvatures, general definitions and properties

Def 6 (Average and worst-case game curvature). Consider a sequence of contexts z1, . . . , zT . We define average game
curvature and worst-case game curvature, respectively the quantities:

cavg({zt}
T
t=1

) := 1� inf
i

lim
k!0+

PT
t=1

�(2xmax, zt)� �(2xmax � kei, zt)PT
t=1

�(kei, zt)� �(0, zt)
2 [0, 1] ,

cwc({zt}
T
t=1

) := 1� inf
t,i

lim
k!0+

�(2xmax, zt)� �(2xmax � kei, zt)

�(kei, zt)� �(0, zt)
2 [0, 1] ,

where xmax = xmax1.

Note that when �(·, z) is continuously differentiable, these can be equivalently defined as

cavg({zt}
T
t=1

) = 1� inf
i

PT
t=1

⇥
r�(2xmax, zt)

⇤
iPT

t=1

⇥
r�(0, zt)

⇤
i

, cwc({zt}
T
t=1

) = 1� inf
t,i

⇥
r�(2xmax, zt)

⇤
i⇥

r�(0, zt)
⇤
i

.

When the game is time-invariant (i.e., zt = z̄, 8t) both these notions coincide with the definition of game curvature of Sessa
et al. (2019b, Definition 2). Instead, for general contexts’ sequences, cavg({zt}Tt=1

) represents the curvature of the average
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game function �avg(·) =
PT

t=1
�(·, zt), while cwc({zt}Tt=1

) quantifies the worst-case curvature over the game rounds. The
following lemma states their main properties which we use to prove Thm 1 and Thm 2.

Lemma 3 (Properties of game curvatures). Consider the average and worst-case game curvatures defined in Def 6. We can
affirm the following:

(i) For any sequence of contexts {zt}Tt=1
,

cavg({zt}
T
t=1

)  cwc({zt}
T
t=1

) ,

(ii) For any sequence of contexts {zt}Tt=1
, allocations {xt}

T
t=1

with xt 2 X , and allocation y 2 X ,

TX

t=1

�(xt + y, zt)� �(xt, zt) �
�
1� cavg({zt}

T
t=1

)
�h TX

t=1

�(y, zt)� �(0, zt)
i
.

(iii) For any sequence of contexts {zt}Tt=1
, allocations {xt,yt}

T
t=1

with xt,yt 2 X ,

TX

t=1

�(xt + yt, zt)� �(xt, zt) �
�
1� cwc({zt}

T
t=1

)
�h TX

t=1

�(yt, zt)� �(0, zt)
i
.

Proof. (i) Property (i) can be proved by showing that

PT
t=1

�(2xmax, zt)� �(2xmax � kei, zt)PT
t=1

�(kei, zt)� �(0, zt)
� inf

t

�(2xmax, zt)� �(2xmax � kei, zt)

�(kei, zt)� �(0, zt)
, (12)

for any index i and scalar k � 0. For simplicity, define at = �(2xmax, zt)��(2xmax�kei, zt) and bt = �(kei, zt)��(0, zt).
Note that at, bt � 0 for all t, by monotonicity of �(·, zt). Let,

t̄ = arg inf
t

at
bt

. (13)

Then, the following condition follows directly from (13):

at � at̄ ·
bt
bt̄

8t.

Using the above condition, we can lower bound the left hand side of (12) as

PT
t=1

�(2xmax, zt)� �(2xmax � kei, zt)PT
t=1

�(kei, zt)� �(0, zt)
=

PT
t=1

atPT
t=1

bt
�

at̄ ·
PT

t=1
bt/bt̄PT

t=1
bt

=
at̄
bt̄

= inf
t

�(2xmax, zt)� �(2xmax � kei, zt)

�(kei, zt)� �(0, zt)
,

which proves (12).

(ii) Let us define the average game welfare �avg(·) =
PT

t=1
�(·, zt). Then, note that the average game curvature cavg({zt}Tt=1

)

coincides with the curvature (Sessa et al., 2019a, Definition 2) of �avg with respect to the set [0, 2xmax]
NR. Then,

TX

t=1

�(xt + y, zt)� �(xt, zt) �
TX

t=1

�(2xmax, zt)� �(2xmax � y, zt)

= �avg(2xmax)� �avg(2xmax � y) �
�
1� cavg({zt}

T
t=1

)
�h
�avg(y)� �avg(0)

i
,

where the first inequality is by DR-submodularity of �(·, z) in each context zt, and the second one follows directly by (Sessa
et al., 2019a, Proposition 3).
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(iii) Note that the worst-case curvature cwc({zt}Tt=1
) coincides with the largest curvature (as per Sessa et al., 2019a,

Definition 2) among the curvatures of the functions {�(·, zt), t = 1, . . . , T} with respect to the set [0, 2xmax]
NR. Therefore,

property (iii) holds since:

TX

t=1

�(yt + xt, zt)� �(xt, zt) �
TX

t=1

�
1� cwc({zt}

T
t=1

)
�h
�(yt, zt)� �(0, zt)

i

=
�
1� cwc({zt}

T
t=1

)
�h TX

t=1

�(yt, zt)� �(0, zt)
i
,

where we have applied (Sessa et al., 2019a, Proposition 3) to each function �(·, zt) and used the fact that cwc({zt}Tt=1
) is

the largest among their curvatures.

A.3. Proof of Thm 1 and Corollary 1

Thm 1. Consider the setup of Section 2. When D-SUBUCB is run with TW design (rule (6)) and �r
t ’s are set according to

Lemma 1, with probability at least 1� �,

TX

t=1

�(xt, zt) � ↵ ·OPT�N
TX

t=1

RX

r=1

2�r
t �

r
t (xt, zt)�

NX

i=1

Ri
(T ) ,

with ↵ = max

n
1� cavg({zt}Tt=1

),
�
1 + cwc({zt}Tt=1

)
��1

o
.

Note that in the case of time-invariant games (i.e., zt = z̄, 8t), cavg({zt}Tt=1
)
�
= cwc({zt}Tt=1

) = c as stated in Appendix A.2
and the above approximation guarantee ↵ = max{(1� c), (1 + c)�1

} = (1 + c)�1 coincides with the guarantee by (Vetta,
2002; Sessa et al., 2019a). For general context sequences, however, ↵ depends on both notions of curvature.

Proof. Let x? = argmaxx2X
PT

t=1
�(x, zt) be the optimal action in hindsight. Moreover, define x1:i

? =

[x1
?, . . . , x

i
?, 0, . . . , 0] with x1:0

? = 0. For ease of notation, let �t =
PR

r=1
�r
t �

r
t (xt, zt). To bound the performance

of D-SUBUCB, we will condition on the event of Lemma 1 holding true. Then, with probability 1� �, we can lower bound
the obtained cumulative welfare as

TX

t=1

�(xt, zt) �
TX

t=1

NX

i=1

�(xt, zt)� �(0, x�i
t , zt) (14)

(Lemma 1) �

TX

t=1

NX

i=1

RX

r=1

ucb
r
t (xt, zt)� �(0, x�i

t , zt)�N
TX

t=1

2�t (15)

(Def. of Regret) �

TX

t=1

NX

i=1

RX

r=1

ucb
r
t (x

i
?, x

�i
t , zt)� �(0, x�i

t , zt)�N
TX

t=1

2�t �

NX

i=1

Ri
(T ) (16)

(Lemma 1) �

TX

t=1

NX

i=1

�(xi
?, x

�i
t , zt)� �(0, x�i

t , zt)�N
TX

t=1

2�t �

NX

i=1

Ri
(T ) (17)

(DR-submodularity) �

TX

t=1

NX

i=1

�(xt + x1:i
? , zt)� �(xt + x1:i�1

? , zt)�N
TX

t=1

2�t �

NX

i=1

Ri
(T ) (18)

(telescoping sum) =

TX

t=1

�(x? + xt, zt)� �(xt, zt)�N
TX

t=1

2�t �

NX

i=1

Ri
(T ). (19)

The first inequality simply follows applying DR-submodularity of �(·, zt) in each context zt (by DR-submodularity, �(xt, zt)
is at least the sum of its marginal contributions, see, e.g., Sessa et al. (2019b, Proof of Fact 1)), while the second one follows
from Lemma 1 and the definition of the upper confidence bound functions ucbrt ’s in (5). Inequality (16) follows from the
definition of players’ regret Ri

(T ) (Def 2) when the reward functions are computed according to the TW design rule (6).
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At this point, we can apply the properties of the game curvatures stated in Lemma 3. By applying property (ii) to the
bound (19) we get:

TX

t=1

�(xt, zt) �
�
1� cavg({zt}

T
t=1

� TX

t=1

�(x?, zt)

| {z }
OPT

�N
TX

t=1

2�t �

NX

i=1

Ri
(T ) (20)

where we have used the assumption �(0, z) = 0, 8z. At the same time, by property (iii) we also have:

TX

t=1

�(x? + xt, zt)� �(x?, zt) �
�
1� cwc({zt}

T
t=1

)
�⇥ TX

t=1

�(xt, zt)� �(0, zt)
⇤
.

Therefore, after rearranging the previous bound and applying it to (19), we can lower bound the cumulative welfare also as:

TX

t=1

�(xt, zt) �
TX

t=1

�(x?, zt)

| {z }
OPT

�cwc({zt}
T
t=1

) · �(xt, zt)�N
TX

t=1

2�t �

NX

i=1

Ri
(T )

�
1

1 + cwc({zt}Tt=1
)

OPT �N
TX

t=1

2�t �

NX

i=1

Ri
(T ) (21)

Hence, the theorem statement is obtained combining bounds (20) and (21).

As outlined in Section 4.1, from Thm 1 we can obtain the following corollary.

Corollary 1. Consider the setup of Section 2 and assume |X
i
| = K for all i. Then, if D-SUBUCB is run with TW design,

�r
t = B + ���1/2

p
2(grt + log(2/�)) and NO-REGRET is MWU (Algorithm 1), with probability 1� �,

TX

t=1

�(xt, zt) � ↵ ·OPT�N
RX

r=1

O
�
grT

p

T
�
�N · O

�p
T logK +

p
T log(2/�)

�
,

with ↵ = max

n
1� cavg({zt}Tt=1

),
�
1 + cwc({zt}Tt=1

)
��1

o
.

Proof. The corollary can be obtained by bounding individually the terms in the statement of Thm 1. First, Lemma 2 implies
that

N
TX

t=1

RX

r=1

2�r
t �

r
t (xt, zt)  2N�r

T

TX

t=1

RX

r=1

�r
t (xt, zt)  N

RX

r=1

O
�
grT

p

T
�
. (22)

Second, the well-known result from, e.g., Cesa-Bianchi & Lugosi (2006, Section 4.2) shows that, with probability at least
1� �1, the regret of MWU (Algorithm 1) can be bounded as

Ri
(T )  O

�p
T logK +

p
T log(1/�1)

�
(23)

Finally, the specific choice of �r
t implies that the event in the confidence Lemma A.1 holds true with probability at least

1� �/2. Hence, by setting �1 = �/2 and using (22),(23), a standard probability union bound shows that with probability at
least 1� �/2� �/2 = 1� � the cumulative welfare can be lower bounded as stated in Corollary 1.

A.4. Proof of Theorem 2

Thm 2. Consider the setup of Section 2 and assume the game is anonymous and X
i
= {0, xmax}

R, 8i. When D-SUBUCB
is run with ES design (rule (8)) and �r

t ’s are set according to Lemma 1, with probability at least 1� �,

TX

t=1

�(xt, zt) � ↵ ·OPT�

TX

t=1

RX

r=1

2�r
t �

r
t (xt, zt)�

NX

i=1

Ri
(T )�N

TX

t=1

RX

r=1

✏r(zt),

with ↵ = max

n
1� cavg({zt}Tt=1

),
�
1 + cwc({zt}Tt=1

)
��1

o
.
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Proof. To prove Theorem 2, we first establish the following Lemma which shows an important property of the ES design
rule (8).

Lemma 4. Assume X
i
= {0, xmax}

R for i = 1, . . . , N and the game is anonymous as defined in Section 4.2. Then,
consider any player i, resource r, and any strategy x = (xi, x�i

) 2 X such that xi
[r] > 0 (i.e., player i selects resource r).

For each context z 2 Z it holds:

1

|(xi, x�i)|r
�r

(xi, x�i, z) � �r
(xi, x�i, z)� �(0, x�i, z)� ✏r(z) , (24)

where ✏r(z) is the weak-separability error defined in Def 4.

Proof. Without loss of generality assume i = 1, and that only players {1, . . . , P} select resource R, so that |(xi, x�i
)|r = P .

Moreover, we define [x]r 2 X to be the modified version of x where all the entries corresponding to resources different
from r are set to 0 (hence, [x]r has only P nonzero entries). Recall also in Section 4.2 we have defined [xi

]�r to be the
modified version of xi where xi

[r] is set to zero. For simplicity we also drop the dependence of �r and ✏r on context z. We
have:

1

|(xi, x�i)|r
�r

(xi, x�i
) =

1

P
�r

(xi, x�i
) �

1

P
�r

([xi, x�i
]r) =

1

P
�r

([x1, . . . , xP , 0, . . . , 0]r)

=
1

P

h
�r

([x1, 0, . . . , 0]r)� �r
(0)+

+

PX

i=2

�r
([x1, . . . , xi, 0, . . . , 0]r)� �r

([0, x2, . . . , xi, 0, . . . , 0]r)
i

(25)

�
1

P

PX

i=1

�r
([x1, . . . , xP , 0, . . . , 0]r)� �r

([0, x2 . . . , xP , 0, . . . , 0]r) (26)

= �r
([xi, x�i

]r)� �r
([0, x�i

]r)

� �r
(xi, x�i

)� �r
([xi

]�r, x
�i
) (27)

= �r
(xi, x�i

)� �r
(0, x�i

)�
�
�([xi

]�r, x
�i
)� �r

(0, x�i
)
�

� �r
(xi, x�i

)� �r
(0, x�i

)�
�
�r

([xi
]�r, 0)� �r

(0)
�

(28)

� �r
(xi, x�i

)� �r
(0, x�i

)� ✏r.

The first inequality is due to monotonicity, while (25) is a telescoping sum because the game is anonymous and since
�r

(0) = 0. Then, (26) is obtained applying DR-submodularity to each summation term. Inequalities (27) and (28) are again
due to DR-submodularity, while the last inequality follows by Def 4.

We are now ready to prove Thm 2. First, let us consider a generic round t and let Rt ⇢ [R] be the set of resources selected
by at least 1 player, i.e., Rt = {r : 9i : xi

t[r] > 0}. Then, it holds:

�(xt, zt) =
RX

r=1

�r
(xt, zt) �

X

r2Rt

�r
(xt, zt) =

NX

i=1

X

r:xi
t[r]>0

1

|xt|r
· �r

(xt, zt), (29)

where in the first inequality we have used the fact that �r
(x, z) � 0 for all x 2 X and z 2 Z (since �r

(0, z) = 0 and �r
(·, z)

is monotone). We can now use (29) to prove Thm 2. As in proof of Thm 1, we let x? = argmaxx2X
PT

t=1
�(x, zt) be the

optimal action in hindsight, x1:i
? = [x1

?, . . . , x
i
?, 0, . . . , 0] with x1:0

? = 0 and �t =
PR

r=1
�r
t �

r
t (xt, zt). Then, conditioning
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on the event of Lemma 1, with probability 1� �, the obtained cumulative welfare can be lower bounded as follows:

TX

t=1

�(xt, zt) �
TX

t=1

NX

i=1

X

r:xi
t[r]>0

1

|xt|r
· �r

(xt, zt)

(Lemma 1) �

TX

t=1

NX

i=1

X

r:xi
t[r]>0

1

|xt|r
· ucb

r
t (xt, zt)� 2

TX

t=1

NX

i=1

X

r:xi
t[r]>0

1

|xt|r
· �r

t �
r
t (xt, zt) (30)

(Def. of Regret) �

TX

t=1

NX

i=1

X

r:xi
?[r]>0

1

|(xi
?, x

�i
t )|r

· ucb
r
t (x

i
?, x

�i
t , zt)�

TX

t=1

2�t �

NX

i=1

Ri
(T ) (31)

(Lemma 1) �

TX

t=1

NX

i=1

X

r:xi
?[r]>0

1

|(xi
?, x

�i
t )|r

· �r
(xi

?, x
�i
t , zt)�

TX

t=1

2�t �

NX

i=1

Ri
(T ) (32)

(Lemma 4) �

TX

t=1

NX

i=1

X

r:xi
?[r]>0

�r
(xi

?, x
�i
t , zt)� �(0, x�i

t , zt)� ✏r(zt)�
TX

t=1

2�t �

NX

i=1

Ri
(T ) (33)

=

TX

t=1

NX

i=1

RX

r=1

�r
(xi

?, x
�i
t , zt)� �r

(0, x�i
t , zt)�

TX

t=1

2�t �

NX

i=1

Ri
(T ) (34)

�

TX

t=1

NX

i=1

X

r:xi
?[r]=0

�r
(xi

?, x
�i
t , zt)� �r

(0, x�i
t , zt)�

X

r:xi
?[r]>0

✏r(zt)

�

TX

t=1

NX

i=1

RX

r=1

�r
(xi

?, x
�i
t , zt)� �r

(0, x�i
t , zt)�

TX

t=1

2�t �

NX

i=1

Ri
(T )�

TX

t=1

NX

i=1

RX

r=1

✏r(zt) (35)

=

TX

t=1

NX

i=1

�(xi
?, x

�i
t , zt)� �(0, x�i

t , zt)�
TX

t=1

2�t �

NX

i=1

Ri
(T )�N

TX

t=1

RX

r=1

✏r(zt). (36)

Inequality (30) is due to Lemma 1 and the definition of ucbt, while (31) follows from the definition of players’ regret (Def 2)
when the rewards are computed according to ES design rule (8). Then, (32) is again due to Lemma 1 and (33) is obtained
applying Lemma 4 for each time t, player i, and resource r such that xi

?[r] > 0. In (34) we have added and subtracted, the
term

PT
t=1

PN
i=1

P
r:xi

?[r]=0
�r

(xi
?, x

�i
t , zt) � �r

(0, x�i
t , zt). Then, (35) is obtained since for each t, i, and r such that

xi
?[r] = 0,

�r
(xi

?, x
�i
t , zt)� �r

(0, x�i
t , zt) � �r

(xi
?, 0, zt)� �r

(0, zt) = �r
([xi

?]�r, 0, zt)� �r
(0, zt)  er(zt), (37)

where the first inequality is due to DR-submodularity, the equality since xi
?[r] = 0, and the last inequality by definition

of weak-separability errors (Def 4). Finally, (36) follows from the definition of �. From (36), the statement of the
theorem is obtained following the same proof steps of Proof of Thm 1 in Appendix A.3 to lower bound the termPT

t=1

PN
i=1

�(xi
?, x

�i
t , zt)� �(0, x�i

t , zt) (see Equation (17) and subsequent proof steps).
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B. Stronger benchmark: seeking optimal policies
In this section we extend the results obtained in Section 4 to the case where context zt is observed before choosing allocation
xt and we compete with the stronger performance benchmark of the optimal contextual welfare OPTc defined in (10). As
outlined in Section 5, in this richer setting the D-SUBUCB algorithm computes allocations by simulating a contextual game
among the players, where each player is equipped with an algorithm having sublinear contextual regret Ri

c(T ), as defined in
Def 5. The following theorem bounds the performance of D-SUBUCB under TW and ES design, respectively.

Thm 3. Consider the setup of Section 2 and assume context zt is observed before choosing allocation xt. Then, when
D-SUBUCB is run with �r

t ’s set according to Lemma 1, with probability at least 1-�,
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TX

t=1

�(xt, zt) � ↵ ·OPTc �N
TX

t=1

RX

r=1

2�r
t �

r
t (xt, zt)�

NX

i=1

Ri
c(T ) ,
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R, and game rewards are computed according to ES design (rule (8)),
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Proof. The proofs of 1) and 2) follow closely the proofs of Thm 1 and Thm 2, respectively, with minor important
differences. Let ⇡? = argmax⇡:Z!X
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�(⇡(zt), zt) be the optimal policy in hindsight. Moreover, denote with
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1) Let us fist consider the case of TW design. Following the same proof steps as in Proof of Thm 1 (Appendix A.3),
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where in (38) we have used the definition of contextual regret (Def 5) for each player when the game rewards follow the TW
design rule (6). At this point, we can use property (iii) of Lemma 3 to obtain:
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The proof is completed applying the bound above to (40) and rearranging the terms.

2) Under ES design, the same proof steps as in Proof of Thm 2 (Appendix A.4) lead to,
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where in (41) we have used the definition of contextual regret (Def 5) under ES design (8). Then, the proof is concluded by
lower bounding the first summation in the bound above as it was done for case 1) after equation (39).
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C. Supplementary material for Section 6
Monotonicity and DR-submodularity of the considered objective. We formally show that for any context zt and any
region r, the number of daily trips (according to our simulator, see Section 6) starting from r, �r

(·, zt), is a monotone
DR-submodular function. Consider two possible allocations x1,x2 with x1  x2, i.e., under x2 there exists a region where
at least one more bike is dropped compared to x1. Then, monotonicity of �r

(·, zt) simply follows from the fact that all trips
resulting from allocation x1 would also be successfully completed under allocation x2, because there are at least the same
number of available bikes per region at any point during the day. DR-submoduarity can be proved as follows. Consider
allocation x1 and imagine an extra bike is dropped into the system at region r̄. The increase in the number of daily trips, i.e.,
�r

(x1 + er̄, zt)� �r
(x1, zt) coincides with the number of trips that utilize such extra bike, assuming that such bike is used

only when no other bike is available in the same region. This number is greater than �r
(x2 + er̄, zt)� �r

(x2, zt), since
under x2 at least the same number of bikes is available in each region at any point in time compared to x1.

All the computations were carried on a 16Gb machine at 3.1 GHz. Computation times per iteration of D-SUBUCB under
ES design are plotted in Figure 5 below (they are governed by the RKHS regression complexity which scales as O(t3), and
are similar under TW design). The large variance in CPU time across consecutive iterations is due to using two distinct
models for weekdays and weekends, respectively.

Figure 5. CPU times of D-SUBUCB under ES design


