
Representations for Reinforcement Learning

7. Appendix
7.1. Project’s webpage

Full details of the project (including video results, codebase, etc) are available at
https://sites.google.com/view/abstractions4rl.

7.2. Overview of all methods used in baselines and ablations

The environmental setting and the feature extractor used in all the variations and different methods considered is summarized
in Table 7.2

Observation Latent
Features

Demos Rewards

Vision (RGB) Joint
Encoders

Environment
State

RRL(Ours) ✓ ✓ Resnet34 ✓ Sparse

RRL(Resnet18) ✓ ✓ Resnet18 ✓ Sparse

RRL(Resnet50) ✓ ✓ Resnet50 ✓ Sparse

RRL (VAE) ✓ ✓ VAE ✓ Sparse

RRL(Vision) ✓ Resnet34 ✓ Sparse

FERM ✓ ✓ ✓ Sparse

NPG(State) ✓ ✓ Sparse

NPG(Vision) ✓ Resnet34 Sparse

DAPG(State) ✓ ✓ ✓ Sparse

RRL(Sparse) ✓ ✓ Resnet34 ✓ Sparse

RRL(Dense) ✓ ✓ Resnet34 ✓ Dense

RRL(Noise) ✓ ✓ Resnet34 ✓ Sparse

RRL(Vision +
 Sensors)

✓ ✓ Resnet34 ✓ Sparse

RRL(ShuffleNet) ✓ ✓ ShuffleNet-v2 ✓ Sparse

RRL(MobileNet) ✓ ✓ MobileNet-v2 ✓ Sparse

RRL(vdvae) ✓ ✓ Very Deep
VAE

✓ Sparse

7.3. RRL(Ours)

Parameters Setting
BC batch size 32
BC epochs 5
BC learning rate 0.001
Policy Size (256, 256)
vf batch size 64
vf epochs 2
rl step size 0.05
rl gamma 0.995
rl gae 0.97
lam 0 0.01
lam 1 0.95

Table 2. Hyperparameter details for all the RRL variations.

Same parameters are used across all the tasks (Pen, Door, Hammer, Relocate, PegInsertion, Reacher) unless explicitly
mentioned. Sparse reward setting is used in all the hand manipulation environments as proposed by ? along with 25
expert demonstrations. We have directly used the parameters (summarize in Table 2) provided by DAPG without any
additional hyperparameter tuning except for the policy size (used same across all tasks). On the Adroit Manipulation task,

https://sites.google.com/view/abstractions4rl

Representations for Reinforcement Learning

200 trajectories for Hammer-v0, Door-v0, Relocate-v0 whereas 400 trajectories for Pen-v0 per iteration are collected in
each iteration.

7.4. Results on MJRL Environment

0 1 2 3 4
Robot Hours

0 1 2 3 4
Robot Hours

0 1 2 3 4
Robot Hours

0 1 2 3 4
Robot Hours

0.00 0.25 0.50 0.75 1.00 1.25 1.50
samples(M)

PegInsertion

RRL(Ours)
FERM
DAPG(State)
NPG(State)

0 1 2 3 4 5
Robot Hours

0 1 2 3 4 5
Robot Hours

0 1 2 3 4 5
Robot Hours

0 1 2 3 4 5
Robot Hours

0.0 0.5 1.0 1.5 2.0
samples(M)

0

20

40

60

80

100

Su
cc

es
s

Ra
te

Reacher

Figure 10. Results on MJRL Environment. RRL outperforms
FERM and delivers results on par with DAPG(State) in the PegIn-
sertion task. In Reacher, FERM outperforms RRL following that
learning task specific representations is easier in simple tasks.

We benchmark the performance of RRL on two of the
MJRL environments (Rajeswaran et al., 2020), Reacher
and Peg Insertion in Figure 10. These environments are
quite low dimensional (7DoF Robotic arm) compared to the
Adroit hand (24 DoF) but still require rich understanding
of the task. In the peg insertion task, RRL delivers
state comparable (DAPG(State)) results and significantly
outperforms FERM. However, in the Reacher task, we
notice that DAPG(State) and FERM perform surprisingly
well whereas RRL struggles to perform initially. This
highlights that using task specific representations in simple,
low dimensional environments might be beneficial as it
is easy to overfit the feature encoder for the task in hand
while the Resnet features are quite generic. For the MJRL
environment, shaped reward setting is used as provided in
the repository 2 along with 200 expert demonstrations. For
the Peg Insertion task 200 trajectories and for Reacher task
400 trajectories are collected per iteration.

7.5. Other variations of RRL

a) RRL(MobileNet), RRL(ShuffleNet) : The encoders (ShuffleNet (Ma et al., 2018) and MobileNet (Sandler et al., 2019))
are pretrained on ImageNet Dataset using a classification objective. We pick the pretrained models from torchvision directly
and freeze the parameters during the entire training of the RL agent. Similar to RRL(Ours), the last layer of the model is
removed and a latent feature of dimension 1024 and 1280 in case of ShuffleNet and MobileNet respectively is used.
b) RRL(vdvae) : We use a very recent state of the art hierarchical VAE (Child, 2021) that is trained on ImageNet dataset.
The code along with the pretrained weights are publically available 3. We use the intermediate features of the encoder of
dimension 512. All the parameters are frozen similar to RRL(Ours).

7.6. DMControl Experiment Details

For the RAD (Laskin et al., 2020), CURL (Srinivas et al., 2020), SAC+AE (Yarats et al., 2020) and State SAC (Haarnoja
et al., 2019), we report the numbers directly provided by Laskin et al.. For SAC+RRL, Resnet34 is used as a fixed feature
extractor and the past three output features (frame stack= 3) are used as a representative of state information in SAC
algorithm. For the fixed RAD encoder, we train a the RL agent along with RAD encoder using the default hyperparameters
provided by the authors for Cartpole environment. We used the trained encoder as a fixed feature extractor and retrain the
policies using the same hyperparameters (except for the frame skip or action repeat) for all the tasks. The frame skip values
are task specific as mentioned in (Yarats et al., 2020) and mentioned in Table 4. The hyperparameters used are summarized
in the table 3. SAC implementation in PyTorch courtesy (Yarats & Kostrikov, 2020).

7.7. RRL(VAE)

For training, we collected a dataset of 1 million images of size 64 x 64. Out of the 1 million images collected, 25% of the
images are collected using an optimal course of actions (expert policy), 25% with a little noise (expert policy + small noise),
25% with even higher level of noise (expert policy + large noise) and remaining portion by randomly sampling actions
(random actions). This is to ensure that the images collected sufficiently represents the distribution faced by policy during
the training of the agent. We observed that this significantly helps compared to collecting data only from the expert policy.

2https://github.com/aravindr93/mjrl
3https://github.com/openai/vdvae

Representations for Reinforcement Learning

Parameter Setting
frame stack 3
replay buffer capacity 100000
init steps 1000
batch size 128
hidden dim 1024
critic lr 1e-3
critic beta 0.9
critic tau 0.01
critic target update freq 2
actor lr 1e-3
actor beta 0.9
actor log std min -10
actor log std max 2
actor update freq 2
discount 0.99
init temperature 0.1
alpha lr 1e-4
alpha beta 0.5

Table 3. SAC hyperparameters.

Environment action repeat
Cartpole, Swing 8
Reacher, Easy 4
Cheetah, Run 4
Cup, Catch 4
Walker, Walk 2
Finger, Spin 2

Table 4. Action Repeat Values for DMControl Suite

Representations for Reinforcement Learning

Figure 11. ROW1: Original input images of the Hammer task; ROW2: Corresponding Reconstructed images; ROW3: Original input
images of the Door task; ROW4: Corresponding Reconstructed images. These images depict that the latent features sufficiently encodes
features required to reconstruct the images.

The variational auto-encoder(VAE) is trained using a reconstruction objective (Kingma & Welling, 2014) for 10epochs.
Figure 11 showcases the reconstructed images. We used a latent size of 512 for a fair comparison with Resnet. The weights
of the encoder are freezed and used as feature extractors in place of Resnet in RRL. RRL(VAE) also uses the inputs from the
pro-prioceptive sensors along with the encoded features. VAE implementation courtesy (Subramanian, 2020).

7.8. Visual Distractor Evaluation details

Figure 12. COL1: Original images; COL2: Change in light position; COL3: Change in light direction; COL4: Randomizing object colors;
COL5: Introducing a random object in the scene. All the parameters are randomly sampled every time in an episode.

In order to test the generalisation performance of RRL and FERM (Zhan et al., 2020), we subject the environment to various
kinds of visual distractions during inference (Figure 12). Note all parameters are freezed during this evaluation, an average
performance over 75 rollouts is reported. Following distractors were used during inference to test robustness of the final
policy -

• Random change in light position.

• Random change in light direction.

• Random object color. (Handle, door color for Door-v0; Different hammer parts and nail for Hammer-v0)

• Introducing a new object in scene - random color, position, size and geometry (Sphere, Capsule, Ellipsoid, Cylinder,
Box).

7.9. Compute Cost calculation

We calculate the actual compute cost involved for all the methods (RRL(Ours), FERM, RRL(Resnet-50), RRL(Resnet-18))
that we have considered. Since in a real-world scenario there is no simulation of the environment we do not include the

Representations for Reinforcement Learning

cost of simulation into the calculation. For fair comparison we show the compute cost with same sample complexity (4
million steps) for all the methods. FERM is quite compute intensive (almost 3x RRL(Ours)) because (a) Data augmentation
is applied at every step (b) The parameters of Actor and Critic are updated once/twice at every step (Compute results shown
are with one update per step) whereas most of the computation of RRL goes in the encoding of features using Resnet. The
cost of VAE pretraining in included in the over all cost. RRL(Ours) that uses Resnet-34 strikes a balance between the
computational cost and performance. Note: No parallel processing is used while calculating the cost.

