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Abstract
Pixelizations of Platonic solids such as the cube
and icosahedron have been widely used to rep-
resent spherical data, from climate records to
Cosmic Microwave Background maps. Platonic
solids have well-known global symmetries. Once
we pixelize each face of the solid, each face also
possesses its own local symmetries in the form
of Euclidean isometries. One way to combine
these symmetries is through a hierarchy. How-
ever, this approach does not adequately model
the interplay between the two levels of symme-
try transformations. We show how to model this
interplay using ideas from group theory, iden-
tify the equivariant linear maps, and introduce
equivariant padding that respects these symme-
tries. Deep networks that use these maps as
their building blocks generalize gauge equivari-
ant CNNs on pixelized spheres. These deep net-
works achieve state-of-the-art results on seman-
tic segmentation for climate data and omnidirec-
tional image processing. Code is available at
https://git.io/JGiZA.

1. Introduction
Representing signals on the sphere is an important problem
across many domains; in geodesy and astronomy, discrete
maps assign scalars or vectors to each point on the surface
of the earth or points in the sky. To this end, various pixeliza-
tions or tilings of the sphere, often based on Platonic solids,
have been used. Here, each face of the solid is refined using
a triangular, hexagonal, or square grid and further recursive
refinements can bring the resulting polyhedron closer and
closer to a sphere, enabling an accurate projection from the
surface of a sphere; see Fig. 2.

Our objective is to enable deep learning on this representa-
tion of spherical signals. A useful learning bias when deal-
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Figure 1. We model the rotational symmetry of the sphere by com-
bining the rotational symmetry of a Platonic solid and isometries
of each of its face grids. The bottom row shows one such symmetry
transformation for scalar features on the quad sphere. The top row
shows the corresponding transformation for regular features. Note
that the 90○ rotation of the cube around the vertical axis also rolls
the feature grids on top, in addition to rotating them. We identify
the equivariant linear maps that make this diagram commute.

ing with structured data is to design equivariant models that
preserve the symmetries of the structure at hand; the equiv-
ariance constraint ensures that symmetry transformations
of the data result in the same symmetry transformations of
the representation. To this end, we first need to identify the
symmetries of pixelized spheres.

While Platonic solids have well-known symmetries (Cox-
eter, 1973), their pixelization does not simply extend these
symmetries. To appreciate this point it is useful to contrast
the situation with the pixelization of a circle using a polygon:
when using an m-gon, the cyclic group Cm approximates
the rotational symmetry of the circle, SO(2). By further
pixelizing and projecting each edge of the m-gon using 2
pixels, we get a regular 2m-gon, with a larger symmetry
group Cm < C2m < SO(2) – therefore in this case further
pixelization simply extends the symmetry. However, this
does not happen with the sphere and its symmetry group
SO(3) – that is, pixelized spheres are not homogeneous
spaces for any finite subgroup of SO(3).

https://git.io/JGiZA
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One solution to this problem proposed by Cohen et al.
(2019a) is to design deep models that are equivariant to
“local” symmetries of a pixelized sphere. However, the sym-
metry of the solid is ignored in gauge equivariant CNNs.
In fact, we show that under some assumptions, the gauge
equivariant model can be derived by assuming a two-level
hierarchy of symmetries (Wang et al., 2020), where the top-
level symmetry is the complete exchangeability of faces (or
local charts). A natural improvement is to use the symmetry
of the solid to dictate valid permutations of faces instead of
assuming complete exchangeability.

While the previous step is an improvement in modeling the
symmetry of pixelized spheres, we observe that a hierar-
chy is inadequate because it allows for rotation/reflection of
each face tiling independent of rotations/reflections of the
solid. This choice of symmetry is too relaxed because the
rotations/reflections of the solid completely dictate the rota-
tion/reflection of each face-tiling. Using the idea of block
systems from permutation group theory, we are able to en-
force inter-relations across different levels of the hierarchy,
composed of the solid and face tilings. After identifying
this symmetry transformation, we identify the family of
equivariant maps for different choices of Platonic solid. We
also introduce an equivariant padding procedure to further
improve the feed-forward layer.

The equivariant linear maps are used as a building block in
equivariant networks for pixelized spheres. Our empirical
study using different pixelizations of the sphere demon-
strates the effectiveness of our choice of approximation for
spherical symmetry, where we report state-of-the-art on pop-
ular benchmarks for omnidirectional semantic segmentation
and segmentation of extreme climate events.

2. Pixelizing the Sphere
To pixelize the sphere one could pixelize the faces of any
polyhedron with transitive faces – that is, any face is mapped
to any other face using a symmetry transformation (Popko,
2012). Such a polyhedron is called an isohedron. For ex-
ample, the Quadrilateralized Spherical Cube (quad sphere)
pixelizes the sphere by defining a square grid on a cube.
This pixelization was used in representing sky maps by
the COsmic Background Explorer (COBE) satellite. Alter-
natively, pixelization of the icosahedron using hexagonal
grids for similar applications in cosmology is studied in
Tegmark (1996). Today, a pixelization widely used to map
the sky is Hierarchical Equal Area isoLatitude Pixeliza-
tion (HEALPix), which pixelizes the faces of a rhombic
dodecahedron, an isohedron that is not a Platonic solid.

Platonic solids are more desirable as a model of the sphere
because they are the only convex isohedra that are face-
edge-vertex transitive – that is, not only can we move any

Figure 2. Iterative pixelization and projection for three Platonic
solids: in each iteration (left-to-right), the pixels are recursively
subdivided and projected onto the circumscribed sphere.

face to another face using symmetry transformations, but
we can also do this for edges and vertices. Similarly, there
are only three regular tilings of the plane with this property:
triangular, hexagonal, and square grids. Platonic solids give
a regular tiling of the sphere, and this tiling is further refined
by recursive subdivision and projection of each tile onto the
sphere; see Fig. 2. A large family of geodesic polyhedra use
a triangular tiling to pixelize some Platonic solids, includ-
ing the tetrahedron, octahedron, and icosahedron. In our
treatment, we assume that rotation/reflection symmetries of
each face match the rotation/reflection symmetries of the
tiling – e.g., square tiling is only used with a cube because
both the square face of the cube and square grid have 90○

rotational symmetries. We exclude the dodecahedron be-
cause its triangular face tiling does not have translational
symmetry.

3. Preliminaries
Let [v] = {1, . . . , v} denote the vertex set of a given Platonic
solid. Each face f ∈ [v]m of the solid is anm-gon identified
by its m vertices, and ∆ ⊂ [v]m is the set of all faces. The
action of the solid’s symmetry group H , a.k.a. polyhedral
group, on faces ∆ defines the permutation representation
π ∶ H → Sym(∆) that maps each group member to a
permutation of faces. Here Sym(∆) is the group of all
permutations of ∆. We use π(H) to make this dependence
explicit. Sometimes a subscript is used to identify the H-
set – for example, π∆(H) and π[v](H) define H action
on faces and vertices of the solid respectively. Since as a
permutation matrix π(h) ∶ R∣∆∣ → R∣∆∣ for h ∈ H is also
a linear map, we use a bold symbol in this case to make
the distinction. For the same reason, we use ∆ and R∣∆∣

interchangeably for the corresponding H-set.

3.1. Symmetries of the Face Tiling

Here, we focus on the symmetries of a single tiled face.
Each face has a regular tiling using a set Ω of tiles or pixels.
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This regular tiling has its own symmetries, composed of
2D translations τ(T ) < Sym(Ω), and rotations/reflections
κ(K) < Sym(Ω).1 When we consider rotational or chiral
symmetries K = Cm is the cyclic group, and when adding
reflections, we have K =Dm, the dihedral group.

When combining translations and rotations/reflections
one could simply perform translation followed by rota-
tion/reflection. However, since a similar form of a combina-
tion of two transformations appears later in the paper (when
we combine the rotations of the solid with translations on all
faces), in the following paragraph, we take a more formal
route to explain why the combination of rotation/reflection
and translation takes this simple form.

The rotation/reflection symmetries of the tiling define an
automorphism of translations a ∶K → Aut(T ) – e.g., hor-
izontal translation becomes vertical translation after a 90○

rotation. This automorphism defines the semi-direct product
U = K ⋊a T as the abstract symmetry of the tiling. The
action of members of this new group (k, t) = u ∈ U , on the
tiles Ω is a permutation group υ(U) < Sym(Ω)

υΩ(u) = (κ(k)τ (t)κ(k−1))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

automorphism ak(t)

κ(k) = κ(k)τ (t). (1)

In the group action above, the automorphism of transla-
tions is through conjugation by K, where K itself also
rotates/reflects the input. The end result becomes translation
followed by rotation/reflection, as promised.

The action above permutes individual pixels and therefore
assumes scalar features attached to each pixel. An alterna-
tive is to define vector features so that U action becomes reg-
ular. For this we attach a vector of length ∣K ∣ to each pixel,
and use the regular K action on itself κK ∶K → Sym(K)
to define U action on the Cartesian product K ×Ω

υK×Ω(k, t) = κK(k) ⊗ (κΩ(k)τ (t)) , (2)

where ⊗ is the tensor product. In words, U action on K ×Ω
translates and rotates/reflects the pixels Ω and at the same
time transforms the vectors or fibers K.

Example 1 (Quad Sphere). Full symmetries of the cube
is a subgroup of the orthogonal group H < O(3). The
corresponding rotations/reflections are represented by 3 × 3
rotation/reflection matrices that have ±1 entries with only
one non-zero per row and column. There are 23 choices

1One may argue that when the grid is projected to the sphere,
the translational symmetry of the grid disappears since the grid
is non-uniformly distorted. However, note that at the limit of
having an infinitely high-resolution grid, this approximation (for
small translations) becomes exact. Moreover, in a way, natural
images also correspond to the projection of the 3D world onto
a 2D grid, where we assume translational symmetry when using
planar convolution.

for the sign and 3! = 6 choices for the location of these
non-zeros, creating a group of size 6 × 8 = 48. Half of
these matrices have a determinant of one and therefore
correspond to rotational symmetries. For simplicity, in the
follow-up examples, we consider only these symmetries. The
resulting group is isomorphic to the symmetric group S4,
where each rotation corresponds to some permutation of the
four long diagonals of the cube. Now consider a d×d square
tiling of each face of the cube, i.e., ∣Ω(f)∣ = d2. In addition
to translational symmetry T = Cd × Cd, the cyclic group
K = C4 represents the rotational symmetry of the grid. U
action simply performs translation followed by rotation in
multiples of 90○.

3.2. Equivariant Linear Maps for Each Face

Given the permutation representations υK×Ω(U), a linear
map L ∶ R∣K×Ω∣ → R∣K×Ω∣ is U -equivariant if Lυ(u) =
υ(u)L for all u ∈ U , or in other words2

L = υ(u)Lυ(u)⊺ ∀u ∈ U.

Using a tensor product property3 we can rewrite this con-
straint as

vec(L) = υ2(u)vec(L) ∀u ∈ U,

where υ2(u) ≐ υ(u) ⊗ υ(u) is a permutation action of
u ∈ U on A =K ×Ω ×K ×Ω, the elements of the “weight
matrix” L. The orthogonal bases for which this condition
holds are ∣K ×Ω∣ × ∣K ×Ω∣ binary matrices L(1), . . . ,L(`)

that are simply identified by the orbits of υ2(U) action on
A (Wood & Shawe-Taylor, 1996; Ravanbakhsh et al., 2017).
The question of finding the linear bases is therefore the same
as that of finding the orbits of permutation groups. We can
use orbit finding algorithms from group theory with time
complexity that is linear in the number of input-outputs
(i.e., size of the matrix, or cardinality of A), and the size of
the generating set of the group, G∗ ⊆ G s.t. ⟨G∗⟩ = G (Hiß
et al., 2007). Algorithm 1 in the Appendix gives the pseudo-
code for finding the orbit of a given element a ∈ A. The fact
that orthogonal bases are binary means that U -equivariant
linear maps are parameter-sharing matrices, where each
basis identifies a set of tied parameters and its nonzero
elements correspond to an orbit of U action on A. We
have implemented this procedure for automated creation of
parameter-sharing matrices and made the code available.4

To increase the expressivity of the deep network that deploys
this kind of linear map, we may have multiple input and
output channels, and for each input-output channel pair, we
use a new set of parameters. An alternative characterization

2Since υ(u) is a permutation matrix, its inverse is equal to its
transpose.

3vec(ABC) = (C⊺
⊗A)vec(B)

4https://github.com/mshakerinava/AutoEquiv

https://github.com/mshakerinava/AutoEquiv
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Figure 3. The parameter-
sharing matrix for LU . This
linear map is equivariant to
circular translations and 90○

rotations of regular feature
vectors on a 3 × 3 grid. That
is, K = C4 and ∣Ω∣ = 3 × 3 = 9.
Note that this matrix is the
parameter-sharing equivalent of
having C4-steerable filters.

of equivariant linear maps is through group convolution,
where the semi-direct product construction of U leads to K-
steerable filters (Cohen & Welling, 2016; 2017). Fig. 3 gives
an example of equivariant linear bases (parameter-sharing)
for 3 × 3 square tiling on each face of a quad sphere.

4. Revisiting Gauge Equivariance
Cohen et al. (2019a) introduced gauge equivariant CNNs
and used it to build Icosahedral CNN; an equivariant net-
work for pixelization of the icosahedron. The idea is that a
manifold as a geometric object may lack a global symmetry,
and we can instead design models equivariant to the change
of local symmetry, or gauge. To establish the relationship
between their model and ours, in their language, we assume
each face to be a local chart5. The interaction between local
charts or faces is only through their overlap created by the
padding of each face from adjacent faces. If we ignore the
padding, their framework assumes an “independent” local
transformation within each chart – that is, their model is
equivariant to independent translation and rotation/reflection
within each face tiling. These independent transformations
are represented by the product group U1 × . . . ×U∣∆∣ acting
on the set of all tiles ∆×Ω, or ∆×K ×Ω in the case of reg-
ular features. Furthermore, since the “same” model applies
across charts, gauge equivariance assumes exchangeability
of these transformations. The resulting overall symmetry
group is, therefore, the wreath product

G = U ≀ Sym(∆) (3)

in which a member of the symmetric group s ∈ S∣∆∣ per-
mutes the transformations u1, . . . , u∣∆∣ ∈ U1 × . . . × U∣∆∣.
Therefore, G action on ∆×K ×Ω is given by the following

ρgauge
∆×Ω(g) = (σ∆(s) ⊗ I∣K×Ω∣)

⎛
⎝⊕f∈∆

υK×Ω(uf)
⎞
⎠
, (4)

where g = (s, u1, . . . , u∣∆∣). Here, the direct sum represents
the independent transformation of each face by υ(uf) of

5Note that Cohen et al. (2019a) use several adjacent faces to cre-
ate each chart and also associate the data with vertices rather than
tiles. Moreover, our construction here ignores their G-padding,
and we discuss padding later. Our variation on their model makes
some choices to help clarify what is missing in Icosahedral CNN.

Eq. (2), and the first term permutes the blocks in the direct
sum using σ∆(s). Action for scalar features simply replaces
υK×Ω with υΩ.

4.1. Gauge Equivariant Linear Map

Previously we saw thatK⋊T = U -equivariant maps LU can
be expressed using parameter-sharing linear layers. In (Za-
heer et al., 2017) it is shown that Sym(∆)-equivariant maps
take a simple form LS(∆) = w1I∣∆∣ +w2(1∣∆∣1

⊺

∣∆∣
), where

Ic is the c × c identity matrix, and 1c = [1, . . . ,1]⊺ is a col-
umn vector of length c. Given these components, as shown
by (Wang et al., 2020), the equivariant map for the imprimi-
tive action of their wreath product, as defined by Eq. (4) has
the following form:

Lgauge
G = LS ⊗ (1∣K×Ω∣1

⊺

∣K×Ω∣
) + I∣∆∣ ⊗LU . (5)

In words, the resulting linear map applies the same LU to
each face tiling, and one additional operation pools over
the entire set of pixels, multiplies the result by a scalar,
and broadcasts back. If we ignore the single global pool-
broadcast operation, the result which simply applies an
identical equivariant map to each chart coincides with the
model of (Cohen et al., 2019a).

5. Combining Local and Global Symmetries
5.1. Strict Hierarchy of Symmetries

The symmetry group of Eq. (3) ignores the symmetries of
the solid H . However, adding H seems easy: by simply
replacing the representation σ∆(S) with π∆(H) in Eq. (4),
we get a smaller permutation group ρhierarchy(G) acting on
∆ × K × Ω. Intuitively, this permutation group includes
independent symmetry transformations of the tiling of each
face while allowing the faces to be permuted according to
the symmetries of the solid. The new permutation group is a
subgroup of the old group: ρhierarchy(G) < ρgauge(G), which
means that the corresponding G-equivariant map is less
constrained or more expressive. The newG-equivariant map
Lhierarchy
G simply replaces LS in Eq. (5) with LH . Parameter-

sharing layers equivariant to H-action on faces π(H) are
easily constructed for different solids; see Fig. 4.

While this approach is an improvement over the previous
model, it is still inaccurate in the sense that it allows ro-
tation/reflection of each face via κΩ(K) independently of
rotations/reflections of the solid through π∆(H). In princi-
ple, rotations/reflections of the solid completely determine
the rotations/reflections of face tilings for all faces. Next,
we find the symmetry transformation that respects this con-
straint and, by doing so, increase the expressivity of the
resulting equivariant map.
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Figure 4. As we saw in Example 1 the rotational symmetries of the cube are given by H = S4. The action of this
group on the 6 faces is the permutation group π∆(S4). The parameter-sharing constraint for 6 × 6 matrices LH is
shown in this figure. The corresponding U ≀H = G-equivariant map Lhierarchy

G = LH ⊗(1∣K×Ω∣1
⊺
∣K×Ω∣) + I∣∆∣ ⊗LU

assuming a 3×3 face grid is constructed in two steps: 1) subdividing each row and column of LH into 3×3×4 = 28
parts, to get a 216×216 matrix for LH ⊗(1∣K×Ω∣1

⊺
∣K×Ω∣); 2) replacing the purple diagonal blocks with the 28×28

parameter-sharing matrix of Fig. 3. This corresponds to the second term I∣∆∣ ⊗ LU .

5.2. Interaction of Global and Local Symmetries

Previously we observed that H action completely defines
rotations and reflections of each face-tiling. Therefore our
task is to define the pixelization symmetries G solely in
terms of H and translations of individual tilings T (i.e., we
drop K). Assuming independent translation within each
face, we get the product group

T ∣∆∣ = T × . . . × T
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∣∆∣ times

. (6)

To combine this symmetry with the polyhedral symmetry
H one should note that H itself acts on T ∣∆∣ – e.g., when
we rotate the cube, translations are permuted and rotated.
Geometrically, it is easy to see that H action on T ∣∆∣ is an
automorphism – there is a bijection between translations
before and after rotating the solid. Let b ∶H → Aut(T ∣∆∣)
define an automorphism of T ∣∆∣ for each rotation/reflection
h ∈H of the solid. Then, the combined “abstract” symmetry
is the semi-direct product constructed using b – that is,

G =H ⋊b T ∣∆∣. (7)

Next, we define this group’s permutation action on regular
feature-fields ∆ ×K × Ω – specialization to scalar fields
is straightforward. To formalize this action, we need to
introduce two ideas: 1) system of blocks in permutation
groups; 2) flags and their properties in Platonic solids.

5.2.1. SYSTEM OF BLOCKS

Consider ρ(G) < Sym(Θ), the permutation action of some
G on a set Θ. A block system is a partition of the set Θ into
blocks B1 ⊍ . . . ⊍ Bp such that the action of G preserves
the block structure – that is (g ⋅ B) ∩ B is either ∅ or B
itself, where the dot indicates the group action. This means
that for transitive sets we can identify the system of blocks
using a single block B ⊆ Θ, and generate all the other blocks
through G action.

Let Stabρ(θ) < ρ(G) be the stabilizer subgroup for θ ∈ Θ;
this is the subset of permutations in ρ(G) that fix θ. For the
set B ⊆ Θ, let Stabρ(B) < ρ(G) denote the set stabilizer
subgroup – i.e., g ⋅B = B for all g ∈ Stabρ(B). Given θ ∈ Θ,
there is a bijection between subgroups of ρ(G) that contain
Stabρ(θ) and systems of block B ∋ θ (Dixon & Mortimer,
1996). In other words, any block system B ∋ θ can be
identified with its set-stabilizer Stabρ(B) which contains
Stabρ(θ) as a subgroup. Given a block system B ⊆ Θ, we

can decompose the permutation matrices ρ(g) as

ρ(g) = (ρΘ/B(g) ⊗ I∣B∣)(⊕
B

ρB(g)) , (8)

where ρΘ/B(g) permutes the blocks, and ρB(g) ∈
Stabρ(B), permutes the elements inside the block B. The
reader may notice that the expression above resembles the
wreath product action of Eq. (4). This is because the im-
primitive action of the wreath product is a way of creating
block systems in which one group permutes the blocks and
independent action of a second group permutes each inner
block – i.e., these groups act independently at the two levels
of the hierarchy. However, to account for the interrelation
between the global symmetry of the Platonic solid and the
rotation/reflection symmetry of each face tiling, we need to
consider the system of blocks created by H action on flags.

5.2.2. FLAGS AND REGULAR H -ACTION

Adjacent face-edge-vertex triples of polyhedra are called
flags: Γ = {(f, e, v) ∈ [v] × E × ∆ ∣ {v} ⊂ e ⊂ f}, where
E ⊂ [v]2 is the edgeset (Cromwell, 1999). An important
property of Platonic solids is that their full symmetry group
H has a regular action on flags – i.e., a unique permuta-
tion in the permutation group πΓ(H) < Sym(Γ) moves
one flag to another. If we consider only the rotational or
chiral symmetries, the group action is regular on adjacent
face-vertex pairs Γchiral = {(f, v) ∈ [v] ×∆ ∣ v ∈ f}. Mov-
ing forward, we work with flags, having in mind that our
treatment specializes to rotational symmetries by switching
to Γchiral.

5.2.3. G-ACTION AND EQUIVARIANT MAP

Now we have all the ingredients to define the G action,
for G of Eq. (7), on the regular features of the pixelized
sphere ∆ × K × Ω. The subset of flags associated with
a face Γ(f) = {(f, e, v) ∈ Γ} ⊂ Γ form a block sys-
tem under H action – that is rotations/reflections of the
solid keep the flags on the same face. Moreover, the set-
stabilizer subgroup StabπΓ

(Γ(f)) that fixes a face, is iso-
morphic to rotation/reflection symmetries of the face-tiling
StabπΓ

(Γ(f)) ≅ K and so it has a regular action on fea-
tures K. Therefore, we can decompose H action on Γ as
Eq. (8)

πΓ(h) = (π∆(h) ⊗ I∣K∣)
⎛
⎝⊕f∈∆

πΓ(f)(h)
⎞
⎠
, (9)
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Figure 5. The parameter-sharing matrix for LH , equivariant to π∆×K(H) of Eq. (9); the rotations of the cube
as they act on face-vertex pairs Γchiral. Since the cube has 6 × 4 = 24 face-vertex pairs, this is a 24 × 24 matrix.
To obtain the operations of Eq. (11) for a quad sphere with 3 × 3 tiling on each face, we need to repeat each
row and column of this matrix 9 (= 3 × 3) times to get a 216 × 216 matrix corresponding to LH ⊗ (1∣Ω∣1

⊺
∣Ω∣).

We then replace the 28 × 28 purple blocks on the diagonal of the resulting matrix with identical copies of LU

(Fig. 3); this corresponds to the second term I∣∆∣ ⊗LU in Eq. (11). The result is the parameter-sharing matrix of
the equivariant map for a quad sphere, assuming regular features.

where as before π∆(h) permutes the faces, and πΓ(f)(h) ∈
StabπΓ

(Γ(f)) is a permutation of the flags of face f . Since
StabπΓ

(Γ(f)) ≅K, each πΓ(f)(h) also uniquely identifies
a rotation reflection of the tiling. Let πΩ(f)(h) < Sym(Ω)
denote this action on the tiling. The combined action of the
polyhedral group H on the pixelization is given by

β(h) = (π∆(h) ⊗ I∣Ω×K∣)
⎛
⎝⊕f∈∆

πΓ(f)(h) ⊗ (πΩ(f)(h))
⎞
⎠
.

When defining the abstract symmetry of the solid we noted
that the polyhedral group defines an automorphism of trans-
lations bh ∶ T ∣∆∣ → T ∣∆∣. β(H) concretely defines this
automorphism through conjugation, resulting in the overall
G action:

ρ∗(g) = β(h)
⎛
⎝⊕f

τ (tf) ⊗ IK
⎞
⎠
β(h)−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
automorphism bh

β(h) (10)

= (π∆(h) ⊗ I∣Ω×K∣)
⎛
⎝⊕f∈∆

πΓ(f)(h) ⊗ (πΩ(f)(h)τ (tf))
⎞
⎠
,

where g = (h, t1, . . . t∣∆∣). Here, β(H) transforms the
translations, while also acting on ∆ × K × Ω (this is
similar to Eq. (1)). The end result is that the combina-
tion πΩ(f)(h)τ (tf) performs translation followed by ro-
tation/reflection on all tilings associated with a face, and
πΓ(f)(h) permutes the tilings associated with flags of face
f .

The general form of ρ∗ is similar to ρgauge of Eq. (4).
The difference is that in that case we assumed arbitrary
shuffling of charts (s ∈ S) as well as independent rota-
tions/reflections of each face (kf ∈ K). Therefore we
have g = (s, (t1, k1), . . . , (t∣∆∣, k∣∆∣)). In our approach,
σ(S) is replaced by π(H), and all rotations/reflections kf
for f ∈ ∆ are dictated by π as well - therefore we have
g = (h, t1, . . . t∣∆∣). As a permutation group we have

ρ∗ < ρhierarchy < ρgauge < Sym(∆ ×K ×Ω).

Next, we express the equivariant map for the pixelized
sphere in terms of the equivariant map for the polyhedral
group and the equivariant map for the face tiling.

Claim 1. Let LH ∶ R∣Γ∣ → R∣Γ∣ be equivariant to
H-action πΓ(H). Similarly, assume LU ∶ R∣K×Ω∣ →
R∣K×Ω∣ is equivariant to υK×Ω(U) as defined in Eq. (2).
Then the linear map

LG = LH ⊗ (1∣Ω∣1
⊺

∣Ω∣
) + I∣∆∣ ⊗ LU (11)

is equivariant to G action of Eq. (2).

The proof is in Appendix A. Note that while the form of
the equivariant map resembles the equivariant map for the
hierarchy of symmetries (e.g., Eq. (5)), here we do not have
a strict hierarchy; See Fig. 5 for the example of the quad
sphere.

5.3. Orientation Awareness

For some tasks, the spherical data may have a natural ori-
entation. For example, in omnidirectional images, there
is a natural up and down. In this case, equivariance to all
rotations of the sphere over-constrains the model. A sim-
ple way to handle orientation in our equivariant map is to
change LH to LH′ where π(H ′) < π(H) is the subgroup
that corresponds to the desired symmetry. In the exam-
ple of omnidirectional camera, when using a quad sphere,
H ′ = C4, and its action π(H ′) corresponds to rotations
around the vertical axis.

5.4. Equivariant Padding

Our goal is to define padding of face tilings for both scalar
and regular features. For scalar features, it is visually clear
which pixels are neighbors, and it is easy to produce such
a padding operation. However, for regular features, where
we have one tiling Ω(γ) per flag γ ∈ Γ, padding is more
challenging. Below we give a procedure. Padding is a set of
pairs Λ ⊂ Γ × Γ that identify neighboring flags. Since this
neighborhood is symmetric, padding can also be interpreted
as an undirected graph. Padding Λ should satisfy the fol-
lowing two conditions: i) each pair belong to neighboring
faces; ii) Λ is equivariant to H action:

adj(Λ) π∆×K(h) = π∆×K(h) adj(Λ) ∀h ∈H, (12)

where adj(Λ) ∈ {0,1}∣Γ∣×∣Γ∣ is the adjacency matrix of the
padding graph. In other words, π(H) defines the automor-
phisms of the padding graph; see Fig. 6 for an example. Our
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Figure 6. Padding graphs for our running example of quad sphere assuming rotational symmetry.
Edge colors are added only to aid visualization. (Left) scalar features: the graph shows the
neighborhood structure of faces. (Right) regular features: each face-vertex pair (a face corner)
identifies a γ ∈ Γchiral. In both cases, the graphs are invariant under the action of H , which rotates
the cube, where the group acts on the nodes of the padding graph.

equivariant padding resembles G-padding of (Cohen et al.,
2019a); however, it is built using the high-level symmetry
of the solid rather than relying on the choice of gauge in
neighboring faces.

5.5. Efficient Implementation

We build equivariant networks by stacking equivariant maps
and ReLU nonlinearity: L(`)

G ○ ReLU . . . ○ ReLU ○ L(1)
G .

Invariant networks use additional global average pooling
in the end. For implementing LG of Eq. (11), we need
efficient implementations of both terms in that equation.
We implement the first term in Eq. (11) using an efficient
combination of Pool-Broadcast operations:

LH ⊗ (1∣Ω∣1
⊺

∣Ω∣
) = BroadcastΩ ○LH ○PoolΩ.

In words, we first pool over each tiling Ω(γ) ∀γ ∈ Γ, then
apply the parameter-sharing layer LH , and broadcast the
result back to pixels Ω(γ). To implement LH , we use the
parameter-sharing library mentioned earlier6

For triangular faces, we would like each pixel to be able to
be translated to any other pixel. Therefore, we consider the
input signal to lie only on downward-facing triangles. This
is equivalent to considering a hexagonal grid of pixels; see
Fig. 7. We use implementations of group convolution for
both square and hexagonal grids (Cohen & Welling, 2016;
Hoogeboom et al., 2018).

Figure 7. A triangular tiling is con-
verted to a hexagonal tiling by re-
placing each down-facing triangle
with a hexagon.

6. Related Works
Our contribution is related to a large body of work in
equivariant and geometric deep learning. In design of
equivariant networks one could either find equivariant lin-
ear bases (Wood & Shawe-Taylor, 1996) or alternatively
use group convolution (Cohen et al., 2019b); these ap-
proaches are equivalent (Ravanbakhsh, 2020). For permuta-
tion groups the first perspective leads to parameter-sharing
layers (Ravanbakhsh et al., 2017) that are used in deep
learning with sets (Zaheer et al., 2017; Qi et al., 2017),
tensors (Hartford et al., 2018), and graphs (Kondor et al.,

6https://github.com/mshakerinava/AutoEquiv is a li-
brary for efficiently producing parameter-sharing layers given the genera-
tors of any permutation group.

2018b; Maron et al., 2019), where the focus has been on the
symmetric group. The group convolution approach which
has been formalized in a series of works (Cohen & Welling,
2017; Kondor & Trivedi, 2018; Cohen et al., 2019b; Lang &
Weiler, 2021) has been mostly applied to exploit subgroups
of the Euclidean group. Among many papers that explore
equivariance to Euclidean isometries are (Marcos et al.,
2017; Worrall et al., 2017; Thomas et al., 2018; Bekkers
et al., 2018; Weiler et al., 2018; Weiler & Cesa, 2019). Some
of the papers that more specifically consider the subgroups
of the orthogonal group are (Cohen et al., 2018; Esteves
et al., 2018; Perraudin et al., 2019; Anderson et al., 2019;
Bogatskiy et al., 2020; Dym & Maron, 2020). Other notable
approaches include capsule networks (Sabour et al., 2017;
Lenssen et al., 2018), equivariant attention mechanisms,
and transformers (Fuchs et al., 2020; Romero et al., 2020;
Hutchinson et al., 2020; Romero & Cordonnier, 2021).

The gauge equivariant framework of (Cohen et al., 2019a)
further extends the group convolution formalism, and it has
been applied to spherical data as well as 3D meshes (Haan
et al., 2021). In addition to their model for the pixelized
sphere, discussed in section Section 4, the same framework
is used to create a model for irregularly sampled points in
Kicanaoglu et al. (2020). Equivariant networks using global
symmetries of geometric objects such as mesh and polyhe-
dra that assume complete exchangeability of the nodes are
studied in (Albooyeh et al., 2020).

Below we quickly review other equivariant and non-
equivariant models that are specialized for spherical data.
Boomsma & Frellsen (2017) model the sphere as a cube
and apply 2D convolution on each face with no parameter-
sharing across faces. Su & Grauman (2017) and Coors
et al. (2018) design spherical CNNs for the task of omni-
directional vision. They use oriented convolution filters
that transform according to the distortions produced by the
projection method. Esteves et al. (2018) define a spherical
convolution layer that operates in the spectral domain. Their
model is SO(3) equivariant, and their convolution filters
are isotropic and non-localized.

Cohen et al. (2018) define an equivariant spherical corre-
lation operation in SO(3) which is further improved by
Kondor et al. (2018a) who introduce a Fourier-space nonlin-
earity and by Cobb et al. (2021) who make it more efficient.
This enables them to implement the whole neural network
in the Fourier domain. Jiang et al. (2019) define convolution
on unstructured grids via parameterized differential opera-
tors. They apply this convolution layer to the icosahedral

https://github.com/mshakerinava/AutoEquiv
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Table 1. Results for different symmetry assumptions (no padding). Pixel densities in figures match those of the experiments.
Tetetrahedron Cube Octahedron Icosahedron

∣∆∣ 4 6 8 20
∣Ω∣ 861 576 325 153
H A4 S4 S4 A5

Using different number of channels for the global operations LH in the final model
25% 98.79 ± 0.03 98.94 ± 0.09 98.96 ± 0.08 98.82 ± 0.07
50% 98.73 ± 0.08 98.99 ± 0.05 99.02 ± 0.05 98.93 ± 0.11
75% 98.70 ± 0.10 98.88 ± 0.04 99.00 ± 0.06 98.76 ± 0.10
100% 98.72 ± 0.09 98.83 ± 0.05 98.95 ± 0.07 98.84 ± 0.06
Comparison of different models
Gauge (U ≀ Sym(∆)) - Section 4 98.37 ± 0.07 98.70 ± 0.06 98.25 ± 0.11 97.45 ± 0.12
Hierarchical (U ≀H) - Section 5.1 98.62 ± 0.10 98.82 ± 0.03 98.62 ± 0.03 98.54 ± 0.05

Our Final Model (H ⋊ T ∣∆∣) - Section 5.2 98.73 ± 0.08 98.99 ± 0.05 99.02 ± 0.05 98.93 ± 0.11

spherical mesh (icosphere grid). Liu et al. (2018) introduce
alt-az spherical convolution, which is equivariant to azimuth
rotations, and implement it on the icosphere grid.

Zhang et al. (2019) model the sphere as an icosahedron.
They unwrap the icosahedron and convolve it with a hexag-
onal kernel in two orientations. They then interpolate the
result of the two convolutions to obtain a north-aligned con-
volution layer for the sphere. Defferrard et al. (2020) build
a graph on top of a discrete sampling of the sphere and then
process this graph with an isotropic graph CNN. This is
similar to using a gauge equivariant network with scalar
feature maps. Esteves et al. (2020) define SO(3) equivari-
ant convolution between spin weighted spherical functions.
Their convolutional filters are anisotropic and non-localized.
Similar to Esteves et al. (2018), they make the filters more
localized via spectral smoothness.

7. Experiments
Table 2. Spherical MNIST result.

Method Acc. (%)

Esteves et al. (2018) 98.72
Cohen et al. (2018)7 99.12
Cohen et al. (2019a) 99.31
Esteves et al. (2020) 99.37
Kicanaoglu et al. (2020) 99.43
Ours (cube + padding) 99.42

We use the efficient
implementation of
Section 5.5 in all
experiments. Details
of training and archi-
tectures appear in Appendix D and Appendix E. Below,
we report our experimental results on spherical MNIST,
Stanford 2D3DS, and HAPPI20 climate data.

7.1. Spherical MNIST

The spherical MNIST dataset (Cohen et al., 2018) consists
of images from the MNIST dataset projected onto a sphere
with random rotation. We consider the setting in which both
training and test images are randomly rotated. As seen in
Table 2, our quad sphere model is able to compete with
state-of-the-art.

Next, we study the effect of our global equivariant operation
LH that depends on the symmetry of the solid, as well as the
effect of the choice of solid. For these experiments, we do
not use equivariant padding. We transform the dataset into
our polyhedral sphere representation with the use of bilinear
interpolation. Table 1 visualizes different pixelizations and
reports the choice of group H (for rotational symmetries)
and the number of pixels per face ∣Ω∣. Since the number of
parameters in LH becomes large when we have multiple
channels, we allow for a fraction of channels to use LH .
The remaining channels only have local operations LU . The
first four rows of Table 1 show this fraction’s effect on the
performance. Overall, we observe that using a fraction of
channels for LH improves the model’s performance.

We then compare the performance of the three models dis-
cussed in Sections 4, 5.1 and 5.2, where from top to bottom
the size of the symmetry group decreases, and therefore we
expect the model to become more expressive. The results

7Taken from Cohen et al. (2019a)



Equivariant Networks for Pixelized Spheres

Table 3. Results on Stanford 2D3DS.

Method
Mean

Acc. (%)
Mean

IoU (%)

no
n-

or
ie

nt
ed Cohen et al. (2019a) 55.9 39.4

Kicanaoglu et al. (2020) 58.2 39.7
Esteves et al. (2020) 55.65 41.95
Ours (cube) 58.74 40.99

or
ie

nt
ed Jiang et al. (2019) 54.7 38.3

Zhang et al. (2019) 58.6 43.3
Ours (cube + orientation) 62.5 45.0

are in agreement with this expectation.8 Interestingly, in
polyhedra with more faces, the effect of using more ex-
pressive global operations is generally more significant –
e.g., for the icosahedron, the improvement is larger than that
of the tetrahedron.

We choose to use the cube for the following experiments be-
cause of the simplicity and efficiency of its implementation
and its good performance.

7.2. Omnidirectional Camera Images

The Stanford 2D3DS dataset (Armeni et al., 2017) consists
of 1413 omnidirectional RGBD images from 6 different
areas. The task is to segment the images into 13 semantic
categories. We use the standard 3-fold cross-validation split
and calculate average accuracy and IoU9 for each class over
different splits. Then, we average the metrics obtained for
each class to obtain an overall metric for this dataset. We
compose our equivariant map and equivariant padding in a
U-Net architecture (Ronneberger et al., 2015). Because of
class imbalance, we use a weighted loss similar to previous
works - e.g., Jiang et al. (2019). Our oriented model, de-
scribed in Section 5.3, achieves state-of-the-art performance
on this dataset; See Table 3.

7.3. Climate Data

We apply our model to the task of segmenting extreme
climate events (Mudigonda et al., 2017). We use climate
data produced by the Community Atmospheric Model v5
(CAM5) global climate simulator, specifically, the HAPPI20
run.10 The training, validation, and test set size is 43917,
6275, and 12549, respectively. The input consists of 16
feature maps. We normalize each channel of the input to
have zero mean and unit standard deviation. The task is
to segment atmospheric rivers (AR) and tropical cyclones
(TC). The rest of the pixels are labeled as background (BG).

8Gauge model is equivalent to having 0% global operations.
For each of the remaining two models, we chose the best percent-
age of channels for global operations.

9Intersection over Union: TP
TP+FP+FN

.
10The data is accessible at https://portal.nersc.gov/

project/dasrepo/deepcam/segm_h5_v3_reformat.

Table 4. Results on HAPPI20: mean accuracy (over TC, AR, BG)
and mean average precision (over TC and AR).

Method Mean Acc. (%) Mean AP (%)

Jiang et al. (2019)11 94.95 38.41
Zhang et al. (2019) 97.02 55.5
Cohen et al. (2019a) 97.7 75.9
Defferrard et al. (2020) 97.8 ± 0.3 77.15 ± 1.94
Kicanaoglu et al. (2020) 97.1 80.6
Ours (cube) 99.30 95.20

See Mudigonda et al. (2017) for how ground truth labels
are generated for this dataset. The classes are heavily unbal-
anced with 0.1% TC, 2.2% AR, and 97.7% BG. To account
for this unbalance, we use a weighted cross-entropy loss.
We project the input features onto a quad sphere with 48×48
pixels/face. We use the non-oriented model for this task.
In our experiments, we observed no significant gain from
using the oriented model. Experimental results can be seen
in Table 4. Our method achieves the highest accuracy and
average precision.

Conclusion
This paper introduces a family of equivariant maps for Pla-
tonic pixelizations of the sphere. The construction of these
maps combines the polyhedral symmetry with the rota-
tion/reflection symmetry of their face-tiling. The latter is
then, in turn, combined with the translational symmetry of
pixels on each face to produce an overall permutation group.
Our use of system of blocks to formalize this transformation
merits further exploration as it provides a generalization of a
hierarchy of symmetries. Our derivation also demonstrates
a close connection to gauge equivariant CNNs and suggests
a generalization in settings where local charts possess a
higher-level symmetry. Our equivariant maps, which have
efficient implementations, are combined with an equivari-
ant padding procedure to build deep equivariant networks.
These networks achieve state-of-the-art results on several
benchmarks. Given the ubiquitous nature of spherical data,
we hope that our contributions will lead to a broad impact.
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