
Personalized Federated Learning using Hypernetworks

Aviv Shamsian∗ 1 Aviv Navon∗ 1 Ethan Fetaya 1 Gal Chechik 1 2

Abstract
Personalized federated learning is tasked with
training machine learning models for multiple
clients, each with its own data distribution. The
goal is to train personalized models collabora-
tively while accounting for data disparities across
clients and reducing communication costs.

We propose a novel approach to this problem
using hypernetworks, termed pFedHN for per-
sonalized Federated HyperNetworks. In this ap-
proach, a central hypernetwork model is trained
to generate a set of models, one model for each
client. This architecture provides effective param-
eter sharing across clients while maintaining the
capacity to generate unique and diverse personal
models. Furthermore, since hypernetwork param-
eters are never transmitted, this approach decou-
ples the communication cost from the trainable
model size. We test pFedHN empirically in sev-
eral personalized federated learning challenges
and find that it outperforms previous methods.
Finally, since hypernetworks share information
across clients, we show that pFedHN can general-
ize better to new clients whose distributions differ
from any client observed during training.

1. Introduction
Federated learning (FL) is the task of learning a model over
multiple disjoint local datasets (McMahan et al., 2017a;
Yang et al., 2019). It is particularly beneficial when local
data cannot be shared due to privacy, storage, or commu-
nication constraints. For example, IoT applications may
create data at edge devices that are too large to share and
medical applications may be forbidden from sharing data
due to privacy (Wu et al., 2020). In federated learning, all
clients collectively train a shared model without sharing data

*Equal contribution 1Bar-Ilan University, Ramat Gan,
Israel 2Nvidia, Tel-Aviv, Israel. Correspondence to: Aviv
Shamsian <aviv.shamsian@live.biu.ac.il>, Aviv Navon
<aviv.navon@biu.ac.il>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

while minimizing communication. Unfortunately, learning
a single global model may fail when the data distribution
varies across clients. For example, user data may originate
from different devices or geographical locales and is poten-
tially heterogeneous. In the extreme, each client may be
required to solve another task. To handle such heterogene-
ity across clients, Personalized Federated Learning (PFL)
(Smith et al., 2017) allows each client to use a personalized
model instead of a shared global model. The key challenge
in PFL is to benefit from joint training while allowing each
client to keep its unique model and at the same time limit
the communication cost. While several approaches were
recently proposed for this challenge, these problems are far
from being resolved.

In this work, we describe a new approach named pFedHN
for personalized Federated HyperNetwork, which aims to
resolve these challenges using hypernetworks (Ha et al.,
2017). A hypernetwork is a model that produces parameters
for another neural networks. Our approach learns to smartly
share parameters across clients by using a single joint hyper-
network to generate separate network parameters for every
client. Each client has a unique embedding vector, passed as
input to the hypernetwork to produce its personalized model
weights. The vast majority of trainable parameters belong
to the hypernetwork and are shared across clients. Despite
that, using a hypernetwork achieves great flexibility and
diversity across client models. Intuitively, since a hypernet-
work provides a mapping from the embedding input space
to the space of client network parameters, its image can be
viewed as a low-dimensional manifold in that space. Thus,
we can think of the hypernetwork as the coordinate map
of this manifold. Each unique client model is restricted to
lay on this manifold and is parametrized by the embedding
vector.

Another benefit of using hypernetworks is that the hyper-
network parameters, which generally are of a much larger
size than the clients’ network parameters that it produces,
are never transmitted. Instead, each client only needs to
receive its own network parameters to make predictions and
compute gradients. Furthermore, the hypernetwork only
needs to receive gradients or update directions to optimize
its parameters. The communication cost does not depend on
the size of the hypernetwork, and as a result, we can train
a large hypernetwork with the same communication costs

Personalized Federated Learning using Hypernetworks

as in previous models. Compared to previous parameter-
sharing schemes, like Dinh et al. (2020); McMahan et al.
(2017a), hypernetworks open new options that were not di-
rectly possible before. For instance, consider a case where
each client uses a cell phone or a wearable device, each with
different computational resources. The hypernetwork can
produce several networks per input, each with a different
computational capacity, allowing each client to select its
appropriate network.

This paper makes the following contributions: (1) A new
approach for personalized federated learning based on hy-
pernetworks. (2) This approach generalizes better (a) to
novel clients that differ from the ones seen during training;
and (b) to clients with different computational resources,
allowing clients to have different model sizes. (3) A new set
of state-of-the-art results for the standard benchmarks in the
field CIFAR10, CIFAR100, and Omniglot.

The paper is organized as follows. Section 3 describes
our model in detail. Section 4 establishes some theo-
retical results to provide insight into our model. Sec-
tion 5 shows experimentally that pFedHN achieves state-
of-the-art results on several datasets and learning setups.
We make our source code publicly available at: https:
//github.com/AvivSham/pFedHN.

2. Related Work
2.1. Federated Learning

Federated learning (FL) (McMahan et al., 2017a; Kairouz
et al., 2019; Mothukuri et al., 2021; Li et al., 2019; 2020a)
is a learning setup in machine learning in which multiple
clients collaborate to solve a learning task while maintaining
privacy and communication efficiency. Recently, numerous
methods have been introduced for solving the various FL
challenges. Duchi et al. (2014); McMahan et al. (2017b);
Agarwal et al. (2018); Zhu et al. (2019) proposed new meth-
ods for preserving privacy, and Reisizadeh et al. (2020); Dai
et al. (2019); Basu et al. (2020); Li et al. (2020b); Stich
(2018) focused on reducing communication cost. While
some methods assume a homogeneous setup, in which all
clients share a common data distribution (Wang & Joshi,
2018; Lin et al., 2018), others tackle the more challenging
heterogeneous setup in which each client is equipped with
its own data distribution (Zhou & Cong, 2017; Hanzely &
Richtárik, 2020; Zhao et al., 2018; Sahu et al., 2018; Karim-
ireddy et al., 2019; Haddadpour & Mahdavi, 2019; Hsu
et al., 2019).

Perhaps the most known and commonly used FL algorithm
is FedAvg (McMahan et al., 2017a). It learns a global model
by aggregating local models trained on IID data. However,
the above methods learn a shared global model for all clients
instead of personalized per-client solutions.

2.2. Personalized Federated Learning

The federated learning setup presents numerous challenges,
including data heterogeneity (differences in data distribu-
tion), device heterogeneity (in terms of computation ca-
pabilities, network connection, etc.), and communication
efficiency (Kairouz et al., 2019). Especially data hetero-
geneity makes it hard to learn a single shared global model
that applies to all clients. To overcome these issues, Per-
sonalized Federated Learning (PFL) aims to personalize
the global model for each client in the federation (Kulkarni
et al., 2020).

Many papers proposed a decentralized version of the model
agnostic meta-learning (MAML) problem (Fallah et al.,
2020a; Li et al., 2017; Behl et al., 2019; Zhou et al., 2019;
Fallah et al., 2020b). Since the MAML approach relies on
the Hessian matrix, which is computationally costly, several
works attempted to approximate the Hessian (Finn et al.,
2017; Nichol et al., 2018). Multitask learning was also used
for PFL by viewing each client as a learning task (Smith
et al., 2017). Recently, Dinh et al. (2021) proposed FedU, a
federated multitask algorithm that uses Laplacian regular-
ization to encourage similarities between clients. Another
approach to PFL is model mixing, where clients learn a mix-
ture of the global model and local models (Deng et al., 2020;
Arivazhagan et al., 2019). Hanzely & Richtárik (2020) in-
troduced a new neural network architecture divided into
base and personalized layers. The central model trains the
base layers by FedAvg, and the personalized layers are
trained locally. Liang et al. (2020) presented LG-FedAvg, a
mixing-model method where each client obtains local fea-
ture extractor and global output layers, which differ from
the conventional mixing model approach. Using a shared
output layers lowers the communication costs because the
global model requires fewer parameters.

Other approaches to PFL propose training the global and
local models under different regularization schemes (Huang
et al., 2020). Dinh et al. (2020) introduced pFedMe, a
method that uses Moreau envelops to regularize the client
loss. This regularization helps to decouple the optimiza-
tion of the personalized models from the optimization of
the global one. Alternatively, clustering methods for fed-
erated learning assume that the local data of each client
is partitioned by nature (Mansour et al., 2020). They aim
to group similar clients and train a centralized model per
group. In a heterogeneous setup, some clients are ”closer”
than others in terms of data distribution. Based on this
assumption and inspired by FedAvg, Zhang et al. (2020)
proposed pFedFOMO, an aggregation method where each
client only federates with a subset of relevant clients.

Personalized Federated Learning using Hypernetworks

(a) (b)

Figure 1. The Federated hypernetwork framework. (a) An HN h(·;ϕ) is located on the server and communicates a personal model θi for
each client i. In turn, the client i sends back the update direction ∆θi; (b) The HN acts on the client embedding vi to produce model
weights θi. The client performs several local optimization steps to obtain θ̃i, and sends back the update direction ∆θi = θ̃i − θi.

2.3. Hypernetworks

Hypernetworks (HNs) (Klein et al., 2015; Riegler et al.,
2015; Ha et al., 2017) are deep neural networks that out-
put the weights of another target network that performs
the learning task. The idea is that the output weights vary
depending on the input to the hypernetwork.

HNs are widely used in various machine learning domains,
including language modeling (Suarez, 2017), computer vi-
sion (Ha et al., 2017; Klocek et al., 2019), continual learn-
ing (von Oswald et al., 2019), hyperparameter optimiza-
tion (Lorraine & Duvenaud, 2018; MacKay et al., 2019;
Bae & Grosse, 2020), multi-objective optimization (Navon
et al., 2021), and decoding block codes (Nachmani & Wolf,
2019). Most related to our approach is Zhao et al. (2020),
which proposed using HNs for meta-learning with an input-
task embedding. That work differs from the current work
in several key ways. It focused on few-shot learning with
linear HNs, and it used an entirely different optimization
algorithm based on a bi-level optimization with inner-outer
loops.

HNs are naturally suitable for learning a diverse set of per-
sonalized models, as HNs dynamically generate target net-
works conditioned on the input.

3. Method
In this section, we first formalize the personalized federated
learning (PFL) problem, then we present our personalized
Federated HyperNetworks (pFedHN) approach.

3.1. Problem Formulation

Personalized federated learning (PFL) aims to collabora-
tively train personalized models for a set of n clients,
each with its personal private data. Unlike conventional

FL, each client i is equipped with its own data distribu-
tion Pi on X × Y . Assume each client has access to
mi IID samples from Pi, Si = {(x(i)

j , y
(i)
j)}mi

i=1. Let
`i : Y × Y → R+ denote the loss function corresponds
to client i, and Li the average loss over the personal training
data Li(θi) = 1

mi

∑
j `i(xj , yj ; θi). Here θi denotes the

personal model of client i. The PFL goal is to optimize

Θ∗ = arg min
Θ

1

n

n∑
i=1

Ex,y∼Pi
[`i(xj , yj ; θi)] (1)

and the training objective is given by

arg min
Θ

1

n

n∑
i=1

Li(θi) = arg min
Θ

1

n

n∑
i=1

1

mi

mi∑
j=1

`i(xj , yj ; θi)

(2)

where Θ denotes the set of personal parameters {θi}ni=1.

3.2. Federated Hypernetworks

In this section, we describe our proposed personalized Fed-
erated Hypernetworks (pFedHN), a novel method for solv-
ing the PFL problem (Eq. 2) using hypernetworks. Hyper-
networks are deep neural networks that output the weights
of another network, conditioning on its input. Intuitively,
HNs simultaneously learn a family of target networks. Let
h(·;ϕ) denote the hypernetwork parametrized by ϕ and
f(·; θ) the target network parametrized by θ. The hypernet-
work is located at the server and acts on a client descriptor
vi (see Figure 1). The descriptor can be a trainable em-
bedding vector for the client or fixed, provided that a good
client representation is known a-priori. Given vi the HN out-
puts the weights for the ith client θi = θi(ϕ) := h(vi;ϕ).
Hence, the HN h learns a family of personalized models
{h(vi;ϕ) | i ∈ [n]}. pFedHN provides a natural way for
sharing information across clients while maintaining the

Personalized Federated Learning using Hypernetworks

Algorithm 1 Personalized Federated Hypernetwork
input: R — number of rounds, K — number of local steps,
α — HN learning rate, η — client learning rate
for r = 1, ..., R do

sample client i ∈ [n]

set θi = h(vi;ϕ) and θ̃i = θi
for k = 1, ...,K do

sample mini-batch B ⊂ Si
θ̃i = θ̃i − η∇θ̃iLi(B)

∆θi = θ̃i − θi
ϕ = ϕ− α∇ϕθTi ∆θi
vi = vi − α∇viϕ

T∇ϕθTi ∆θi

return: ϕ

flexibility of personalized models, by sharing the parame-
ters ϕ.

We adjust the PFL objective (Eq. 2) according to the above
setup to obtain

arg min
ϕ,v1,...,vn

1

n

n∑
i=1

Li(h(vi;ϕ)). (3)

One crucial and attractive property of pFedHN is that it
decouples the size of h and the communication cost. The
amount of transmitted data during the forward and back-
ward communications is only determined by the size of
the target network and is independent of h. Consequently,
the hypernetwork can be arbitrarily large without impairing
communication efficiency. Indeed, using the chain rule we
have ∇ϕLi = (∇ϕθi)T∇θiLi so the client only needs to
communicate∇θiLi back to the hypernetwork, which has
the same size as the personal network parameters θi.

In our work, we used a more general update rule ∆ϕ =
(∇ϕθi)T∆θi, where ∆θi is the change in local model pa-
rameters after several local update steps. Since the main
limitation is the communication cost, we found it beneficial
to perform several local update steps on the client side per
each communication round. This aligns with prior work
that highlighted the benefits of local optimization steps in
terms of both convergence speed (hence communication
cost) and final accuracy (McMahan et al., 2017a; Huo et al.,
2020). Given the current personalized parameters θi, we
perform several local optimization steps on the personal
data to obtain θ̃i. We then return the personal model update
direction ∆θi := θ̃i− θi therefore, the update for ϕ is given
by (∇ϕθi)T (θ̃i− θi). This update rule is inspired by Zhang
et al. (2019). Intuitively, suppose we have access to the op-
timal solution of the personal problem θ∗i = arg minθi Li,
then our update rule becomes the gradient of an approxima-
tion to the surrogate loss L̃i(vi, ϕ) = 1

2 ||θ
∗
i −h(vi;ϕ)||22 by

replacing θ∗i with θ̃i. In Appendix C (Figure 5), we compare
the results for a different number of local update steps and
show considerable improvement over using the gradient, i.e.,

using a single step.

We summarize our method in Alg. 1. Importantly, we note
that in practice, all parameter updates are performed us-
ing efficient backpropagation and without multiplication of
Jacobian matrices.

3.3. Personal Classifier

In some cases, it is undesirable to learn the entire network
end-to-end with a single hypernetwork. As an illustrative
example, consider a case where clients differ only by the
label ordering in their output vectors. In this case, having
to learn the correct label ordering per client adds another
unnecessary difficulty if they were to learn the classification
layer as well using the hypernetwork.

As another example, consider the case where each client
solves an entirely separate task, similar to multitask learning,
where the number of classes may differ between clients. It
makes little sense to have the hypernetwork produce each
unique task classification layer.

In these cases, it would be preferable for the hypernetwork
to produce the feature extraction part of the target network,
which contains most of the trainable parameters while learn-
ing a local output layer for each client. Formally, let ωi
denote the personal classifier parameters of client i. We
modify the optimization problem (eq. 3) to obtain,

arg min
ϕ,v1,...,vn,ω1,...,ωn

1

n

n∑
i=1

Li(θi, ωi), (4)

where we define the feature extractor θi = h(vi;ϕ), as
before. The parameters ϕ,v1, ...,vn are updated according
to Alg. 1, while the personal parameters ωi are updated
locally using

ωi = ωi − α∇ωi
Li.

4. Analysis
In this section, we theoretically analyze pFedHN. First, we
provide an insight regarding the solution for the pFedHN
(Eq. 3) using a simple linear version of our hypernetwork.
Then, we describe generalization bounds of our framework.

4.1. A Linear Model

Consider a linear version of the hypernetwork, where both
the target model and the hypernetwork are linear models,
θi = Wvi with ϕ := W ∈ Rd×k and vi ∈ Rk is the ith

clients embedding. Let V denote the k × n matrix whose
columns are the clients embedding vectors vi. We note
that even for convex loss functions Li(θi) the objective
L(W,V) =

∑
i Li(Wvi) might not be convex in (W,V)

but block multi-convex. In one setting, however, we get a
nice analytical solution.

Personalized Federated Learning using Hypernetworks

Proposition 1. Let {Xi,yi} be the data for client i and
let the loss for linear regressor θi be Li(θi) = ‖Xiθi −
yi‖2. Furthermore, assume that for all i, XT

i Xi = Id.
Define the empirical risk minimization (ERM) solution for
client i to be θ̄i = arg minθ∈Rd ‖Xiθ − yi‖2. The optimal
W,V minimizing

∑
i ‖XiWvi−yi‖2 are given by PCA on

{θ̄1, ..., θ̄n}, where W is the top-k principal components
and vi is the coefficients for θ̄i in these components.

We provide the proof in Section A of the Appendix. The
linear version of our pFedHN performs dimensionality re-
duction by PCA. However, unlike classical dimensionality
reduction, which is unaware of the learning task, pFedHN
uses multiple clients for reducing the dimensionality while
preserving the optimal model as best as possible. This al-
lows us to get solutions between the two extremes: A single
shared model up to scaling (k = 1) and each client training
locally (k ≥ n). We note that optimal reconstruction of
the local models (k ≥ n) is generally suboptimal in terms
of generalization performance, as no information is shared
across clients.

This dimensionality reduction can also be viewed as a de-
noising process. Consider a linear regression with a Gaus-
sian noise model, i.e., for all clients p(y|x) = N (xT θ∗i , σ

2),
and assume that each client solves a maximum-likelihood
objective. From the central limit theorem for maximum-
likelihood estimators (White, 1982), we have that1

√
ni(θ̄i−

θ∗i)
d−→ N (0, Id), where θ̄i is the maximum likelihood so-

lution. This means that approximately θ̄i = θ∗i + ε with
ε ∼ N (0, σiI), i.e., our local solutions θ̄i are a noisy ver-
sion of the optimal model θ∗i with isotropic Gaussian noise.

We can now view a linear hypernetwork as performing de-
noising on θ̄i by PCA. PCA is a classic approach to denois-
ing (Muresan & Parks, 2003) that is well suited for reducing
isotropic noise when the energy of the original points is
concentrated on a low-dimensional subspace. Intuitively we
think of our standard hypernetwork as a nonlinear extension
of this approach, which has a similar effect by forcing the
models to lay on a low-dimensional manifold.

4.2. Generalization

We now investigate how pFedHN generalizes using the ap-
proach of Baxter (2000). The common approach for multi-
task learning with neural networks is to have a common
feature extractor shared by all tasks and a per-task head
operating on these features. This case was analyzed by
Baxter (2000). Conversely, here the per-task parameters
are the inputs to the hypernetwork. Next, we provide the
generalization guarantee under this setting and discuss its
implications.

1Note that the Fisher matrix is the identity from our assumption
that XT

i Xi = Id.

Let Di =
{

(x
(i)
j , y

(i)
j)
}m
j=1

be the training set for the

ith client, generated by a distribution Pi. We denote
by L̂D(ϕ, V) the empirical loss of the hypernetwork
L̂D(ϕ, V) = 1

n

∑n
i=1

1
m

∑m
j=1 `i

(
x

(i)
j , y

(i)
j ;h(ϕ,vi)

)
and by L(ϕ, V) the expected loss L(ϕ, V) =
1
n

∑n
i=1 EPi

[`i(x, y;h(ϕ,vi))].

We assume weights of the hypernetwork and the embeddings
are bounded in a ball of radius R, in which the following
three Lipschitz conditions hold:

1. |`i(x, y, θ1)− `i(x, y, θ2)| ≤ L‖θ1 − θ2‖

2. ‖h(ϕ,v)− h(ϕ′,v)‖ ≤ Lh‖ϕ− ϕ′‖

3. ‖h(ϕ,v)− h(ϕ,v′)‖ ≤ LV ‖v − v′‖.

Theorem 1. Let the hypernetwork parameter space be of
dimension N and the embedding space be of dimension
k. Under previously stated assumptions, there exists M =

O
(
k
ε2

log
(
RL(Lh+LV)

ε

)
+ N

nε2
log
(
RL(Lh+LV)

ε

)
+ 1

nε2
log 1

δ

)
such that if the number of samples per client m is greater
than M , we have with probability at least 1− δ for all ϕ, V
that |L(ϕ, V)− L̂D(ϕ, V)| ≤ ε.

Theorem 1 provides insights on the parameter-sharing effect
of pFedHN. The first term for the number of required sam-
plesM depends on the dimension of the embedding vectors;
as each client corresponds to its unique embedding vector
(i.e., not being shared between clients), this part is indepen-
dent of the number of clients n. However, the second term
depends on the hypernetwork size N and is reduced by a
factor of n because the hypernetwork weights are shared.

Additionally, the generalization is affected by the Lipschitz
constant of the hypernetwork, Lh (along with other Lips-
chitz constants), as it can affect the effective space that we
can reach with our embedding. In essence, this character-
izes the price that we pay, in terms of generalization, for the
hypernetworks flexibility. It might also open new directions
to improve performance. However, our initial investigation
into bounding the Lipschitz constant by adding spectral nor-
malization (Miyato et al., 2018) did not show any significant
improvement, see Appendix C.4.

5. Experiments
We evaluate pFedHN in several learning setups us-
ing three common image-classification datasets: CI-
FAR10, CIFAR100, and Omniglot (Krizhevsky & Hin-
ton, 2009; Lake et al., 2015). Unless stated other-
wise, we report the Federated Accuracy, defined as
1
n

∑
i

1
mi

∑
j Acc

(
fi

(
x

(i)
j

)
, y

(i)
j

)
, averaged over three

seeds. The experiments show that pFedHN outperforms
classical FL approaches and leading PFL models.

Personalized Federated Learning using Hypernetworks

Table 1. Heterogeneous data. Test accuracy over 50, 100 and 500 clients on the CIFAR10, CIFAR100, and Omniglot datasets.

CIFAR10 CIFAR100 Omniglot

clients 50 100 500 50 100 500 50

Local 68.11± 7.39 59.32± 5.59 53.87± 0.11 19.98± 1.41 15.12± 0.58 13.95± 0.09 65.97± 0.86
FedAvg 47.79± 4.48 44.12± 3.10 54.04± 0.87 15.96± 0.55 15.71± 0.35 20.40± 0.11 41.61± 3.59
FedU 80.63± 0.52 78.12± 0.87 65.64± 0.74 41.09± 0.45 36.03± 0.33 15.93± 0.76 60.82± 0.01
LG-FedAvg 85.19± 0.58 81.49± 1.56 64.72± 1.26 53.16± 2.18 49.99± 3.13 20.25± 0.91 72.99± 5.00
FedPer 83.39± 0.47 80.99± 0.71 76.79± 2.08 48.32± 1.46 42.08± 0.18 25.62± 0.52 69.92± 3.12
pFedMe 86.09± 0.32 85.23± 0.58 80.28± 0.9 49.09± 1.10 45.57± 1.02 32.53± 1.32 69.98± 0.28

pFedHN (ours) 88.38± 0.29 87.97± 0.70 75.92± 1.3 59.48± 0.67 53.24± 0.31 43.01± 2.6 72.03± 1.08
pFedHN-PC (ours) 90.08± 0.63 88.09± 0.86 83.22± 1.28 60.17± 1.63 52.4± 0.74 34.10± 0.17 81.89± 0.15

Compared Methods: We evaluate and compare the fol-
lowing approaches: (1) pFedHN, Our proposed Federated
HyperNetworks (2) pFedHN-PC, pFedHN with a person-
alized classifier per client ; (3) Local, Local training on
each client, with no collaboration between clients; (4) Fe-
dAvg (McMahan et al., 2017a), one of the first and per-
haps the most widely used FL algorithm; (5) FedU (Dinh
et al., 2021), a multitask learning approach for PFL; (6)
pFedMe (Dinh et al., 2020), a PFL approach that adds a
Moreau-envelopes loss term; (7) LG-FedAvg (Liang et al.,
2020) PFL method with a local feature extractor and global
output layers; (8) FedPer (Arivazhagan et al., 2019) a PFL
approach that learns per-client personal classifier on top of
a shared feature extractor.

Training Strategies: In all experiments, our target net-
work has the same architecture as the baseline model. It is a
simple fully-connected neural network, with three hidden
layers and multiple linear heads per target-weight tensor.
We limit training to have at most 5000 server-client com-
munication steps for all methods except LG-FedAvg. That
method uses a pretrained FedAvg model; hence it is trained
with additional 1000 communication steps. The Local base-
line is trained for 2000 optimization steps on each client.
For pFedHN, we set the number of local steps to K = 50,
and the embedding dimension to b1 + n/4c, where n is the
number of clients. We provide an extensive ablation study
on design choices in Appendix C. We tune the hyperparame-
ters of all methods using a pre-allocated held-out validation
set. Full experimental details are provided in Appendix B.

5.1. Heterogeneous Data

We evaluate the different approaches on a challenging het-
erogeneous setup. We adopt the learning setup and the
evaluation protocol described in Dinh et al. (2020) for gen-
erating heterogeneous clients in terms of classes and size
of local training data. First, we sample two/ten classes for
each client for CIFAR10/CIFAR100; Next, for each client i
and selected class c, we sample αi,c ∼ U(.4, .6), and assign
it with αi,c∑

j αj,c
of the samples for this class. We repeat the

above using 50, 100 and 500 clients. This procedure pro-
duces clients with a varying number of samples and classes.
For the target network, we use a LeNet-based (LeCun et al.,
1998) network with two convolutional layers and two fully
connected layers.

We also evaluate all methods with the Omniglot dataset
(Lake et al., 2015). Omniglot contains 1623 different
grayscale handwritten characters (with 20 samples each)
from 50 different alphabets. Each alphabet obtains a vary-
ing number of characters. In this setup, we use 50 clients and
assign an alphabet to each client. Therefore, clients receive
different numbers of samples, and the distribution of labels
is disjoint across clients. We use a LeNet-based model with
four convolutional layers and two fully connected layers.

The results are presented in Table 1. The two simple base-
lines, local and FedAvg, perform poorly on most tasks,
showing the importance of personalized federated learn-
ing. pFedHN achieves a significant 2%-10% improvement
over competing approaches. Furthermore, on the Omniglot
dataset, where each client is allocated with a completely dif-
ferent learning task (different alphabet), we show significant
improvement using pFedHN-PC. We present additional re-
sults on MNIST and CIFAR10/100 datasets in Appendix C.2
and C.1.

5.2. Computational Budget

We discussed above how the challenges of heterogeneous
data can be handled using pFedHN. Another major chal-
lenge presented by personalized FL is that clients’ commu-
nication, storage, and computational resources may differ
significantly. These capacities may even change in time due
to varying network and power conditions. In such a setup,
the server should adjust to the communication and com-
putational policies of each client. Unfortunately, previous
works do not address this resource heterogeneity. pFedHN
can naturally adapt to this challenging learning setup by
producing target networks of different sizes.

In this section, we evaluate the capacity of pFedHN to han-
dle clients that differ in their computational and commu-

Personalized Federated Learning using Hypernetworks

Table 2. Computational budget. Test accuracy for CIFAR10/100 with 75 clients and varying computational capacities.

CIFAR10 CIFAR100

Local model size S M L S M L

FedAvg 36.91± 2.26 42.09± 2.37 47.51± 1.97 9.79± 0.19 11.76± 1.14 17.86± 2.42
LG-FedAvg 73.93± 3.65 53.13± 3.49 54.72± 2.50 33.48± 4.83 29.15± 1.51 23.01± 1.41
FedPer 79.38± 4.94 82.65± 0.59 84.08± 1.87 37.24± 1.23 39.31± 2.08 41.31± 1.58
pFedMe 81.21± 1.23 84.08± 1.63 83.15± 2.45 39.91± 0.81 41.99± 0.55 44.93± 1.63

pFedHN (ours) 85.38± 1.21 86.92± 1.35 87.20± 0.76 48.04± 0.89 48.66± 1.21 50.66± 2.70

nication resource budget. We use the same split described
in Section 5.1 with a total of 75 clients divided into the
three equal-sized groups named S (small), M (medium), and
L (large). The Models of clients within each group share
the same architecture. The three architectures (of the three
groups) have a different number of parameters.

We train a single pFedHN to output target client models of
different sizes. Importantly, this allows pFedHN to share
parameters between all clients, even if those have different
local model sizes.

Baselines: For quantitative comparisons, and since the ex-
isting baseline methods cannot easily extend to this setup,
we train three independent per-group models. Each group
is trained for 5000 server-client communication steps. See
Appendix B for further details.

The results are presented in Table 2, showing that pFedHN
achieves 4%− 8% improvement over competing methods.
These results demonstrate the flexibility of our approach,
which can adjust to different client settings while maintain-
ing high accuracy.

5.3. Generalization to Novel Clients

Next, we study an important learning setup where new
clients join, and a new model has to be trained for their data.
In the general case of sharing models across clients, this
would require retraining (or finetuning) the shared model.
While PFL methods like pFedME (Dinh et al., 2020) can
adapt to this setting by finetuning the global model locally,
pFedHN architecture offers a significant benefit. Since the
shared model learns a meta-model over the distribution of
clients, it can, in principle, generalize to new clients without
retraining. With pFedHN, once the shared model ϕ has
been trained on a set of clients, extending to a new set of
novel clients requires little effort. We freeze the hypernet-
work weights ϕ and optimize an embedding vector vnew.
Since only a small number of parameters are being opti-
mized, training is less prone to overfitting compared to other
approaches. The success of this process depends on the hy-
pernetwork’s capacity to learn the distribution over clients

Figure 2. Generalization to novel clients. The accuracy gen-
eralization gap between training and novel clients, defined as
accnovel − acctrain, where acc denotes the average accuracy.

and generalize to clients with different data distributions.

To evaluate pFedHN in this setting, we use the CIFAR10
dataset, with a total of 100 clients. 90 clients are used for
training, and 10 are held out as novel clients. To allocate
data samples, for each client i we first draw a sample from
a Dirichlet distribution with parameter α = (α, ..., α) ∈
R10, pi ∼ Dir(α). Next, we normalize the pi’s so that∑
i pi,j = 1 for all j, to obtain the vector p̂i. We now allo-

cate samples according to the p̂i’s. For the training clients,
we choose α = .1, whereas for the novel clients we vary
α ∈ {.1, .25, .5, 1}. To estimate the “distance” between a
novel client and the training clients, we use the total varia-
tion (TV) distance between the novel client and its nearest
neighbor in the training set. The TV is computed over the
empirical distributions p̂. Figure 2 presents the accuracy gen-
eralization gap as a function of the total variation distance.
pFedHN achieves the best generalization performance for
all levels of TV (corresponds to the different values for α).

5.4. Heterogeneity of personalized classifiers

We further investigate the flexibility of pFedHN-PC in terms
of personalizing different networks for different clients. Po-

Personalized Federated Learning using Hypernetworks

Figure 3. Model personalization. Rows correspond to clients, each
with their trained in a binary classification task and keeping their
personalized classifier ωi. Columns correspond to the feature
extractor θj of another client. The diagonal corresponds to the
stanard training with θi and ωi. For better visualization, values
denote accuracy normalized per row: norm-acci,j = (acci,j −
min` acci,`)/(max` acci,` −min` acci,`).

tentially, since each client i has its own personalized clas-
sifier ωi, the feature extractor component θi generated by
the HN may in principle become strongly similar across
clients, making the HN redundant. The experiments sug-
gest that this concern does not happen in practice because
pFedHN-PC out-performs FedPer (Arivazhagan et al., 2019).
However, this raises a fundamental question about the in-
terplay between local and shared personalized components.
We provide additional insight to this topic by answering the
question: Do feature extraction layers, as generated by the
pFedHN-PC’s hypernetwork, significantly differ from each
other?

To investigate the level of personalization in θi achieved by
pFedHN-PC, we first train it on the CIFAR10 dataset split
among ten clients, with two classes assigned to each client.
Next, for each client, we replace its feature extractor θi with
that of another client θj while keeping its personal classifier
ωi unaltered. Figure 3 depicts the normalized accuracy
in this mix-and-match experiment. Rows correspond to a
client, and columns correspond to the feature extractor of
another client.

Several effects in Figure 3 are of interest. First, pFedHN-
PC produces personalized feature extractors for each client
since the accuracy achieved when crossing classifiers, and
feature extractors vary significantly. Second, some client
pairs can be crossed without hurting the accuracy. Specifi-

Figure 4. t-SNE visualization of the learned client representation
v for the CIFAR100 dataset. Clients are tasked with classifying
classes that belong to the same coarse class. Clients marked with
the same color correspond to the same coarse class, see text for
details. pFedHN clustered together clients from the same group.

cally, we had two clients learning to discriminate horse-vs.-
dog. Interestingly, the client for ship-vs.-airplane performs
well when presented with truck and bird, presumably be-
cause both their feature extractors learned to detect sky.

5.5. Learned Client Representation

In our experiments, we learn to represent each client using
a trainable embedding vector vi. These embedding vectors,
therefore, learn a continuous semantic representation over
the set of clients. The smooth nature of this representation
gives the HN the power to share information across clients.
We now wish to study the structure of that embedding space.

To examine how the learned embedding vectors reflect a
meaningful representation over the client space, we utilize
the hierarchy in CIFAR100 for generating clients with sim-
ilar data distribution of semantically similar labels. Con-
cretely, we split the CIFAR100 into 100 clients, where each
client is assigned with data from one out of the twenty coarse
classes uniformly (i.e., each coarse class is assigned to five
clients).

In Figure 4 we project the learned embedding vectors into
R2 using the t-SNE algorithm (Maaten & Hinton, 2008). A
clear structure is presented, in which clients from the same
group (in terms of coarse labels) are clustered together.

6. Conclusion
In this work, we present a novel approach for personalized
federated learning. Our method trains a central hypernet-
work to output a unique personal model for each client. We
show through extensive experiments significant improve-
ment in accuracy on all datasets and learning setups.

Sharing across clients through a central hypernetwork has
several benefits compared to previous architectures. First,
since it learns a unified model over the distribution of clients,

Personalized Federated Learning using Hypernetworks

the model generalizes better to novel clients without the
need to retrain the central model. Second, it naturally ex-
tends to handle clients with different compute power, by
generating client models of different sizes. Finally, this
architecture decouples the training complexity from com-
munication complexity, since the transmitted local models
can be significantly more compact than the central model.

We expect that the current framework can be further ex-
tended in several important ways. First, the architecture
opens questions about the best way of allocating learning ca-
pacity to a central model vs. distributed locally trained com-
ponents. Second, the question of generalization to clients
with new distribution awaits further analysis.

Acknowledgements
This study was funded by a grant to GC from the Israel
Science Foundation (ISF 737/2018), and by an equipment
grant to GC and Bar-Ilan University from the Israel Science
Foundation (ISF 2332/18). AS and AN were funded by
a grant from the Israeli Innovation Authority, through the
AVATAR consortium.

References
Agarwal, N., Suresh, A. T., Yu, F. X. X., Kumar, S., and

McMahan, B. cpsgd: Communication-efficient and
differentially-private distributed sgd. In Advances in
Neural Information Processing Systems, pp. 7564–7575,
2018.

Arivazhagan, M. G., Aggarwal, V., Singh, A. K., and Choud-
hary, S. Federated learning with personalization layers.
arXiv preprint arXiv:1912.00818, 2019.

Bae, J. and Grosse, R. B. Delta-stn: Efficient bilevel opti-
mization for neural networks using structured response
jacobians. ArXiv, abs/2010.13514, 2020.

Basu, D., Data, D., Karakus, C., and Diggavi, S. N. Qsparse-
local-sgd: Distributed sgd with quantization, sparsifica-
tion, and local computations. IEEE Journal on Selected
Areas in Information Theory, 1(1):217–226, 2020.

Baxter, J. A model of inductive bias learning. Journal of
artificial intelligence research, 12:149–198, 2000.

Behl, H. S., Baydin, A. G., and Torr, P. H. Alpha maml:
Adaptive model-agnostic meta-learning. arXiv preprint
arXiv:1905.07435, 2019.

Dai, X., Yan, X., Zhou, K., Yang, H., Ng, K. K., Cheng, J.,
and Fan, Y. Hyper-sphere quantization: Communication-
efficient sgd for federated learning. arXiv preprint
arXiv:1911.04655, 2019.

Deng, Y., Kamani, M. M., and Mahdavi, M. Adap-
tive personalized federated learning. arXiv preprint
arXiv:2003.13461, 2020.

Dinh, C. T., Tran, N. H., and Nguyen, T. D. Personal-
ized federated learning with moreau envelopes. ArXiv,
abs/2006.08848, 2020.

Dinh, C. T., Vu, T. T., Tran, N. H., Dao, M. N., and Zhang,
H. Fedu: A unified framework for federated multi-task
learning with laplacian regularization. arXiv preprint
arXiv:2102.07148, 2021.

Duchi, J. C., Jordan, M. I., and Wainwright, M. J. Privacy
aware learning. Journal of the ACM (JACM), 61(6):1–57,
2014.

Fallah, A., Mokhtari, A., and Ozdaglar, A. Personalized
federated learning: A meta-learning approach. ArXiv,
abs/2002.07948, 2020a.

Fallah, A., Mokhtari, A., and Ozdaglar, A. On the
convergence theory of gradient-based model-agnostic
meta-learning algorithms. In International Conference
on Artificial Intelligence and Statistics, pp. 1082–1092.
PMLR, 2020b.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. arXiv
preprint arXiv:1703.03400, 2017.

Ha, D., Dai, A. M., and Le, Q. V. Hypernetworks. ArXiv,
abs/1609.09106, 2017.

Haddadpour, F. and Mahdavi, M. On the convergence of lo-
cal descent methods in federated learning. arXiv preprint
arXiv:1910.14425, 2019.

Hanzely, F. and Richtárik, P. Federated learning of a
mixture of global and local models. arXiv preprint
arXiv:2002.05516, 2020.

Hsu, T. H., Qi, H., and Brown, M. Measuring the effects of
non-identical data distribution for federated visual classi-
fication. ArXiv, abs/1909.06335, 2019.

Huang, Y., Chu, L., Zhou, Z., Wang, L., Liu, J., Pei, J., and
Zhang, Y. Personalized cross-silo federated learning on
non-iid data. 2020.

Huo, Z., Yang, Q., Gu, B., Huang, L. C., et al. Faster on-
device training using new federated momentum algorithm.
arXiv preprint arXiv:2002.02090, 2020.

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis,
M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode,
G., Cummings, R., et al. Advances and open problems
in federated learning. arXiv preprint arXiv:1912.04977,
2019.

Personalized Federated Learning using Hypernetworks

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S. J., Stich,
S. U., and Suresh, A. T. Scaffold: Stochastic con-
trolled averaging for on-device federated learning. arXiv
preprint arXiv:1910.06378, 2019.

Klein, B., Wolf, L., and Afek, Y. A dynamic convolu-
tional layer for short rangeweather prediction. 2015
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 4840–4848, 2015.

Klocek, S., Maziarka, Ł., Wołczyk, M., Tabor, J., Nowak, J.,
and Śmieja, M. Hypernetwork functional image represen-
tation. In International Conference on Artificial Neural
Networks, pp. 496–510. Springer, 2019.

Krizhevsky, A. and Hinton, G. Learning multiple layers of
features from tiny images. Technical report, University
of Toronto, 2009.

Kulkarni, V., Kulkarni, M., and Pant, A. Survey of person-
alization techniques for federated learning. 2020 Fourth
World Conference on Smart Trends in Systems, Security
and Sustainability (WorldS4), pp. 794–797, 2020.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B.
Human-level concept learning through probabilistic pro-
gram induction. Science, 350(6266):1332–1338, 2015.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324, 1998.

Li, Q., Wen, Z., and He, B. Federated learning systems:
Vision, hype and reality for data privacy and protection.
ArXiv, abs/1907.09693, 2019.

Li, T., Sahu, A. K., Talwalkar, A., and Smith, V. Feder-
ated learning: Challenges, methods, and future directions.
IEEE Signal Processing Magazine, 37(3):50–60, 2020a.

Li, Z., Zhou, F., Chen, F., and Li, H. Meta-sgd: Learning
to learn quickly for few-shot learning. arXiv preprint
arXiv:1707.09835, 2017.

Li, Z., Kovalev, D., Qian, X., and Richtárik, P. Acceleration
for compressed gradient descent in distributed and fed-
erated optimization. arXiv preprint arXiv:2002.11364,
2020b.

Liang, P. P., Liu, T., Ziyin, L., Allen, N. B., Auerbach, R. P.,
Brent, D., Salakhutdinov, R., and Morency, L.-P. Think
locally, act globally: Federated learning with local and
global representations. arXiv preprint arXiv:2001.01523,
2020.

Lin, T., Stich, S. U., Patel, K. K., and Jaggi, M. Don’t
use large mini-batches, use local sgd. arXiv preprint
arXiv:1808.07217, 2018.

Lorraine, J. and Duvenaud, D. Stochastic hyperpa-
rameter optimization through hypernetworks. ArXiv,
abs/1802.09419, 2018.

Maaten, L. V. D. and Hinton, G. E. Visualizing data using
t-sne. Journal of Machine Learning Research, 9:2579–
2605, 2008.

MacKay, M., Vicol, P., Lorraine, J., Duvenaud, D., and
Grosse, R. B. Self-tuning networks: Bilevel optimiza-
tion of hyperparameters using structured best-response
functions. ArXiv, abs/1903.03088, 2019.

Mansour, Y., Mohri, M., Ro, J., and Suresh, A. T. Three
approaches for personalization with applications to feder-
ated learning. ArXiv, abs/2002.10619, 2020.

McMahan, H., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In AISTATS, 2017a.

McMahan, H. B., Ramage, D., Talwar, K., and Zhang, L.
Learning differentially private recurrent language models.
arXiv preprint arXiv:1710.06963, 2017b.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spec-
tral normalization for generative adversarial networks. In
International Conference on Learning Representations,
ICLR, 2018.

Mothukuri, V., Parizi, R. M., Pouriyeh, S., Huang, Y., De-
hghantanha, A., and Srivastava, G. A survey on security
and privacy of federated learning. Future Generation
Computer Systems, 115:619–640, 2021.

Muresan, D. D. and Parks, T. W. Adaptive princi-
pal components and image denoising. In Proceedings
2003 International Conference on Image Processing
(Cat. No.03CH37429), 2003.

Nachmani, E. and Wolf, L. Hyper-graph-network de-
coders for block codes. In Wallach, H., Larochelle, H.,
Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett,
R. (eds.), Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

Navon, A., Shamsian, A., Chechik, G., and Fetaya, E. Learn-
ing the pareto front with hypernetworks. In International
Conference on Learning Representations, 2021.

Nichol, A., Achiam, J., and Schulman, J. On
first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018.

Reisizadeh, A., Mokhtari, A., Hassani, H., Jadbabaie, A.,
and Pedarsani, R. Fedpaq: A communication-efficient
federated learning method with periodic averaging and
quantization. In International Conference on Artificial
Intelligence and Statistics, pp. 2021–2031. PMLR, 2020.

Personalized Federated Learning using Hypernetworks

Riegler, G., Schulter, S., Rüther, M., and Bischof, H. Con-
ditioned regression models for non-blind single image
super-resolution. 2015 IEEE International Conference
on Computer Vision (ICCV), pp. 522–530, 2015.

Sahu, A. K., Li, T., Sanjabi, M., Zaheer, M., Talwalkar,
A., and Smith, V. On the convergence of federated op-
timization in heterogeneous networks. arXiv preprint
arXiv:1812.06127, 3, 2018.

Smith, V., Chiang, C.-K., Sanjabi, M., and Talwalkar, A. S.
Federated multi-task learning. In Advances in neural
information processing systems, pp. 4424–4434, 2017.

Stich, S. U. Local sgd converges fast and communicates
little. arXiv preprint arXiv:1805.09767, 2018.

Suarez, J. Character-level language modeling with re-
current highway hypernetworks. In Proceedings of
the 31st International Conference on Neural Information
Processing Systems, pp. 3269–3278, 2017.

von Oswald, J., Henning, C., Sacramento, J., and Grewe,
B. F. Continual learning with hypernetworks. arXiv
preprint arXiv:1906.00695, 2019.

Wang, J. and Joshi, G. Cooperative sgd: A
unified framework for the design and analysis of
communication-efficient sgd algorithms. arXiv preprint
arXiv:1808.07576, 2018.

White, H. Maximum likelihood estimation of misspecified
models. Econometrica, 50:1–25, 1982.

Wu, Q., He, K., and Chen, X. Personalized federated learn-
ing for intelligent iot applications: A cloud-edge based
framework. IEEE Open Journal of the Computer Society,
1:35–44, 2020.

Yang, Q., Liu, Y., Chen, T., and Tong, Y. Federated machine
learning: Concept and applications. arXiv: Artificial
Intelligence, 2019.

Zhang, M., Lucas, J., Ba, J., and Hinton, G. E. Lookahead
optimizer: k steps forward, 1 step back. Advances in
Neural Information Processing Systems, 32:9597–9608,
2019.

Zhang, M., Sapra, K., Fidler, S., Yeung, S., and Alvarez,
J. M. Personalized federated learning with first order
model optimization. arXiv preprint arXiv:2012.08565,
2020.

Zhao, D., von Oswald, J., Kobayashi, S., Sacramento, J.,
and Grewe, B. F. Meta-learning via hypernetworks. 2020.

Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., and Chandra,
V. Federated learning with non-iid data. arXiv preprint
arXiv:1806.00582, 2018.

Zhou, F. and Cong, G. On the convergence properties
of a k-step averaging stochastic gradient descent al-
gorithm for nonconvex optimization. arXiv preprint
arXiv:1708.01012, 2017.

Zhou, P., Yuan, X., Xu, H., Yan, S., and Feng, J. Ef-
ficient meta learning via minibatch proximal update.
Advances in Neural Information Processing Systems, 32:
1534–1544, 2019.

Zhu, W., Kairouz, P., Sun, H., McMahan, B., and Li, W. Fed-
erated heavy hitters discovery with differential privacy.
arXiv preprint arXiv:1902.08534, 2019.

Supplementary Material for Personalized Federated Learning by
Hypernetworks

A. Proof of Results
Proof for Proposition 1. Let θ̄i denote the optimal so-
lution at client i, then θ̄i = (XT

i Xi)
−1XT

i yi = XT
i yi.

Denote θi = Wvi, we have

arg min
θi
‖Xiθi − yi‖22 = arg min

θi
(Xiθi − yi)T (Xiθi − yi)

= arg min
θi

θTi X
T
i Xiθi − 2θTi X

T
i y + yTi yi

= arg min
θi

θTi θi − 2〈θi, θ̄i〉+ yTi yi

= arg min
θi

θTi θi − 2〈θi, θ̄i〉+ ‖θ̄i‖22

= arg min
θi
‖θi − θ̄i‖22

Thus, our optimization problem becomes
arg minW,V

∑
i ‖Wvi − θ̄i‖22.

WLOG, we can optimize W over the set of all matrices with
orthonormal columns, i.e. WTW = I . Since for each solu-
tion (W,V) we can obtain the same loss for (WR,R−1V),
and select a R that performs Gram-Schmidt on the columns
of W . In case of fixed W the optimal solution for vi is
given by v∗i = (WTW)−1WT θ̄i = WT θ̄i. Hence, our
optimization problem becomes,

arg min
W ;WTW=I

∑
i

‖WWT θ̄i − θ̄i‖22,

which is equivalent to PCA on {θ̄i}i.

Proof for Theorem 1. Using Theorem 4 from (Baxter,
2000) and the notation used in that paper, we get that
M = O

(
1
nε2 log

(
C(ε,Hn

l)
δ

))
where C(ε,Hnl) is the cov-

ering number for Hnl . In our case each element of Hnl is
parametrized by ϕ,v1, ...,vn and the distance is given by

d((ϕ,v1, ...,vn), (ϕ′,v′1, ...,v
′
n)) = (5)

E
xi,yi∼Pi

[
1

n

∣∣∣∑ `(h(ϕ,vi)(xi), yi)−
∑

`(h(ϕ′,v′i)(xi), yi)
∣∣∣]

From the triangle inequality and our Lipshitz assumptions

we get

d((ϕ,v1, ...,vn), (ϕ′,v′1, ...,v
′
n)) ≤ (6)∑ 1

n
E

xi,yi∼Pi

[|`(h(ϕ,vi)(xi), yi)− `(h(ϕ′,v′i)(xi), yi)|]

≤ L‖h(ϕ,vi)− h(ϕ′,v′i)‖
≤ L‖h(ϕ,vi)− h(ϕ,v′i)‖+ L‖h(ϕ,v′i)− h(ϕ′,v′i)‖
≤ L · Lh‖ϕ− ϕ′‖+ L · LV ‖v − v′‖

Now if we select a covering of the parameter space such
that each ϕ has a point ϕ′ that is ε

2L(Lh+LV) away and each
embedding vi has an embedding v′i at the same distance we
get an ε-covering in the d((ϕ,v1, ...,vn), (ϕ′,v′1, ...,v

′
n))

metric. From here we see that log(C(ε,Hnl)) =

O
(

(n · k +N) log
(
RL(LV +Lh)

ε

))
.

B. Experimental Details
For all experiments presented in the main text, we use a
fully-connected hypernetwork with 3 hidden layers of 100
hidden units each. For all relevant baselines, we aggregate
over 5 clients at each round. We set K = 3 ,i.e., 60 local
steps, for the pFedMe algorithm, as it was reported to work
well in the original paper (Dinh et al., 2020).

Heterogeneous Data (Section 5.1). For the CIFAR exper-
iments, we pre-allocate 10, 000 training examples for vali-
dation. For the Omniglot dataset, we use a 70%/15%/15%
split for train/validation/test sets. The validation sets are
used for hyperparameter tuning and early stopping. We
search over learning-rate {1e− 1, 5e− 2, 1e− 2, 5e− 3},
and personal learning-rate {5e− 2, 1e− 2, 5e− 3, 1e− 3}
for PFL methods using 50 clients. For the CIFAR datasets,
the selected hyperparameters are used across all number of
clients (i.e. 10, 50, 100).

Computational Budget (Section 5.2) We use the same
hyperparameters selected in Section 5.1. To align with pre-
vious works (Dinh et al., 2020; Liang et al., 2020; Fallah
et al., 2020a), we use a LeNet-based (target) network with
two convolution layers, where the second layer has twice
the number of filters in comparison to the first. Following
these layers are two fully connected layers that output logits
vector. In this learning setup, we use three different sized
target networks with different numbers of filters for the first

Personalized Federated Learning using Hypernetworks

convolution layer. Specifically, for S/M/L sized networks,
the first convolution layer consists of 8/16/32 filters, re-
spectively. pFedHN’s HN produces weights vector with size
equal to the sum of the weights of the three sized networks
combined. Then it sends the relevant weights according to
the target network size of the client.

C. Additional Experiments
C.1. CIFAR10/CIFAR100

We provide additional experiment over CI-
FAR10/CIFAR100 datasets. Here, we compare pFedHN to
the baselines on small scale setup of 10 clients. The results
are presented in Table 3. We show significant improvement
using pFedHN on small scale experiment in addition to the
results presented in the main text.

Table 3. Heterogeneous data. Test accuracy over 10 clients on the
CIFAR10, CIFAR100 datasets.

CIFAR10 CIFAR100

clients 10 10

Local 86.46± 4.02 58.98± 1.38
FedAvg 51.42± 2.41 15.96± 0.55
FedPer 87.27± 1.39 55.76± 0.34
pFedMe 87.69± 1.93 51.97± 1.29
LG-FedAvg 89.11± 2.66 53.69± 1.42

pFedHN (ours) 90.83± 1.56 65.74± 1.80
pFedHN-PC (ours) 92.47± 1.63 68.15± 1.49

C.2. MNIST

We provide additional experiment over MNIST dataset.
We follow the same data partition procedure as in the CI-
FAR10/CIFAR100 heterogeneity experiment, described in
Section 5.1.

For this experiment we use a single hidden layer fully-
connected (FC) hypernetwork. The main network (or target
network in the case of pFedHN) is a single hidden layer FC
NN.

All FL/PFL methods achieve high classification accuracy
on this dataset, which makes it difficult to attain meaningful
comparisons. The results are presented in Table 4. pFedHN
achieves similar results to pFedMe.

Table 4. Comparison on the MNIST dataset.
MNIST

10 50 100

FedAvg 96.22± 0.65 97.12± 0.07 96.99± 0.19
pFedMe 99.40± 0.04 99.30± 0.13 99.12± 0.06

pFedHN (ours) 99.53± 0.16 99.28± 0.11 99.16± 0.19

C.3. Exploring Design Choices

In this section we return to the experimental setup of Sec-
tion 5.1, and evaluate pFedHN using CIFAR10 dataset with
50 clients. First, we examine the effect of the local opti-
mization steps. Next, we vary the capacity of the HN and
observe the change in classification accuracy. Finally we
vary the dimension of the client representation (embedding).

C.3.1. EFFECT OF LOCAL OPTIMIZATION

Figure 5. Effect of the number of local optimization steps on the
test accuracy for the CIFAR10 dataset.

First, we examine the effect of performing local optimiza-
tion step and transmitting ∆θ back to the hypernetwork.
Figure 5 shows the test accuracy throughout the training
process. It compares training using the standard chain rule
(steps = 1) with the case of training locally for k steps,
k ∈ {25, 50, 100, 200}. Using our proposed update rule,
i.e., making multiple local update steps, yields large im-
provements in both convergence speed and final accuracy,
compared to using the standard chain rule (i.e., k = 1). The
results show that pFedHN is relatively robust to the choice
of local local optimization steps. As stated in the main text
we set k = 50 for all experiments.

C.3.2. CLIENT EMBEDDING DIMENSION

Next, we investigate the effect of embedding vector di-
mension on pFedHN performance. Specifically, we run
an ablation study on set of different embedding dimensions
{5, 15, 25, 35}. The results are presented in Figure 6 (a).
We show pFedHN robustness to the dimension of the client
embedding vector; hence we fix the embedding dimension
through all experiments to b1+n/4c, where n is the number
of client.

C.3.3. HYPERNETWORK CAPACITY

Here we inspect the effect of the HN’s capacity on the local
networks performance. We conducted an experiment in
which we change the depth of the HN by stacking fully
connected layers.

Personalized Federated Learning using Hypernetworks

(a) (b)

Figure 6. Test results on CIFAR10 showing the effect of (a) the dimension of the the client embedding vector, and; (b) the number of
hypernetwork’s hidden layers.

We evaluate pFedHN on CIFAR10 dataset using k ∈
{1, 2, 3, 4, 5} hidden layers. Figure 6 (b) presents the fi-
nal test accuracy. pFedHN achieves optimal performance
with k = 3 and k = 4 hidden layers, with accuracies 88.38
and 88.42 respectively. We use a three hidden layers HN
for all experiments in the main text.

C.4. Spectral Normalization

Table 5. pFedHN with spectral-normalization.
CIFAR10

10 50 100

pFedHN (ours) 90.94± 2.18 87.02± 0.22 85.3± 1.81

We show in Theorem 1 that the generalization is affected
by the hypernetworks Lipschitz constant Lh. This theoreti-
cal result suggests that we can benefit from bounding this
constant. Here we empirically test this by applying spectral
normalization (Miyato et al., 2018) for all layers of the HN.
The results are presented in Table 5. We do not observe any
significant improvement compared to the results without
spectral normalization (presented in Table 1 of the main
text).

C.5. Generalization to Novel Clients

Here we provide additional results on the generalization
performance for novel clients, studied in Section 5.3 of
the main text. Figure 7 shows the accuracy of individual
clients as a function of the total variation distance. Each
point represents a different client, where the total variation
distance is calculated w.r.t to the nearest training set client.
As expected, the results show (on average) that the test
accuracy decreases with the increase in the total variation

Figure 7. Accuracy for novel clients on the CIFAR10 test set. Each
point represents a different client. Total variation is computed w.r.t
the nearest training set client.

distance.

C.6. Fixed Client Representation

We wish to compare the performance of pFedHN when
trained with a fixed vs trainable client embedding vectors.
We use CIFAR10 with the data split described in Section 5.3
of the main text and 50 clients. We use a client embedding
dimension of 10. We set the fixed embedding vector for
client i to the vector of class proportions, p̂i, described in
Section 5.3. pFedHN achieves similar performance with
both the trainable and fixed client embedding, 84.12± 0.42
and 83.92± 0.36 respectively.

