
On the Power of Localized Perceptron for Label-Optimal Learning of
Halfspaces with Adversarial Noise

Jie Shen 1

Abstract
We study online active learning of homogeneous
halfspaces in Rd with adversarial noise where
the overall probability of a noisy label is con-
strained to be at most ν. Our main contribution is
a Perceptron-like online active learning algorithm
that runs in polynomial time, and under the con-
ditions that the marginal distribution is isotropic
log-concave and ν = Ω(ε), where ε ∈ (0, 1) is
the target error rate, our algorithm PAC learns the
underlying halfspace with near-optimal label com-
plexity of Õ

(
d·polylog( 1

ε )
)

and sample complex-
ity of Õ

(
d
ε

)
.1 Prior to this work, existing online

algorithms designed for tolerating the adversarial
noise are subject to either label complexity poly-
nomial in 1

ε , or suboptimal noise tolerance, or
restrictive marginal distributions. With the addi-
tional prior knowledge that the underlying halfs-
pace is s-sparse, we obtain attribute-efficient label
complexity of Õ

(
s · polylog(d, 1

ε )
)

and sample
complexity of Õ

(
s
ε · polylog(d)

)
. As an imme-

diate corollary, we show that under the agnostic
model where no assumption is made on the noise
rate ν, our active learner achieves an error rate
of O(OPT) + ε with the same running time and
label and sample complexity, where OPT is the
best possible error rate achievable by any homo-
geneous halfspace.

1. Introduction
In many practical applications, there are massive amounts
of unlabeled data but labeling is expensive. This distinc-
tion has driven the study of active learning (Cohn et al.,
1994; Balcan et al., 2007; Dasgupta, 2011; Hanneke, 2014;
Awasthi et al., 2017), where labels are initially hidden and
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1We use the notation Õ(f) := O(f · log f), Ω̃(f) :=

Ω(f/ log f), and Θ̃(f) that is between Ω̃(f) and Õ(f).

the learner must pay for each label it wishes to be revealed.
The goal is to design querying strategies to avoid less infor-
mative labeling requests, e.g. the labels that can be inferred
from previously seen samples. Parallel to active learning,
online learning concerns the scenario where the learner
observes a stream of samples and makes real-time model
updating in order to compete with the best model obtained
by seeing all the history data in a batch (Rosenblatt, 1958;
Littlestone & Warmuth, 1989; Cesa-Bianchi et al., 1996;
Zinkevich, 2003; Shalev-Shwartz, 2012; Hazan, 2019). On-
line learning algorithms have also been broadly investigated
in machine learning, and have found various successful ap-
plications owing to its potential of savings in memory cost,
low computational cost per sample, and its generalization
ability (Cesa-Bianchi et al., 2004; Kakade & Tewari, 2008).

In this paper, we study the important problem of active learn-
ing of homogeneous halfspaces in the online setting, where
the learner observes a stream of unlabeled data and makes
spot decision of whether or not to query the labels. The goal
is to achieve the best of the two worlds: label efficiency
from active learning and computational efficiency from on-
line learning. In this spectrum, there are a number of early
works that share the same merit with this paper. For exam-
ple, Freund et al. (1997) proposed a query-by-committee
learning algorithm and Dasgupta et al. (2005) developed a
Perceptron-like algorithm, both of which are implemented
in an online fashion and enjoy a near-optimal label com-
plexity bound of Õ(d log 1

ε ) where d is the dimension of the
instance2 and ε ∈ (0, 1) is the target error rate. However,
there are two crucial assumptions made by these works that
seem too stringent: 1) the marginal distribution over the un-
labeled data is uniform on the unit sphere in Rd; and 2) there
exists a perfect halfspace that incurs zero error rate with re-
spect to the underlying distribution. In this regard, a natural
question is: can we design an online active learner, that
provably works under a significantly more general family
of marginal distributions while achieving arbitrarily small
error rate without the realizability condition?

To be more concrete, we are interested in designing an on-
line active learning algorithm that PAC learns some underly-
ing halfspace (Valiant, 1984) when the instances are drawn

2We will interchangeably use “instance” and “unlabeled data”.



Localized Perceptron for Label-Optimal Learning of Halfspaces with Adversarial Noise

from an isotropic log-concave distribution (Lovász & Vem-
pala, 2007) and the labels are corrupted by the adversarial
noise (Haussler, 1992; Kearns et al., 1992). It is worth men-
tioning that the family of isotropic log-concave distributions
is a significant generalization of the uniform distribution
since it includes a variety of prevalent distributions such as
Gaussian, exponential, logistic. It is also known that estab-
lishing performance guarantees under this family is often
technically subtle compared to that of uniform distribution
due to the asymmetricity nature of log-concave distribu-
tions (Vempala, 2010; Balcan & Long, 2013; Diakonikolas
et al., 2018). Returning to the noise model, we note that
the adversarial noise, where the adversary may choose an
arbitrary joint distribution such that the unlabeled data dis-
tribution is isotropic log-concave and the overall probability
of a noisy label is constrained to be at most ν, is a real-
istic yet remarkably challenging regime, as suggested by
many hardness results (Feldman et al., 2006; Guruswami
& Raghavendra, 2009; Daniely, 2016; Diakonikolas et al.,
2020a; Balcan & Haghtalab, 2020).

Under different assumptions on the adversarial noise rate
(which might be suboptimal), a large body of works have
established PAC guarantees for online learning with ad-
versarial noise. Unfortunately, none of them resolves the
aforementioned question in full. For example, under uni-
form marginal distributions, Theorem 3 of Kalai et al. (2005)
showed that a surprisingly simple averaging scheme already
is able to tolerate noise rate ν = Ω̃(ε), though the label
and sample complexity are both Õ(d2/ε2).3 The same al-
gorithm was then revisited by Klivans et al. (2009) under
isotropic log-concave distributions, with a worse noise tol-
erance of ν = Ω̃(ε3). Very recently, Diakonikolas et al.
(2020b) proposed a novel objective function by optimiz-
ing which with projected online gradient descent, one is
guaranteed to tolerate the adversarial noise of ν = Ω̃(ε).
Notably, their analysis applies to marginal distributions that
are more general than isotropic log-concave. Compared to
these passive learning algorithms which have label and sam-
ple complexity polynomial in 1

ε , the work of Yan & Zhang
(2017) is more in line with this paper in the sense that they
considered the active learning setting. Hence, their label
complexity bound has an exponentially better dependence
on 1

ε . However, the noise tolerance of Yan & Zhang (2017)
reads as ν = Ω̃(ε/ log d) and their analysis is applicable
only to uniform distributions due to the crucial need of the
symmetricity of marginal distributions. As we can see in
Table 1, none of the prior works subsumes others.

3Kalai et al. (2005) analyzed two algorithms: a (batch) polyno-
mial regression and an online averaging. Here we are referring to
the online averaging approach. We defer the comparison with the
former to Section 4.1 when we are in the position to discuss the
connection between adversarial noise and agnostic learning.

1.1. Main results

The main contribution of the paper is a novel online active
learning algorithm that improves upon the state-of-the-art
online algorithms. We introduce a few useful notations and
informally describe our main results in this section; readers
are referred to Section 4 for a precise statement.

Let C be the given concept class of halfspaces,D be the joint
distribution over Rd×{−1, 1}, and for any w ∈ C define its
error rate as errD(w) = Pr(x,y)∼D(sign(w · x) 6= y). Our
analysis hinges on the following distributional assumptions.

Assumption 1. The unlabeled data distribution is isotropic
log-concave, i.e. it has zero mean and unit covariance ma-
trix, and the logarithm of its density function is concave.

Assumption 2. There exists an underlying halfspace u ∈ C,
such that errD(u) ≤ ν for some noise rate ν ≥ 0.

Let ε ∈ (0, 1) be the target error rate given to the learner.
We have the following theorem.

Theorem 1 (Informal). If Assumptions 1 and 2 are satisfied
and ν ≤ O(ε), then there is an efficient online active learner
that outputs a halfspace ũ ∈ C with Pr(x,y)∼D(sign(ũ ·
x) 6= sign(u · x)) ≤ ε, with label complexity bound of
Õ
(
d · polylog( 1

ε )
)

and sample complexity bound of Õ
(
d
ε

)
.

We compare with state-of-the-art online algorithms of Kalai
et al. (2005); Yan & Zhang (2017); Diakonikolas et al.
(2020b) that are tolerant to adversarial noise. Yan & Zhang
(2017) presented an active learner and obtained analogous
label and sample complexity to this work. However, their
noise tolerance reads as ν = Ω̃(ε/ log d) while our algo-
rithm is able to tolerate ν = Ω(ε); in addition, our results
apply to significantly broader marginal distributions. Since
Kalai et al. (2005); Diakonikolas et al. (2020b) considered
passive learning, our active learning algorithm naturally
enjoys label complexity that has exponentially better de-
pendence on ε. Even for the sample complexity, we obtain
improved dependence on d and ε. On the other side, it is
worth mentioning that all these three algorithms run faster
than our algorithm. Also, the analysis of Diakonikolas et al.
(2020b) works under more general marginal distributions,
in particular, distributions satisfying concentration, anti-
concentration, anti-anti-concentration. Though our results
can be generalized to their setting as well (see e.g. Zhang
& Li (2021) for the treatment), we do not pursue it in the
paper for the sake of clean presentation.

In addition to the properties aforementioned, we show
that our algorithm can essentially incorporate attribute effi-
ciency (Littlestone, 1987). That is, when the concept class
consists of s-sparse halfspaces, the obtained label and sam-
ple complexity scale as Õ(s · polylog(d)). This character-
istic is especially useful when there is limited availability
of samples, a problem that has been studied for decades in
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Table 1. Comparison to state-of-the-art online algorithms that are robust to adversarial noise. Prior online algorithms cannot even
incorporate attribute efficiency. Even in the non-sparse case (i.e. s = d), our algorithm (Theorem 1) has better noise tolerance and works
under more general distributions than Yan & Zhang (2017), and has improved label and sample complexity compared to Kalai et al. (2005)
and Diakonikolas et al. (2020b).

Work Log-concave? Label complexity Sample complexity Noise tolerance

Theorem 3 of Kalai et al. (2005) 7 Õ(d2/ε2) Õ(d2/ε2) ν = Ω̃(ε)

Yan & Zhang (2017) 7 Õ(d log 1
ε ) Õ(d/ε) ν = Ω̃(ε/ log d)

Diakonikolas et al. (2020b) 3 Õ(d/ε4) Õ(d/ε4) ν = Ω̃(ε)

This work (Theorem 1) 3 Õ(d · polylog( 1
ε )) Õ(d/ε) ν = Ω(ε)

This work (Theorem 2) 3 Õ(s · polylog(d, 1
ε )) Õ( sε · polylog(d)) ν = Ω(ε)

machine learning and statistics; see, e.g. Chen et al. (1998);
Tibshirani (1996); Klivans & Servedio (2004); Candès &
Tao (2005); Feldman (2007); Plan et al. (2017).

We have the following result for learning sparse halfspaces.
Theorem 2 (Informal). If Assumptions 1 and 2 are satisfied,
ν ≤ O(ε), and u is s-sparse, then there is an efficient
online active learner that outputs an s-sparse halfspace
ũ ∈ C with Pr(x,y)∼D(sign(ũ · x) 6= sign(u · x)) ≤ ε, with
label complexity bound of Õ

(
s · polylog(d, 1

ε )
)

and sample
complexity bound of Õ

(
s
ε · polylog(d)

)
.

Observe that Theorem 1 is a special case of the above by
setting s = d. We note that the state-of-the-art online
algorithms of Kalai et al. (2005); Yan & Zhang (2017); Di-
akonikolas et al. (2020b) do not enjoy attribute efficiency – it
is yet nontrivial for them to encompass this property. Hence
we have exponentially better dependence on the dimension d
in label and sample complexity. See Table 1 for a summary
of the comparison.

Finally, through an interesting observation made in Awasthi
et al. (2017), it is possible to translate our main results
for the adversarial noise model to the agnostic model of
Haussler (1992); Kearns et al. (1992) where no assumption
is made on the noise rate ν. Let OPT := minw∈C errD(w).
Theorem 3 (Informal). If Assumption 1 is satisfied, then
the algorithm tolerating the adversarial noise outputs a
halfspace ũ with errD(ũ) ≤ O(OPT) + ε, with same label
and sample complexity as in Theorem 2.

1.2. Overview of our techniques

Our algorithm is inspired in part by Zhang et al. (2020). We
present an overview of our techniques below, and highlight
the algorithmic connection to them as well as the novelty.

1) Active learning via stagewise online mirror descent.
The first ingredient in our algorithm is a novel perspective
of approaching active learning of halfspaces via stagewise
online learning, recently utilized by Zhang et al. (2020) for
learning halfspaces with benign noise. In each phase, given

an initial halfspace w0 ∈ Rd, regardless of how the samples
are generated, standard regret bound established for online
mirror descent with linear loss 〈w,αgt〉 and `p-norm regu-
larizer Φ(w) implies that the produced sequence of iterates
{wt−1}Tt=1 must satisfy the following with certainty:

1

T

T∑
t=1

〈u,−gt〉 ≤
1

T

T∑
t=1

〈wt−1,−gt〉

+
BΦ(u;w0)

αT
+
α

T

T∑
t=1

‖gt‖2q , (1)

where u ∈ Rd is the underlying halfspace we aim to ap-
proximate, BΦ(·; ·) denotes Bregman divergence induced
by Φ, and q ∈ (0, 1) is such that 1

p + 1
q = 1. Our goal

is threefold: attribute efficiency, label efficiency, and small
error rate. We will first specify p ≈ 1 to achieve attribute
efficiency which is a well-known technique in online learn-
ing (Grove et al., 2001; Gentile, 2003). In order to reduce the
error rate of the initial halfspace w0 with a few label queries,
we need to design suitable gradients gt and choose proper
step size α and iteration number T such that a) the right-
hand side of (1) is as small as angle O(θ(w0, u)); and b) the
left-hand side is bounded from below by θ(w̄, u) for certain
halfspace w̄ that depends on the sequence {wt−1}Tt=1. It is
then possible to show that θ(w̄, u) ≤ 1

2 · θ(w0, u), and we
can use w̄ as the initial iterate for the next phase of online
mirror descent to reduce the distance to u with geometric
rate. Therefore, the crucial challenges lie in the design of
gt to accommodate specific noise model and an associated
sampling scheme (since gt depends on the sample). These
are also the key technical differences between our work and
Zhang et al. (2020), which we elaborate on below.

2) A semi-random gradient update for tolerating ad-
versarial noise. In Zhang et al. (2020), the gradient gt
is heavily tailored to the bounded noise condition (Mas-
sart & Nédélec, 2006). We find it technically hard to
reuse it for the adversarial noise since it is well known
that the latter is a more involved noise model that will al-



Localized Perceptron for Label-Optimal Learning of Halfspaces with Adversarial Noise

ways violate the conditions assumed in the former.4 There-
fore, we consider an alternative yet fairly natural candi-
date: we choose gt as the original gradient used in the
Perceptron algorithm. That is, given the currently learned
halfspace wt−1 and a new labeled sample (xt, yt), we set
gt = −ytxt · 1{yt 6=sign(wt−1·xt)}. It remains to develop a
plausible sampling scheme so that a) −gt will have non-
trivial correlation with the underlying halfspace u; and
b) only most informative instances are sampled for la-
beling. To this end, we propose a new sampling region
Xŵt−1,b := {x ∈ Rd : 0 < ŵt−1 · x ≤ b}, where
ŵt−1 = wt−1

‖wt−1‖ . Such time-varying region is different

from active learning using empirical risk minimization (Bal-
can et al., 2007; Awasthi et al., 2017; Zhang, 2018) as in
these works x is sampled from the full band |ŵ0 · x| ≤ b.
On one hand, using our sampling region leads to a lin-
ear loss 〈wt−1, gt〉 at most O(b), while the band used by
ERM would result in a loss of O(b

√
s log d). Observe that

a tighter control on the loss implies tighter upper bound
in (1). On the other hand, we discover that by restricting
on querying the label of instances in Xŵt−1,b, we are re-
ducing the randomness of model updating because now
gt = xt · 1{yt 6=1}, i.e. we update the model only when
the returned label yt = −1. It turns out that such semi-
randomness facilitates our control of the correlation be-
tween each −gt and the underlying halfspace u. We note
that the semi-random updating rule is inspired by Yan &
Zhang (2017), where they used a much narrower sampling
region

{
x : b

2
√
d
≤ ŵt−1 ·x ≤ b√

d

}
and a carefully rescaled

Perceptron gradient gt = (ŵt−1 ·xt) ·xt ·1{yt 6=1} to accom-
modate their projection-free algorithm for learning under the
uniform marginal distribution. In contrast, we incorporate
different sampling strategy and gradients into (projected)
mirror descent for PAC learning under isotropic log-concave
marginal distributions.

3) A new characterization of the correlation between
gradient and the underlying halfspace. Our last ingre-
dient is applying localization in the concept space (Awasthi
et al., 2017). Roughly speaking, before running online mir-
ror descent, it is possible to construct an `2-ball where the
underlying halfspace u resides in. Such trust region will
be serving as the convex constraint set for online minimiza-
tion. Using a novel analysis, we show that this interesting
observation in allusion to the dedicated design of gradients
implies that under the adversarial noise model,

E(xt,yt)∼Dŵt−1,b
[〈u,−gt〉] ≥ fu,b(wt−1)− β · θ(w0, u),

(2)
4In the bounded noise model, the adversary is constrained to

flip the label of each given instance with probability at most η ∈
[0, 1/2), which dramatically limits its power. In the adversarial
noise, nevertheless, the adversary has the freedom to choose any
joint distribution over the instance and label space.

where we have the potential function

fu,b(wt−1) := E(xt,yt)∼Dŵt−1,b

[
|u · xt|·1{u·xt<0}

]
, (3)

and β > 0 is some quantity to be controlled. We argue
that the function fu,b(wt−1) serves almost as a measure of
θ(wt−1, u); hence combining it with (1) we have that the
average of θ(wt−1, u) is upper bounded by 1

2 · θ(w0, u).
This observation, in conjunction with a non-standard online-
to-batch conversion, results in the desired halfspace w̄. We
note two different aspects compared to Zhang et al. (2020).
First, our potential function fu,b is slightly distinct since
we are considering a smaller sampling region. Second and
more importantly, when deriving the lower bound for the
correlation of u and −gt, we carry out a more involved anal-
ysis but still incur a negative penalty −β · θ(w0, u) resulted
from the adversarial noise model. In contrast, this term
does not appear in Zhang et al. (2020) (since the bounded
noise model they studied is more benign). Manipulating the
penalty turns out to be subtle since if the factor β is large,
there is no hope to upper bound the average of fu,b(wt−1)
by 1

2 · θ(w0, u). We circumvent the technical issue by show-
ing that β is dominated by ν/b which is small as soon as
ν ≤ c0ε for sufficiently small constant c0 and b is carefully
chosen to be greater than ε; see Lemma 13 in the appendix.

1.3. Related works

Label-efficient learning has also been broadly studied since
gathering high quality labels is often expensive (Cohn et al.,
1994; Dasgupta, 2005; 2011). The prominent approaches
include disagreement-based active learning (Hanneke, 2011;
2014), margin-based active learning (Balcan et al., 2007;
Balcan & Long, 2013; Awasthi et al., 2015), selective sam-
pling (Cavallanti et al., 2011; Dekel et al., 2012), and adap-
tive one-bit compressed sensing (Zhang et al., 2014; Bara-
niuk et al., 2017). There are also a number of interesting
works that appeal to extra information to mitigate the la-
beling cost, such as comparison (Xu et al., 2017; Kane
et al., 2017; Hopkins et al., 2020; Shen & Zeng, 2020) and
search (Beygelzimer et al., 2016).

Adversarial noise is closely related to the agnostic model,
which was studied in Haussler (1992) and then coined out
by Kearns et al. (1992). Under the uniform marginal dis-
tributions, Kalai et al. (2005) obtained the best error rate
(see Section 4.1 for a precise statement), though the running
time and sample complexity is O(d1/ε4). This bound has
been proved almost best possible in very recent works under
the statistical query model (Diakonikolas et al., 2020a; Goel
et al., 2020). Interestingly, Daniely (2015) characterized the
tradeoff between the error rate and running time under the
uniform marginal distribution by combining the techniques
of polynomial regression (Kalai et al., 2005) and localiza-
tion (Awasthi et al., 2017). By comprising on the error rate,
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Klivans et al. (2009) presented an averaging-based algo-
rithm and showed how to boost it to tolerate an adversarial
noise rate ν = Ω̃(ε3) in polynomial time when the marginal
distribution is isotropic log-concave. Such noise tolerance
has been improved by a series of recent ERM-based works
(Balcan et al., 2009; Beygelzimer et al., 2010; Zhang &
Chaudhuri, 2014; Awasthi et al., 2016; 2017; Zhang, 2018;
Diakonikolas et al., 2018), among which ν = Ω(ε) is the
best known noise tolerance. However, solving an ERM of-
ten requires more memory storage and computational cost
per sample than online methods (Shalev-Shwartz, 2007).

Achieving attribute efficiency has been a long-standing goal
in machine learning and statistics (Blum, 1990; Blum et al.,
1995), and has been pursued in online classification (Lit-
tlestone, 1987), learning decision lists (Servedio, 1999;
Klivans & Servedio, 2004; Long & Servedio, 2006), com-
pressed sensing (Donoho, 2006; Candès & Wakin, 2008;
Tropp & Wright, 2010; Shen & Li, 2018), one-bit com-
pressed sensing (Boufounos & Baraniuk, 2008; Plan & Ver-
shynin, 2016), and variable selection (Fan & Li, 2001; Fan
& Fan, 2008; Zhang, 2010; Shen & Li, 2017a;b; Wang et al.,
2018). It is worth mentioning that Awasthi et al. (2016) gave
a label-inefficient algorithm for uniformly learning sparse
halfspaces with adversarial noise while this work and the
closely related works consider non-uniform learning.

Roadmap. In Section 2, we give preliminaries and collect
the notations used in the paper. In Section 3, we elaborate
on our main algorithms. A theoretical analysis is given in
Section 4, along with a proof sketch of the main results. We
conclude this paper in Section 5, and defer the proof details
to the appendix.

2. Preliminaries
We study PAC learning of sparse homogeneous halfspaces
with adversarial noise, where the instance space is Rd, the
label space is {−1, 1}, and the concept class is C := {x 7→
sign(w·x) : w ∈ Rd, ‖w‖ = 1, ‖w‖0 ≤ s}. Here, ‖w‖ de-
notes the `2-norm and ‖w‖0 counts the number of non-zero
elements inw. Observe that we say a halfspace is non-sparse
if s = d. An adversary EX with adversarial noise works as
follows: it first chooses an arbitrary joint distributionD over
Rd × {−1, 1}; the distribution D is then fixed throughout
learning. Let DX denote the marginal distribution over the
instance space, which is promised to belong to a family of
well-behaved distributions DX ; in this paper it is assumed
to be isotropic log-concave (Assumption 1).

A learner is given the instance and label space, the concept
class C, the family of distributionsDX (but notDX ), a target
error rate ε ∈ (0, 1) and a failure confidence δ ∈ (0, 1), and
the goal is to output in polynomial time a halfspace ũ ∈ C
such that with probability at least 1− δ, Pr(x,y)∼D(sign(ũ ·

x) 6= sign(u · x)) ≤ ε. In the passive learning setting,
the learner is given access to a sample generation oracle
EX which returns a labeled sample (x, y) ∈ Rd × {−1, 1}
randomly drawn from the distribution D. Since we want to
optimize the label complexity, we will consider a natural
extension: when the learner makes a call to EX, a labeled
sample (x, y) is randomly drawn but only the instance x is
returned. The learner must make a separate call to a label
revealing oracle EXy to obtain the label y. We refer to the
total number of calls to EX as the sample complexity of the
algorithm, and that of EXy as the label complexity.

In our active learning algorithm, we will often want to draw
instances from DX conditioned on a region Xŵ,b := {x ∈
Rd : 0 < ŵ · x ≤ b} where ŵ ∈ Rd and b > 0 are
given; this can be done by rejection sampling, where we
repeatedly call EX until seeing an instance x that falls in
Xŵ,b. We will refer to Xŵ,b as sampling region, and b
is called band width. We denote by DX|ŵ,b (respectively
Dŵ,b) the distribution DX (respectively D) conditioned on
the event that x ∈ Xŵ,b.

Let w be a vector in Rd. We will frequently use ŵ to denote
its `2-normalization w

‖w‖ . For a scalar γ ≥ 1, we denote by
‖w‖γ the `γ-norm of w. Let s > 0 be an integer less than
d. The hard thresholding operationHs(w) zeros out all but
the s largest (in magnitude) entries in w. For two vectors w
and w′, we write θ(w,w′) for the angle between them.

We reserve p and q for specific values: p = ln(8d)
ln(8d)−1

and q = ln(8d) (note that 1
p + 1

q = 1). We will use

the `p-norm regularizer, that is, Φ(w) = 1
2(p−1)‖w − v‖

2
p

for some given vector v. It is known that Φ(w) is
1-strongly convex with respect to the `p-norm (Shalev-
Shwartz, 2007, Lemma 17). We denote the Bregman diver-
gence induced by Φ(w) by BΦ(w;w′) := Φ(w)−Φ(w′)−〈
∇Φ(w′), w − w′

〉
. Observe that BΦ(w; v) = Φ(w) where

v is the reference vector appearing in Φ(w).

We will sometimes phrase our theoretical guarantee in terms
of angles between two halfspaces. The following lemma,
due to Balcan & Long (2013), is useful to convert the guar-
antee of angles to that of error rate.

Lemma 4. There exists an absolute constant c̄ > 0 such
that the following holds. Let DX be an isotropic log-
concave distribution. For any two vectors w and w′ ∈ Rd,
Prx∼DX (sign(w · x) 6= sign(w′ · x)) ≤ c̄ · θ(w,w′).

We remark that a closely related noise model is the agnostic
model (Haussler, 1992; Kearns et al., 1992; Kalai et al.,
2005), where only Assumption 1 is satisfied and the goal is
to output a halfspace that approximates the best halfspace
in C. The results from our theorems under the adversarial
noise model translate immediately into PAC guarantees for
the agnostic model; see Section 4.1 for more details.
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3. Main Algorithm
We present our online active learning algorithm in Algo-
rithm 1, which consists of two major stages: initialization
and refinement. In the initialization stage, the goal is to find
a halfspace v0 that has a constant acute angle with the under-
lying halfspace u. It will then be used as a warm start for the
refinement stage, where the procedure REFINE is repeatedly
invoked to cut off the angle with u by half in each phase k.
Therefore, after K phases of refinement, we will obtain a
halfspace vK satisfying θ(vK , u) = 2−K = O(ε), which by
Lemma 4 implies that vK has small error rate with respect
to the underlying halfspace u defined in Assumption 2.

Since INITIALIZE invokes REFINE as well, we will intro-
duce the latter first. Generally speaking, the REFINE al-
gorithm, i.e. Algorithm 3, belongs to the family of online
mirror descent algorithms with Perceptron gradient and `p-
norm regularization. The crucial ingredients that make it
attribute and label efficient are a carefully crafted constraint
set, a time-varying sampling region, and semi-random gra-
dients, as we described in Section 1.2. In particular, the con-
straint setK is constructed in such a way that the underlying
halfspace u is guaranteed to stay in it (with overwhelming
probability). Thus, it serves as a trust region into which all
the iterates wt are projected back. It is worth mentioning
that we did not put an `1-norm constraint in K; this is be-
cause we already have utilized the `p-norm regularization to
simultaneously guarantee attribute efficiency (Grove et al.,
2001; Gentile, 2003) and the stability of online minimiza-
tion (Shalev-Shwartz, 2012; Orabona, 2019). The second
component in REFINE is the time-varying sampling region
Xŵt−1,b = {x ∈ Rd : 0 < ŵt−1 · x ≤ b}, which results in
a linear loss as small as O(b) in each iteration. In contrast,
a naive online approach to simulate the ERM algorithm of
Zhang (2018) would lead to a loss as large as O(b

√
s log d).

The idea of using time-varying sampling paradigm has ap-
peared in a few online active learning algorithms (Yan &
Zhang, 2017; Zhang et al., 2020). Ours is less restrictive
than the one in Yan & Zhang (2017), and is more dedicated
to the much more challenging adversarial noise compared to
the bounded noise model considered in Zhang et al. (2020).
Along with the new sampling region is a semi-random Per-
ceptron gradient. Recall that the original gradient used in
Perceptron is given by gt = −ytxt · 1{yt 6=sign(wt−1·xt)}.
Since xt ∈ Xŵt−1,b, we update the model only when the
label yt returned by the adversary equals −1, thus inducing
the gradient displayed in Algorithm 3. Finally, after running
mirror descent for T iterations, we perform an averaging
scheme followed by hard thresholding, to ensure that the
output w̃ belongs the to concept class. We remark that the
running time of REFINE is polynomial in d, since in each
iteration t, updating the model requires solving a convex
program. Regarding the label complexity, it is exactly equal
to the total iteration number T . We also remark that obtain-

Algorithm 1 Main Algorithm
Require: Target error rate ε ∈ (0, 1), failure probability

δ ∈ (0, 1), sparsity s.
Ensure: Halfspace ũ ∈ Rd such that Pr(x,y)∼D(sign(ũ ·

x) 6= sign(u · x)) ≤ ε.
1: v0 ← INITIALIZE( δ2 , s).
2: K ← dlog c̄π

8ε e where c̄ is defined in Lemma 4.
3: for k = 1, 2, . . . , K do
4: vk ← REFINE(vk−1,

δ
2k(k+1) , s, αk, bk,Kk,Φk, Tk),

where step size αk = Θ̃
(

2−k ·
(
log d·k2·2k

δ

)−2)
,

band width bk = Θ
(
2−k

)
, constraint set

Kk =
{
w : ‖w − vk−1‖ ≤ π · 2−k−2, ‖w‖ ≤ 1

}
,

regularizer Φk(w) = 1
2(p−1)‖w − vk−1‖2p, number

of iterations Tk = Õ
(
s log d ·

(
log d·k2·2k

δ

)2)
.

5: end for
6: return ũ← vK .

Algorithm 2 INITIALIZE

Require: Failure probability δ′, sparsity s.
Ensure: An s-sparse halfspace v0 such that θ(v0, u) ≤ π

8 .
1: (x1, y1), . . . , (xm, ym)← call EX to drawm instances,

and query EXy for their labels, wherem = O(s log d
δ′ ).

2: Compute wavg = 1
m

∑m
i=1 yixi.

3: Let w] =
Hs̃(wavg)
‖Hs̃(wavg)‖ , where s̃ = 81 · 240s.

4: Let K =
{
w ∈ Rd : ‖w‖ ≤ 1, w · w] ≥ 1

9·220

}
and

find a point w0 ∈ K ∩ {w ∈ Rd : ‖w‖1 ≤
√
s}.

5: return v0 ← REFINE(w0,
δ′

2 , s, α, b,K,Φ, T ), where
step size α = Θ̃

(
log−2 d

δ′

)
, band width b = 1

81·222 ,
regularizer Φ(w) = 1

2(p−1)‖w − w0‖2p, and number of

iterations T = Õ
(
s log d ·

(
log d

δ′

)2)
.

ing xt can be done by calling EX forO(1/b) times since the
probability mass of Xŵt−1,b on DX is Θ(b); see Lemma 29.

Now we elaborate on the INITIALIZE algorithm, namely
Algorithm 2. Technically speaking, one important condi-
tion for the success of our analysis is that an overwhelm-
ing portion of the iterates must have acute angles with the
underlying halfspace u. Therefore, the hypothesis testing
approach proposed in Awasthi et al. (2017) does not work
out in our case since we will lose control of the intermediate
iterates. To circumvent the technical challenge, we tailor
the averaging-based initialization scheme of Zhang et al.
(2020) to the adversarial noise model. It is possible to show
that as far as the noise rate ν is low, wavg has a positive
correlation with u, and performing hard thresholding almost
preserves it, i.e. u · w] = Ω(1). Therefore, we obtain a
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Algorithm 3 REFINE

Require: Initial s-sparse halfspace w0, failure probabil-
ity δ′, sparsity s, step size α, band width b, convex
constraint set K, regularization function Φ : Rd →
[0,+∞), number of iterations T .

Ensure: Refined s-sparse halfspace w̃ such that θ(w̃, u) ≤
1
2 · θ(w0, u).

1: for t = 1, 2, . . . , T do
2: Call EX to obtain an instance xt in Xŵt−1,b, and

query EXy for its label yt (recall that ŵt−1 is the
`2-normalization of wt−1).

3: wt ← arg minw∈K 〈w,αgt〉+ BΦ(w;wt−1), where
gt = xt · 1{yt=−1}.

4: end for
5: w̄ ← 1

T

∑T
t=1 ŵt.

6: return w̃ ← Hs(w̄)

‖Hs(w̄)‖ .

good reference vector w] which is guaranteed to have an
acute angle with u. Based on an enhanced constraint set
that takes the correlation into consideration, we are able to
show that most of the iterates are admissible, and hence our
analysis of the REFINE algorithm can be reused to show that
the output v0 will have a small acute angle with u. Note
that we are not making efforts to optimize the constants
that appear in the INITIALIZE algorithm; in practice, we
believe that our algorithm works under reasonable constants.
It is also worth mentioning that Zhang & Li (2021) recently
developed a simpler initialization scheme for the problem
of learning halfspaces with Massart or Tsybakov noise; it
will be interesting to adapt their approach to the adversarial
noise model as a future work.

4. Performance Guarantee
We are now in the position to state our main theorem, which
is a formal statement of Theorem 2.

Theorem 5 (Main result). Suppose that Assumptions 1 and
2 are satisfied. If ν ≤ c0ε for some small absolute constant
c0 > 0, then with probability 1−δ, the output of Algorithm 1,
ũ, satisfies Pr(x,y)∼D

(
sign(ũ · x) 6= sign(u · x)

)
≤ ε.

Moreover, the running time is poly(d, 1
ε , log 1

δ ), the label
complexity is Õ

(
s · polylog(d, 1

ε ,
1
δ )
)
, and the sample com-

plexity is Õ
(
s
ε · polylog(d, 1

δ )
)
.

Remark 6. A more concrete label and sample complexity
reads as Õ(s log d · log3 d

εδ ) and Õ
(
s
ε · log4 d

δ

)
, respectively;

see Theorem 18 and Theorem 24 in the appendix.

Remark 7 (Excess risk). By the triangle inequality, we have
errD(ũ) − errD(u) ≤ Pr(x,y)∼D(sign(ũ · x) 6= sign(u ·
x)) ≤ ε. Namely, the excess risk of ũ with respect to u is at
most ε over the underlying distribution.

Remark 8 (Implications to passive learning). It is possible

to convert our algorithm to an online passive learner, where
there is only one oracle EX that always returns a labeled
instance upon request. To this end, observe that the active
learner interacts with the oracle exclusively in Step 2 of
REFINE. Therefore, we only need to modify this step as
follows in the passive setting: repeatedly call EX to obtain
a sequence of labeled instances {xi, yi}i≥1 until seeing a
pair (xt, yt) such that xt ∈ Xŵt−1,b. Then we use (xt, yt)
to update the classifier in Step 3 (rather than using all the
labeled instances that are drawn from EX). It is easy to see
that the label and sample complexity of the passive learner
are both Õ

(
s
ε · polylog(d, 1

δ )
)
.

The following corollary, which is a formal statement of
Theorem 1, concerns learning of non-sparse halfspaces and
is an immediate application of Theorem 5 by setting s = d.

Corollary 9. Assume same conditions as in Theorem 5.
With probability 1− δ, Pr(x,y)∼D

(
sign(ũ · x) 6= sign(u ·

x)
)
≤ ε. Moreover, the running time is poly(d, 1

ε , log 1
δ ),

the label complexity is Õ
(
d·polylog(1

ε ,
1
δ )
)
, and the sample

complexity is Õ
(
d
ε · polylog(1

δ )
)
.

4.1. Implications to agnostic learning

In the agnostic model (Haussler, 1992; Kearns et al., 1992),
the adversary chooses a joint distribution D over Rd ×
{−1, 1} and fixes it throughout the learning process. Let
OPT = minw∈C errD(w). The goal of the learner is to
output a hypothesis ũ such that errD(ũ) ≤ c ·OPT + ε for
some approximation factor c ≥ 1. The crucial difference
from the adversarial noise model is that now Assumption 2
may not be satisfied (in other words, OPT can be very large
compared to the target error rate ε).

Kalai et al. (2005) developed a polynomial regression al-
gorithm that achieves approximation guarantee with c = 1,
where the computational and sample complexity are both
O(d2poly(1/ε)

) for learning under isotropic log-concave dis-
tributions and are O(d1/ε4) for uniform distributions.

On the other side, Kalai et al. (2005) and a number of recent
works also obtained weaker (yet still quite nontrivial) ap-
proximation guarantee of O(OPT) + ε with running time
and sample complexity polynomial in d and 1

ε ; see, for ex-
ample, Awasthi et al. (2017); Zhang (2018); Diakonikolas
et al. (2018; 2020b). We follow this line, and remark that
our main result, Theorem 5, can be immediately translated
into the constant approximation guarantee under the agnos-
tic model. In fact, Lemma C.1 of Awasthi et al. (2017) made
an interesting observation that if an algorithm can tolerate
adversarial noise of ν = Ω(ε), then it essentially achieves
error rate of O(OPT) + ε in the agnostic model, with the
same running time, label complexity, and sample complex-
ity (up to a constant multiplicative factor). We therefore
have the following result, which is a formal statement of
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Theorem 3, by combining Theorem 5 we established and
Lemma C.1 of Awasthi et al. (2017); we omit the proof
since it is fairly straightforward.
Corollary 10. Suppose that Assumption 1 is satisfied. Then
with probability 1 − δ, errD(ũ) ≤ c · OPT + ε for some
absolute constant c > 1. Moreover, the running time is
poly(d, 1

ε ), the label complexity is Õ
(
s · polylog(d, 1

ε ,
1
δ )
)
,

and the sample complexity is Õ
(
s
ε · polylog(d, 1

δ )
)
.

4.2. Proof of Theorem 5

Theorem 5 hinges on the following two important results,
characterizing the performance of INITIALIZE and REFINE
respectively. A more precise statement and a detailed proof
can be found in Appendix A in the supplementary material.
Theorem 11. Consider the INITIALIZE algorithm. If As-
sumptions 1 and 2 are satisfied and ν ≤ coε, then with
probability 1 − δ′, the output of INITIALIZE, v0, is such
that θ(v0, u) ≤ π

8 . The running time is poly(d, log 1
δ′ ), the

label complexity is Õ
(
s · polylog(d, 1

δ′ )
)
, and the sample

complexity is Õ
(
s · polylog(d)

)
.

Theorem 12. Consider the REFINE algorithm. Suppose
that Assumptions 1 and 2 are satisfied and ν ≤ coε. Then
with probability 1− δ′, the output of the REFINE algorithm,
w̃, satisfies θ(w̃, u) ≤ 1

2 · θ(w0, u). The running time of
REFINE is T · poly(d, 1

b , log 1
δ′ ), the label complexity is T ,

and the sample complexity is O(T/b + T log T
δ′ ) where T

and b are the inputs to REFINE.

We first explain the results in Theorem 12. The label com-
plexity of REFINE is straightforward since we request one la-
bel per iteration, and the total number of iterations is T . We
start with the analysis of the sample complexity of REFINE,
i.e. the number of calls to EX in Step 3 therein. Since the
marginal distribution is assumed to be isotropic log-concave,
Lemma 29 shows that Prxt∼DX (xt ∈ Xŵt−1,b) ≥ c2b for
some absolute constant c2 > 0. Thus, by Chernoff bound,
we need to call EX forO( 1

b+log T
δ′ ) times in order to obtain

one xt in the band with probability 1− δ′

2T . Thus, by union
bound over the T iterations in REFINE, with probability
1− δ′

2 , the total number of calls to EX is O(Tb + T log T
δ′ ).

Note that this is also the computational cost for sampling.
On the other side, updating the iterates, i.e. Step 3, involves
solving a convex program in Rd, which has a running time
polynomial in d per iteration. Thus, the overall computa-
tional cost of REFINE is T · poly(d, 1

b , log 1
δ′ ).

Now we explain the results in Theorem 11. Generally speak-
ing, the INITIALIZE algorithm consists of two major steps,
one for constructing the constraint set K and one for ob-
taining a good initial halfspace v0 based on K. To obtain
K, it consumes m labeled instances and the computational
cost for sampling them is O(m) since rejection sampling is
not needed. Then it aims to find a point w0 in a convex set,

which is polynomial-time solvable; in fact, we can set w0

to the zero vector and then project it onto K, corresponding
to solving a convex program. The second major step is to
invoke REFINE, for which we have just analyzed. Combin-
ing these observations and the parameters specified in the
INITIALIZE algorithm, we obtain the announced results.

Proof of Theorem 5. First, Theorem 11 implies θ(v0, u) ≤
π
8 with probability 1 − δ

2 . In addition, for any phase k in
Algorithm 1, we specify in Theorem 12 that w0 = vk−1

and w̃ = vk, and obtain that θ(vk, u) ≤ 1
2 · θ(vk−1, u) with

probability 1− δ
2k(k+1) . By telescoping, we get θ(vK , u) ≤

2−K · π8 ≤ ε/c̄ in light of our setting of K; this inequality
holds with probability 1− δ

2 −
∑K
k=1

δ
2k(k+1) ≥ 1− δ by

union bound. This in allusion to Lemma 4 gives the desired
error rate of ũ = vK with respect to u.

The running time of Algorithm 1 follow from those we
analyzed for INITIALIZE and REFINE, and from the hyper-
parameter settings on bk, Tk, and δk in each phase k. In
particular, observe that bk ≥ ε for all k ≤ K. Therefore,
the running time is given by poly(d, log 1

δ ) +
∑K
k=1 Tk ·

poly(d, 1
bk
, log k2

δ ) = poly(d, 1
ε , log 1

δ ).

Likewise, for label complexity and sample complexity, we
can add up the cost in the initialization stage and that of the
K phases of refinement to obtain the bounds as claimed.

5. Conclusion and Future Works
This paper studies the fundamental problem of learning half-
spaces with adversarial noise. We have presented the first
attribute-efficient, label-efficient, and noise-tolerant algo-
rithm in the online setting, under the general isotropic log-
concave marginal distributions. Prior to this work, existing
online learners are either subject to label inefficiency or sub-
optimal noise tolerance, or work under restrictive marginal
distributions. We have shown that our label and sample
complexity are near-optimal, and the learner achieves PAC
guarantee in polynomial time. Prior to this work, such per-
formance guarantee is only achieved by a very recent batch
algorithm. Our results also have immediate implications
to the agnostic model, and match the best known results
obtained by polynomial-time batch algorithms.

We discuss a few important directions for future investiga-
tion. First, it is interesting to develop online PAC algorithms
with OPT+ε approximation error under the agnostic model,
by leveraging, for example, the polynomial regression tech-
nique (Kalai et al., 2005) into the online mirror descent
framework. Second, it is useful to extend the analysis to
more general concept classes such as intersections of halfs-
paces (Klivans et al., 2002; Diakonikolas et al., 2018). It will
also be important to design PAC algorithms that leverage ad-
ditional types of queries such as pairwise comparison (Kane
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et al., 2017; Xu et al., 2017) in the scenario where labels are
extremely demanding (e.g. medical data), or to develop new
projection-free algorithms for even faster computation.
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