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Abstract
We study efficient PAC learning of homogeneous
halfspaces in Rd in the presence of malicious
noise of Valiant (1985). This is a challenging
noise model and only until recently has near-
optimal noise tolerance bound been established
under the mild condition that the unlabeled data
distribution is isotropic log-concave. However,
it remains unsettled how to obtain the optimal
sample complexity simultaneously. In this work,
we present a new analysis for the algorithm of
Awasthi et al. (2017) and show that it essen-
tially achieves the near-optimal sample complex-
ity bound of Õ(d), improving the best known
result of Õ(d2). Our main ingredient is a novel
incorporation of a matrix Chernoff-type inequal-
ity to bound the spectrum of an empirical covari-
ance matrix for well-behaved distributions, in con-
junction with a careful exploration of the local-
ization schemes of Awasthi et al. (2017). We
further extend the algorithm and analysis to the
more general and stronger nasty noise model of
Bshouty et al. (2002), showing that it is still pos-
sible to achieve near-optimal noise tolerance and
sample complexity in polynomial time.

1. Introduction
In this paper, we study computationally efficient PAC learn-
ing of homogeneous halfspaces – arguably one of the most
important problems in machine learning (Valiant, 1984). In
the absence of noise, the problem is well understood and
can be efficiently solved by linear programming (Maass &
Turán, 1994) or the Perceptron (Rosenblatt, 1958). How-
ever, when the unlabeled data1 or the labels are corrupted, it
becomes subtle to develop polynomial-time algorithms that
are resilient to the noise (Valiant, 1985; Angluin & Laird,
1988; Kearns & Li, 1988; Kearns et al., 1992).
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1We will also refer to unlabeled data as instances in this paper,
and refer to labeled data as samples.

Generally speaking, a large body of existing works study the
problem of learning halfspaces under label noise. This in-
cludes early works on random classification noise where the
label of each instance is independently flipped with a fixed
probability (Blum et al., 1996), a more general model termed
Massart noise where the probability of flipping a given label
may vary from instance to instance but is bounded away
from 1

2 (Sloan, 1988; Massart & Nédélec, 2006), the Ty-
bakov noise where the flipping probability can be arbitrarily
close to 1

2 for a fraction of samples (Tsybakov, 2004), and
the much stronger adversarial (i.e. agnostic) noise where
the adversary may choose an arbitrary joint distribution over
the instance and label spaces (Haussler, 1992; Kearns et al.,
1992; Kalai et al., 2005; Daniely, 2015). When only the la-
bels are corrupted, significant progress towards establishing
near-optimal performance guarantees has been witnessed in
recent years; see, e.g. Awasthi et al. (2017); Diakonikolas
et al. (2019; 2020a;b;c); Zhang et al. (2020); Shen (2020).

Compared to the fruitful set of positive results on efficient
learning of halfspaces under label noise, less is known for
the significantly more challenging regime where both in-
stances and labels are corrupted. Specifically, one of such
strong noise models that has played a crucial role in learn-
ing theory is the malicious noise model of Valiant (1985);
Kearns & Li (1988), defined as follows:
Definition 1 (Malicious noise). Let X = Rd and Y =
{−1, 1} be the instance and label space, respectively. Let
D be an unknown distribution over X , and w∗ ∈ Rd be an
unknown halfspace. Each time the learner requests a sample,
with probability 1− η, the adversary draws x from D and
returns the clean sample (x, sign (w∗ · x)); with probability
η, it may return an arbitrary pair (x, y) ∈ X ×Y called dirty
sample. The parameter η ∈ [0, 1

2 ) is termed noise rate.

Notably, when the adversary is allowed to search for dirty
samples, it is assumed to have unlimited computational
power and can construct the sample based on the state of
the learning algorithm and the history of its outputs. Since
this is a much more demanding noise model (compared to
label-only noise), even the achievability of optimal noise
tolerance by efficient algorithms remained unsettled for
decades. For example, the early work of Kearns & Li (1988)
presented a general analysis showing that even without any
distributional assumptions, it is possible to tolerate the ma-
licious noise at a rate of Ω(ε/d), but a noise rate greater
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than ε
1+ε cannot be tolerated, where ε ∈ (0, 1) is the tar-

get error rate given to the learner. The noise model was
then broadly studied in the literature, though the learning
algorithms may be inefficient; see e.g. Schapire (1992);
Bshouty (1998); Cesa-Bianchi et al. (1999). Under different
distributional assumptions, there are more positive results
for efficient learning with malicious noise. In particular,
when the distribution D is uniform over the unit sphere,
Kalai et al. (2005) developed an efficient learning algorithm
and obtained a noise tolerance Ω(ε/d1/4), which was later
improved to Ω(ε2/ log(d/ε)) in terms of the dependence on
the dimension by Klivans et al. (2009). It is, however, well
recognized that the uniform distribution is often restrictive in
practice. As a remedy, Klivans et al. (2009) also investigated
the remarkably more general isotropic log-concave distribu-
tions (Lovász & Vempala, 2007), and showed for the first
time a noise tolerance of Ω(ε3/ log2(d/ε)) under such mild
condition. Unfortunately, owing to the strong power of the
adversary, the barrier of achieving the information-theoretic
limit of ε

1+ε was not broken for many years (even under the
uniform distribution). Very recently, a near-optimal noise
tolerance of the form Ω(ε) was established by Awasthi et al.
(2017) for isotropic log-concave distributions through a ded-
icated iterative localization technique, which stands for the
state of the art.

In addition to the degree of noise tolerance, another yet
important quantity that characterizes the performance of a
learning algorithm is sample complexity. Unfortunately, it
turns out that none of the prior works obtained near-optimal
sample complexity and noise tolerance simultaneously un-
der the mild condition that the (clean) instances are drawn
from an isotropic log-concave distribution. In particular,
Awasthi et al. (2017); Shen & Zhang (2021) obtained state-
of-the-art noise tolerance but the sample complexity of
Awasthi et al. (2017) reads as Õ(d3). Shen & Zhang (2021)
considered learning of s-sparse halfspaces with malicious
noise and showed through a refined analysis that a sample
size of Õ(s2 · polylog (d)) suffices; when specified to the
non-sparse setting (which is the focus of this paper), it still
leads to a suboptimal bound of Õ(d2). Prior to these two re-
cent works, even a noise tolerance of the form Ω(ε) was not
established, nor an optimal sample complexity bound. On
the other hand, it is worth mentioning that under the fairly re-
strictive uniform distribution over the unit ball, the analysis
of Awasthi et al. (2017) does imply a near-optimal sample
complexity bound of Õ(d). In this regard, a natural question
is: can we design a computationally efficient algorithm that
is able to tolerate Ω(ε) malicious noise while enjoying the
optimal sample complexity bound of O(d) under isotropic
log-concave distributions?

In this paper, we answer the question in the affirmative. First,
we formally describe our assumption on clean instances.

Assumption 1. The distribution D is isotropic log-concave

over Rd; namely, it has zero mean and unit covariance
matrix, and the logarithm of its density function is concave.

Observe that the family of isotropic log-concave distribu-
tions covers prominent distributions such as Gaussian, ex-
ponential, and logistic distributions (Lovász & Vempala,
2007; Vempala, 2010). In particular, general isotropic log-
concave distributions are asymmetric in nature and the mag-
nitude of the instances drawn from them is often dimension-
dependent, making it nontrivial to extend results developed
for the uniform distribution over the unit ball.

1.1. Main results

Recall that D and w∗ are the underlying distribution and
the correct halfspace as stated in Definition 1, respectively.
For any homogeneous halfspace hw : x 7→ sign (w · x), let
errD(w) := Prx∼D(sign (w · x) 6= sign (w∗ · x)) be the
error rate of w with respect to D and w∗. The following is
our main result.
Theorem 1. Consider the malicious noise model under
Assumption 1. There is an algorithm such that for any target
error rate ε ∈ (0, 1) and any failure probability δ ∈ (0, 1), if
η ≤ O(ε), it outputs a halfspace w̃ satisfying errD(w̃) ≤ ε
with probability 1− δ. The running time is poly

(
d, 1

ε ,
1
δ

)
and the sample complexity is d

ε · polylog
(
d, 1

ε ,
1
δ

)
.

We highlight that this is the first result for efficient PAC
learning of homogeneous halfspaces with both near-optimal
malicious noise tolerance and sample complexity under
isotropic log-concave distributions. On the algorithmic
spectrum, we in fact show that the active learning algo-
rithm proposed by Awasthi et al. (2017) inherently enjoys
the announced properties and the noise tolerance bound in
Theorem 1 directly inherits from their results. Regarding
sample complexity, their original analysis made use of the
pseudo-dimension from VC theory (Anthony & Bartlett,
1999) to give an Õ(d3) sample complexity bound which is
suboptimal. Even using a careful Rademacher complexity
bound, we would only obtain an Õ(d2) bound. Our improve-
ment comes from a reformulation of the objective function
used by Awasthi et al. (2017) and a novel utilization of a ma-
trix Chernoff-type inequality due to Tropp (2012), together
with a careful exploration of the localization schemes of
Awasthi et al. (2017); see Section 2 for more details.

1.2. Extension to the nasty noise model

We also consider learning of homogeneous halfspaces with
nasty noise of Bshouty et al. (2002), which is a strict gener-
alization and is stronger than the malicious noise model.
Definition 2 (Nasty noise). The learner specifies the total
number of needed samples N . The adversary takes as input
N , draws such many independent instances from D, and
labels them correctly according to w∗. Then it may replace
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an arbitrary η fraction of them with arbitrary samples in
X × Y . The corrupted sample set is returned to the learner.

Observe that when N = 1, it reduces to the malicious
noise model. The additional power of the nasty adversary
is that when N > 1, it may inspect all the clean samples,
and then decides which of them will be replaced, while in
the malicious noise model it can only inject dirty samples
(when it is permitted). Note that such extra power of erasing
clean instances may modify the marginal distribution of the
clean instances returned to the learner, which is one of the
technical barriers that we have to carefully address.

For the problem of learning homogeneous halfspaces with
nasty noise, we show that the algorithm of Awasthi et al.
(2017) still works well (hence, our contribution is a new
analysis). We have the following performance guarantee.

Theorem 2. Consider the nasty noise model under Assump-
tion 1. There is an algorithm such that for any target error
rate ε ∈ (0, 1) and any failure probability δ ∈ (0, 1), if
η ≤ O(ε), it outputs a halfspace w̃ satisfying errD(w̃) ≤ ε
with probability 1− δ. The running time is poly

(
d, 1

ε ,
1
δ

)
and the sample complexity is d

ε · polylog
(
d, 1

ε ,
1
δ

)
.

Since the malicious noise is a special case of the nasty
noise, the information-theoretic limit of the noise tolerance
established in Kearns & Li (1988), i.e. ε

1+ε , also applies to
the nasty noise. In other words, the noise tolerance in the
above theorem is near-optimal as well.

Another salient feature coming with the learning algorithm
we consider, i.e. the one developed in Awasthi et al. (2017),
is label efficiency; that is, the label complexity of the al-
gorithm is d · polylog

(
d, 1

ε ,
1
δ

)
which has an exponential

improvement on the dependence of 1
ε ; see Appendix C.7 for

the proof. To the best of our knowledge, this is also the first
label-efficient algorithm that tolerates the nasty noise.

We remark, however, that in many prior works, the learner
typically makes a one-time call throughout the learning pro-
cess to gather all the labeled instances (Bshouty et al., 2002;
Diakonikolas et al., 2018). Since we will study an algorithm
that proceeds in multiple phases and draws samples adap-
tively, we consider a natural relaxation which allows the
learner to make a one-time call per phase, with a total num-
ber of calls being O(log 1

ε ).2 Therefore, our results under
the nasty noise model are not strictly comparable to prior
results such as Diakonikolas et al. (2018). It remains open
of how to design an efficient algorithm which gathers all
samples in one batch while still enjoying near-optimal nasty
noise tolerance and sample complexity simultaneously.

2The crucial difference between the algorithm we consider and
prior passive learning algorithms lies in the number of rounds that
the learner communicates with the adversary.

1.3. Related works

The malicious and nasty noise models are strong contami-
nation models for the problem of robustly learning Boolean
functions. It turns out that most prior works on learning
of halfspaces concentrated on obtaining optimal noise tol-
erance while not pursuing the O(d) sample complexity, in
that the former problem alone is already quite challeng-
ing (Kearns & Li, 1988; Awasthi et al., 2017). Diakonikolas
et al. (2018) considered learning of more general concept
classes, e.g. low-degree polynomial threshold functions and
intersections of halfspaces, and showed that the underlying
concept can be efficiently learned with Õ(dγ) sample com-
plexity for some unspecified constant γ > 1. When adapted
to our setting (i.e. learning homogeneous halfspaces under
isotropic log-concave marginal distributions), Theorem 1.5
of Diakonikolas et al. (2018) only gives noise tolerance
η ≤ O(εγ

′
) for some constant γ′ > 1 which is suboptimal.

Recent works such as Diakonikolas et al. (2016); Lai et al.
(2016) studied mean estimation under a nasty-type model
where in addition to returning dirty instances, the adversary
has also the power of eliminating a few clean instances.
The key technique of robust mean estimation is to use the
spectral norm of the empirical covariance matrix to detect
dirty instances, and a sample complexity bound of Õ(d)
was obtained, typically under Gaussian distributions rather
than the more general isotropic log-concave distributions.
More recently, such technique was extensively investigated
for a variety of problems such as clustering and linear re-
gression; we refer the readers to the comprehensive survey
of Diakonikolas & Kane (2019). From a high level, the
idea of certifying clean instances with a small second order
moment roots in a much earlier work by Blum et al. (1996),
and was then serving as a crucial component in learning
halfspaces with malicious noise (Klivans et al., 2009). We
note, however, that near-optimal sample complexity for
learning halfspaces under isotropic log-concave marginal
distributions is not implied by these results.

Notations. For a unit vector u ∈ Rd and a positive scalar
b, we will frequently use Xu,b to denote the band {x ∈ Rd :
|u · x| ≤ b}. Let T be a set of unlabeled data. We will use
T̂ to denote its labeled set, i.e. {(x, yx) : x ∈ T} where
yx is the label that the adversary is committed to. We write
Õ(f) := O(f · polylog (f)). The letters c and C, and their
subscript variants such as c1, C1, are reserved for specific
absolute constants; see Appendix A.

Roadmap. In Section 2, we briefly describe the algorithm
of Awasthi et al. (2017), followed by a refined theoretical
analysis on the sample complexity. In Section 3, we extend
the algorithm and analysis to the nasty noise model. We
conclude this paper in Section 4, and defer all the proof
details to the appendix.
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2. Learning with Malicious Noise
We elaborate on our analytic tools used to obtain the near-
optimal sample complexity bound in this section. Since
we will give a new analysis for the algorithm developed by
Awasthi et al. (2017), we first briefly introduce their main
mechanisms; readers are referred to their original work for
more detailed technical descriptions.

To improve readability, throughout this section, we will
always implicitly assume that Assumption 1 is satisfied.

2.1. The approach of Awasthi et al. (2017)

The malicious-noise-tolerant algorithm, i.e. Algorithm 2 of
Awasthi et al. (2017), is built upon the celebrated margin-
based active learning framework of Balcan et al. (2007).
For convenience, we record it in Algorithm 1 with a minor
simplification (to be clarified). At a high level, it proceeds
in K = O(log 1

ε ) phases, where the key idea is to find in
each phase an empirical minimizer of a certain hinge loss
that is a good proxy of the loss on clean samples drawn from
a localized instance space. The margin-based framework
will then assert that this suffices for PAC learnability. To
this end, in each phase it has three major steps: rejection
sampling, soft outlier removal, and hinge loss minimization.

Let Xu,b := {x ∈ Rd : |u · x| ≤ b} for some given unit
vector u and certain scalar b ∈ [ε, O(1)] where ε ∈ (0, 1) is
the given target error rate; in the notation of Algorithm 1,
u should be thought of as wk−1 and b = bk. Let Du,b be
the distribution D conditioned on the event that x ∈ Xu,b.
During rejection sampling, the learner calls the adversary
EXx

η(D,w∗) to collect a set T of unlabeled data lying in the
band Xu,b.3 Since the set T is corrupted by the adversary,
the goal of soft outlier removal is to find proper weights for
all instances in T such that the reweighted hinge loss over T
is almost equal to the one evaluated on clean samples. Based
on the detection results, during hinge loss minimization,
the learner makes an additional call to the oracle EXy to
reveal the labels and finds an empirical minimizer of the
reweighted hinge loss:

`τ (w; p ◦ T̂ ) :=
1

|T |
∑

(x,y)∈T̂

p(x) ·max
{

0, 1− 1

τ
yw · x

}
.

We remark that the sample complexity at phase k refers to
the number of calls to EXx

η(D,w∗), and the label complex-
ity refers to that of EXy .

It is known from standard margin-based active learning
results that if the soft outlier removal step finds good weights
in all the phases, then the final output of Algorithm 1 will

3The algorithm of Awasthi et al. (2017) is active in nature.
Thus, the adversary initially hides the label and only returns the
instance; the learner must make a separate call to reveal the label.

Algorithm 1 Efficient and Sample-Optimal Algorithm Tol-
erating Malicious Noise
Require: Error rate ε, failure probability δ, instance gener-

ation oracle EXx
η(D,w∗), label revealing oracle EXy .

Ensure: Halfspace w̃ with errD(w̃) ≤ ε with probability
1− δ.

1: Initialize w0 as the zero vector in Rd.
2: K ← O(log 1

ε ).
3: for phases k = 1, 2, . . . ,K do
4: Clear the working set T .
5: bk ← Θ(2−k), rk ← Θ(2−k), τk ← Θ(2−k).
6: Call EXx

η(D,w∗) for Nk times to form instance set
A. If k = 1, T ← A; otherwise, T ← {x ∈ A :
|wk−1 · x| ≤ bk}.

7: Apply Algorithm 2 to T with u ← wk−1, b ← bk,
r ← rk, ξ ← 1

2 − Θ(1), c ← 2C2, and let q ={
q(x)

}
x∈T be the returned function. Normalize q to

form a probability distribution p over T .
8: Wk ← {w : ‖w‖2 ≤ 1, ‖w − wk−1‖2 ≤ rk}, T̂ ←

call EXy to reveal the labels of T . Find vk ∈ Wk

with

`τk(vk; p ◦ T̂ ) ≤ min
w∈Wk

`τk(w; p ◦ T̂ ) +O(1).

9: wk ← vk
‖vk‖2

.
10: end for
11: return w̃ ← wK .

have small error rate (Balcan et al., 2007; Awasthi et al.,
2017). Therefore, most of our discussions will be dedicated
to this crucial step. Note that the sample complexity refers
to the total number of calls to EXx

η(D,w∗) (which happens
during rejection sampling) and the label complexity refers
to that of EXy (which happens during loss minimization).

Decompose T = TC ∪ TD where TC denotes the set of
clean instances in T and TD for the dirty instances. The
key algorithmic insight of Awasthi et al. (2017) is that in
order to guarantee the success of soft outlier removal, i.e.
Algorithm 2 finds a feasible function q : T → [0, 1] in
polynomial time, it is equivalent for the following to hold
for some absolute constant c > 0:

sup
w∈W

1

|TC|
∑
x∈TC

(w · x)2 ≤ c(b2 + r2), (1)

where

W :=
{
w ∈ Rd : ‖w‖2 ≤ 1, ‖w − u‖2 ≤ r

}
. (2)

In order to prove (1), Awasthi et al. (2017) showed the
following useful result.
Lemma 3. There is an absolute constant C2 ≥ 1 such that

sup
w:‖w−u‖2≤r

Ex∼Du,b
[
(w · x)2

]
≤ C2(b2 + r2).
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Algorithm 2 Localized Soft Outlier Removal
Require: Reference unit vector u, band width b > 0, radius

r = Θ(b), empirical noise rate ξ ∈ [0, 1/2), absolute
constant c > 0, a set T of instances drawn from Du,b.

Ensure: A function q : T → [0, 1].
1: Let W =

{
w ∈ Rd : ‖w‖2 ≤ 1, ‖w − u‖2 ≤ r

}
.

2: Find a function q : T → [0, 1] satisfying the following:

1. for all x ∈ T, 0 ≤ q(x) ≤ 1;

2.
∑
x∈T q(x) ≥ (1− ξ)|T |;

3. supw∈W
1
|T |
∑
x∈T q(x)(w · x)2 ≤ c(b2 + r2).

3: return q.

On the other hand, Anthony & Bartlett (1999) proved that
with high probability,

sup
w∈W

∣∣∣∣ 1

|TC|
∑
x∈TC

(w · x)2 − Ex∼Du,b
[
(w · x)2

]∣∣∣∣ ≤ α (3)

provided|TC| = O
( (ρ+−ρ−)2

α2 d
)

where ρ− := infw∈W (w ·
x)2 and ρ+ := supw∈W (w · x)2.

Hence, Awasthi et al. (2017) combined Lemma 3 and Eq. (3)
with α = C2(b2 + r2) and showed that (1) holds with high
probability if|TC| = O

( (ρ+−ρ−)2

α2 d
)
. If the unlabeled data

distribution D were uniform over the unit sphere, then this
bound would read as O(d/α2) which has optimal depen-
dence on d. However, since we are considering the signif-
icantly more general family of log-concave distributions,
this bound becomes suboptimal.

Lemma 4. Consider x ∼ Du,b. Then with probability 1−δ,
(ρ+ − ρ−)2 ≤ O(d2 · b4 log4 1

bδ ).

Therefore, the VC theory only leads to a suboptimal sample
size |TC| = O(d3), which implies that the number of calls
to the instance generation oracle must be O(d3).

We note that while Rademacher complexity may sometimes
offer improved sample complexity as illustrated by Zhang
(2018); Shen & Zhang (2021), for our problem it only gives
suboptimal guarantee of |TC| = Õ(d2); see Appendix B.
Since the trouble roots in the suboptimal concentration
bound of (3) which only involves quadratic functions, one
may also wants to apply the well-known Hanson-Wright
inequality (Rudelson & Vershynin, 2013) for better bound.
The main barrier to apply it is that this inequality requires a
sub-gaussian tail for the random vectors while that of log-
concave distributions behaves as sub-exponential (see Part 5
of Lemma 24).

2.2. Our results and techniques

In contrast to the quadratic dependence on the dimension d,
we show that (1) holds as soon as|TC| = Õ(d).

Theorem 5. With probability 1− δ, Eq. (1) holds if |TC| ≥
d · polylog

(
d, 1

b ,
1
δ

)
.

Our technical novelty to show Theorem 5 is to move away
from uniform concentration inequalities used by prior works.
Rather, we reformulate the objective function of (1) which
naturally leads to bounding the spectrum of a sum of ran-
dom matrices. We then crucially explore the power of the
localization scheme for the instance and concept spaces as
used in Algorithm 1, and show that such spectrum norm
acts as a constant over the phases, leading to the announced
sample complexity.

First of all, we use the basic fact that for any a1, a2 ∈ R,
(a1 + a2)2 ≤ 2(a2

1 + a2
2), and obtain that

sup
w∈W

∑
x∈TC

(w·x)2 ≤ sup
w∈W

∑
x∈TC

(
(w − u) · x

)2
+
∑
x∈TC

(u·x)2.

Recall that in view of rejection sampling (namely localiza-
tion in the instance space), for all x ∈ TC, it was drawn
from D conditioned on the event |u · x| ≤ b, implying
(u · x)2 ≤ b2 with certainty. Hence, it remains to upper
bound supw∈W

(
(w − u) · x

)2
. By the definition of W in

(2), we know thatw−u ∈ r·V where V := {v : ‖v‖2 ≤ 1}.
It thus follows that

sup
w∈W

(
(w − u) · x

)2 ≤ r2 sup
v∈V

(v·x)2 = r2 sup
v∈V

v>(xx>)v.

Putting all pieces together, we have that the left-hand side
of (1) can be upper bounded as follows:

sup
w∈W

1

|TC|
∑
x∈TC

(w · x)2 ≤ r2 sup
v∈V

v>Mv + b2, (4)

where M =
(

1
|TC|

∑
x∈TC

xx>
)

. Observe that v>Mv cor-
responds to an eigenvalue of the matrix M . This motivates
the consideration of the spectrum norm of the random ma-
trix M , and is exactly where we need the matrix Chernoff
bound of Tropp (2012).

Lemma 6 (Matrix Chernoff inequality). Consider a finite
sequence {Mi}ni=1 of independent, random, self-adjoint
matrices with dimension d. Assume that each random matrix
satisfies Mi � 0 and λmax(Mi) ≤ Λ almost surely where
λmax(·) denotes the maximum eigenvalue. Define µmax :=
λmax(

∑n
i=1 E[Mi]). Then for all α ≥ 0, with probability

at least 1− d ·
[

eα

(1+α)1+α

]µmax
Λ

,

λmax

( n∑
i=1

Mi

)
≤ (1 + α)µmax.
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To apply the above lemma, we will set Mi = xix
>
i for each

xi ∈ TC. We also establish the following result to estimate
the two important quantities Λ and µmax, where the proof
crucially explores the localization scheme in the concept
and instance spaces.

Lemma 7. Suppose x is randomly drawn from Du,b. Then

λmax

(
E
[
xx>

])
≤ 4C2(b2 + r2)

r2
.

In addition, with probability 1− δ,

λmax

(
xx>

)
≤ K1 · d log2 1

bδ

for some constant K1 > 0.

By setting α = 1 in Lemma 6 and incorporating the results
in Lemma 7, we have the following:

Proposition 8. Let TC be a set of i.i.d. instances drawn
from Du,b. If |TC| ≥ d · polylog

(
d, 1

b ,
1
δ

)
, then with proba-

bility 1− δ, λmax(M) ≤ O(1).

Now we are in the position to prove Theorem 5.

Proof of Theorem 5. In fact, by (4) and Proposition 8 we
immediately have

sup
w∈W

1

|TC|
∑
x∈TC

(w · x)2 ≤ O(r2) + b2 ≤ O(r2 + b2),

which is the desired result.

Next, we need to translate the bound of |TC| to that of the
number of calls to EXx

η(D,w∗). To do so, we give a suffi-
cient condition on the number of calls to EXx

η(D,w∗) under
which, there are as many instances in TC as required in The-
orem 5. This has been set out in Awasthi et al. (2017) where
the primary observation is that under Assumption 1, the
probability mass of the bandXu,b is Θ(b). Hence, by calling
EXx

η(D,w∗) for O(n/b) times it is guaranteed to gather n
instances to form T . Also, it is possible to show that the em-
pirical noise rate within T will be O(ξ) where ξ ∈ [0, 1/2)
is a small constant, implying that|TC| ≥ 1

2n. By backward
induction, the sample complexity in each phase is Õ(d/b).

Formally, we have the following two lemmas.

Lemma 9. Assume η < 1
2 . By making a number of N =

O
(

1
b

(
n+ log 1

δ

))
calls to EXx

η(D,w∗), we will obtain n
instances to form T with probability 1− δ.

Lemma 10. Assume η ≤ c5ε for small constant c5 > 0. If
|T | ≥ 24 ln 1

δ , then with probability 1− δ, |TC| ≥ 3
4 |T |.

Algorithmic simplification. The last ingredient of Algo-
rithm 1 is hinge loss minimization. A slight improvement

in light of our new sample complexity bound is that there
is no need to perform random sampling of the instances in
T as in Awasthi et al. (2017). This is because in their orig-
inal analysis, |T | = Õ(d3) and for the sake of optimizing
label complexity without sacrificing the error rate, random
sampling of a subset of size Õ(d) is an elegant approach. In
contrast, we already have shown that the size of T itself is
Õ(d), which can be labeled entirely by querying EXy .

We are now in the position to prove Theorem 1. We note
that the key difference from the analysis in Awasthi et al.
(2017) is how we show that the Õ(d) sample size suffices
for soft outlier removal. We will therefore highlight this
distinction in our proof. For the full and detailed proof,
readers can either refer to their original paper or to our full
proof of Theorem 2 in Section 3 since the malicious noise
is a special case of the nasty noise.

Proof Sketch of Theorem 1. Consider phase k ≤ K. Com-
bining Lemma 9 and Lemma 10, we know that it suffices to
call EXx

η(D,w∗) for Õ(d/bk) times to ensure the carnality
of TC satisfies the condition in Theorem 5; hence the soft
outlier removal step succeeds. On the other side, as shown
in Proposition 11 of Shen & Zhang (2021), such sample
complexity bound also suffices to guarantee the uniform
concentration of hinge loss. Since bk ≥ ε for all k ≤ K, the
per-phase sample complexity is Õ(d/bk) ≤ Õ(d/ε). Recall
that there are a total of O(log 1

ε ) phases. Hence, the overall
sample complexity is Õ(d/ε) · log 1

ε = Õ(d/ε).

The analyses of failure probability, error rate, and compu-
tational complexity are standard; see, e.g. Awasthi et al.
(2017); Shen & Zhang (2021).

3. Learning with Nasty Noise
In this section we show that the algorithm and analysis of
Awasthi et al. (2017) can be modified to tolerate the nasty
noise of Bshouty et al. (2002), with near-optimal noise
tolerance and sample complexity.

Although under the nasty noise, we can still decompose
T = TC ∪ TD where TC is the set of clean instances in
Xu,b, the main technical challenge to generalize the results
of the preceding section to the nasty noise model is that
the instances in TC may no longer be i.i.d. draws from
Du,b due to the extra operation of erasing clean instances.
Therefore, many crucial results such as Proposition 8 do
not hold, making it subtle to characterize the performance
of soft outlier removal. Denote by TE the clean instances
residing in Xu,b but were replaced with dirty instances by
the adversary. What we can say is that TC ∪ TE are i.i.d.
draws from Du,b, though TE is not accessible to the learner.
Our main technical insight to handle the nasty noise is that
if the nasty noise rate η is small, and we perform instance
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localization (i.e. rejection sampling) as in Algorithm 1,
then it is still possible to construct an extended empirical
distribution over T ∪TE through soft outlier removal, under
which the reweighted hinge loss on T is almost a good proxy
to the hinge loss on the original clean instances TC∪TE. We
show that to do so, it suffices to have |T | = Õ(d). Then we
can reuse the analysis in Section 2 to show that the margin-
based active learning algorithm PAC learns the underlying
halfspace in polynomial time using Õ(d/ε) samples.

First of all, we formally introduce the problem setup with
a few useful notations that will frequently be used in our
subsequent analysis.

Passive learning under nasty noise. In the passive learn-
ing model, the sample generation oracle EXη(D,w∗;N)
takes as input a sample size N requested by the learner,
drawsN i.i.d. instances x1, . . . , xN fromD and labels them
correctly, i.e. each yi = sign (w∗ · xi), which forms the la-
beled clean instance set Â′ = {(x1, y1), . . . , (xN , yN )}. It
then chooses any ND = ηN samples in Â′, and replaces
them with arbitrary pairs in X × Y . This corrupted sample
set, denoted by Â, is returned to the learner. If we pass
the parameter N = 1 to EXη(D,w∗;N) and repeatedly
call it, then the problem reduces to learning with malicious
noise. However, if we must pass a large parameter N , the
adversary under nasty noise is more powerful than that un-
der malicious noise: it can inspect all the clean samples
and decide which of them to corrupt. In passive learning,
EXη(D,w∗;N) is often called only once with N being the
total number of samples needed by the learner (Bshouty
et al., 2002; Diakonikolas et al., 2018).

Active learning under nasty noise. In the active learn-
ing setting, the sample generation process remains un-
changed. However, instead of having direct access to
EXη(D,w∗;N) which returns the labeled set, the learner
calls EXx

η(D,w∗;N) to obtain the unlabeled corrupted in-
stance set A (i.e. A is obtained by removing all the labels
in Â). It can then decide to reveal the labels for some of
the instances in A by calling EXy. The sample complexity
refers to the size of A, and the label complexity refers to the
number of calls to EXy .

3.1. Algorithm

The nasty-noise-tolerant algorithm is given in Algorithm 3,
which is almost the same as Algorithm 1, with the ma-
jor difference that the learner passes a parameter N to
EXx

η(D,w∗;N) at the beginning of each phase and only
keeps those lying in a band to form the actually used in-
stance set T . Then, during hinge loss minimization, the
label revealing oracle EXy is called to reveal the labels of
all instances in T . Since the size of T is no greater than
N , the number of unlabeled samples, such active learning
scheme reduces the labeling cost.

Algorithm 3 Efficient and Sample-Optimal Algorithm Tol-
erating Nasty Noise
Require: Error rate ε, failure probability δ, instance gen-

eration oracle EXx
η(D,w∗;N), label revealing oracle

EXy .
Ensure: Halfspace w̃ with errD(w̃) ≤ ε with probability

1− δ.
1: Initialize w0 as the zero vector in Rd.
2: K ← O(log 1

ε ).
3: for phases k = 1, 2, . . . ,K do
4: Clear the working set T .
5: bk ← Θ(2−k), rk ← Θ(2−k), τk ← Θ(2−k).
6: Call EXx

η(D,w∗;N) with N = Nk to form instance
set A. If k = 1, T ← A; otherwise, T ← {x ∈ A :
|wk−1 · x| ≤ bk}.

7: Apply Algorithm 2 to T with u ← wk−1, b ← bk,
r ← rk, ξ ← ξk, c← 4C2, and let q =

{
q(x)

}
x∈T

be the returned function. Normalize q to form a
probability distribution p over T .

8: Wk ← {w : ‖w‖2 ≤ 1, ‖w − wk−1‖2 ≤ rk}, T̂ ←
call EXy to reveal the labels of T . Find vk ∈ Wk

with

`τk(vk; p ◦ T̂ ) ≤ min
w∈Wk

`τk(w; p ◦ T̂ ) + κ.

9: wk ← vk
‖vk‖2

.
10: end for
11: return w̃ ← wK .

Observe that we make a total of K calls to EXx
η(D,w∗;N),

which is different from the passive learning algorithms of
Bshouty et al. (2002); Diakonikolas et al. (2018) in that
they call the oracle only once throughout learning; thus the
results here are not strictly comparable to theirs but are still
more general than what we have presented in Section 2.

3.1.1. HYPER-PARAMETER SETTING

We elaborate on our hyper-parameter setting that is
used in Algorithm 3 and in our analysis; note that
such concrete setting also applies to Algorithm 1. Let
g(t) = c2

(
2t exp(−t) + c3π

4 exp
(
− c4t4π

)
+ 16 exp(−t)

)
,

where the constants are specified in Appendix A. Observe
that there exists an absolute constant c̄ ≥ 8π/c4 satisfying
g(c̄) ≤ 2−8π, since the continuous function g(t) → 0 as
t→ +∞ and all the involved quantities in g(t) are absolute
constants. Given such constant c̄, we set the constant κ =
exp(−c̄), r1 = 1 and rk = 2−k−6 for k ≥ 2, bk = c̄ · rk,
τk = c0κ · min{bk, 1/9}, δk = δ

(k+1)(k+2) , and choose

ξk = min
{

1
2 ,

κ2

16

(
1 + 4

√
C2zk/τk

)−2 }
where zk =√

b2k + r2
k. It is easy to see that all ξk’s are lower bounded by

a constant c6 := min
{

1
2 ,

κ2

16

(
1 + 4

c0κc̄

√
C2c̄2 + C2

)−2 }
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and are upper bounded by 1
2 , thus they behave as 1

2 −Θ(1).
Our theoretical guarantee holds for any noise rate η ≤ c5ε,
where the constant c5 := c8

2π c̄c1c6.

We set the total number of phases K = log
(

π
32c1ε

)
. For any

phase k ≥ 1, we set Nk = d
bk
· polylog

(
d, 1

bk
, 1
δk

)
which

is the number of instances requested by the learner.

3.2. Analysis

Throughout the section, we always presume that we are
addressing the nasty noise model under Assumption 1.

We decompose A = AC ∪AD, where AC is the set of clean
instances in A and AD consists of the dirty instances in
A. Let A′ be the unlabeled clean instance set obtained by
removing all labels in Â′. We introduce the instance set
AE = A′\AC, which was erased from A′ by the adversary.

The following lemma follows directly from the noise model
and the Chernoff bound, which states that there are not too
many dirty instances in A.

Lemma 11. Consider the nasty noise model with noise rate
η ≤ c5ε. Then|AD| ≤ 1

2c8ξbN and|AC| ≥ (1− 1
2c8ξb)N .

Next, we have an important consequence showing that when
localizing the instances in the band Xu,b, the nasty noise
rate stays as a small constant and there are sufficient clean
instances in A that are retained.

Lemma 12. Let η ≤ c5ε. By calling EXx
η(D,w∗;N), the

following hold simultaneously with probability 1− δ:

1. |TD|
|T | ≤ ξ;

2. |TC| ≥ 1
2c8(1− ξ)bN and|TE| ≤ 1

2c8ξbN .

By Part 2 of the above lemma, we know that |TC ∪ TE| ≥
Ω(bN). Hence results similar to Proposition 8 immediately
hold on the i.i.d. instance set TC ∪ TE provided that N is
large enough.

Proposition 13. Let M = 1
|TC∪TE|

∑
x∈TC∪TE

xx>. If

N ≥ d
b · polylog

(
d, 1

δ

)
, then with probability 1 − δ,

λmax(M) ≤ O(1).

The above proposition suffices to show that results similar
to Theorem 5 hold on TC ∪ TE. Thus, if the learner were
given T ∪ TE, then Proposition 13 would imply the success
of soft outlier removal under the nasty noise. Nevertheless,
TE is in reality inaccessible to the learner; we will hence
need a more careful analysis to establish the performance
guarantee, which is the theme of the next theorem.

Theorem 14. Let η ≤ c5ε and N ≥ d
b · polylog

(
d, 1

δ

)
.

With probability 1 − δ, Algorithm 2 outputs a function q :
T → [0, 1] in polynomial time with the following properties:

1. for all x ∈ T, q(x) ∈ [0, 1];

2. 1
|T |
∑
x∈T q(x) ≥ 1− ξ;

3. supw∈W
1
|T |
∑
x∈T q(x)(w · x)2 ≤ c

(
b2 + r2

)
.

Observe that the above theorem already guarantees an
Õ(d/b) sample complexity bound for the success of soft
outlier removal. It remains to show that the output of Algo-
rithm 3 has small error rate with respect to D and w∗. To
this end, we need to characterize the performance of hinge
loss minimization. Our approach is to link the reweighted
hinge loss over T to the hinge loss over TC ∪ TE. This is
because the latter is a good approximation to the expected
hinge loss on clean samples in light of uniform concentra-
tion, which itself acts as a surrogate of a localized error rate
(that is of our interest).

Let T̂C = {(x, sign (w∗ · x)) : x ∈ TC} be the (unrevealed)
labeled set of TC (note that TC only contains clean instances,
hence they are labeled correctly by the adversary); likewise
we denote by T̂E the (unrevealed) labeled set of TE. Define
`τ (w; p ◦ T̂ ) = 1

|T |
∑
x∈T p(x) · max

{
0, 1 − 1

τ yxw · x
}

be the reweighted hinge loss over T where yx denotes the
label of x that the adversary is committed to and p(x) was
calculated in Step 7 of Algorithm 3.

Proposition 15. Let η ≤ c5ε. If N ≥ d
b · polylog

(
d, 1

δ

)
,

then with probability 1− δ,

sup
w∈W

∣∣∣`τ (w; T̂C ∪ T̂E)− `τ (w; p ◦ T̂ )
∣∣∣ ≤ κ,

where κ was defined in Section 3.1.1.

The above robust approximation of hinge loss combined
with standard uniform concentration bounds (which require
sample complexity Õ(d)) suffices to establish the following
key lemma: the error rate within the band is a constant.

Lemma 16. Let η ≤ c5ε. Consider phase k of Algorithm 3
with hyper-parameter settings in Section 3.1.1. If w∗ ∈Wk,
then with probability 1− δ

(k+1)(k+2) ,

errDwk−1,bk
(vk) ≤ 6κ.

It is important to note a small constant error rate within the
band implies anO(ε) error rate of the final output w̃ over the
distribution D – a well-known fact in margin-based active
learning framework (Balcan et al., 2007; Awasthi et al.,
2017). Therefore, Lemma 16 has an immediate implication
of the correctness of Theorem 2; the full proof can be found
in Appendix C.7.

4. Conclusion
This paper provides an improved analysis on the sample
complexity of a well-established algorithm for learning of
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homogeneous halfspaces under the malicious noise. It is
shown that by leveraging a matrix Chernoff-type inequality
with localization, the obtained sample complexity is optimal
up to logarithmic factors. We also extend our analysis to
the stronger nasty noise model, and show the achievabil-
ity of near-optimal noise tolerance and sample complexity
by an efficient algorithm when the learner is permitted to
communicate with the adversary for multiple rounds.

Acknowledgements
We thank Chicheng Zhang for bringing the paper of Tropp
(2012) into our attention, and for insightful discussions on
proof ideas for learning with nasty noise. We also thank Jing
Wang for valuable feedback on the merit of the work, and
thank the anonymous reviewers for helpful suggestions on
improving the presentation. This work is supported by NSF-
IIS-1948133 and the startup funding of Stevens Institute of
Technology.

References
Angluin, D. and Laird, P. D. Learning from noisy examples.

Machine Learning, 2(4):343–370, 1988.

Anthony, M. and Bartlett, P. L. Neural Network Learning:
Theoretical Foundations. Cambridge University Press,
1999.

Awasthi, P., Balcan, M., and Long, P. M. The power of
localization for efficiently learning linear separators with
noise. Journal of the ACM, 63(6):50:1–50:27, 2017.

Balcan, M. and Long, P. M. Active and passive learning
of linear separators under log-concave distributions. In
Proceedings of the 26th Annual Conference on Learning
Theory, pp. 288–316, 2013.

Balcan, M., Broder, A. Z., and Zhang, T. Margin based
active learning. In Proceedings of the 20th Annual Con-
ference on Learning Theory, pp. 35–50, 2007.

Bartlett, P. L., Bousquet, O., and Mendelson, S. Local
Rademacher complexities. The Annals of Statistics, 33
(4):1497 – 1537, 2005.

Blum, A., Frieze, A. M., Kannan, R., and Vempala, S. S.
A polynomial-time algorithm for learning noisy linear
threshold functions. In Proceedings of the 37th Annual
IEEE Symposium on Foundations of Computer Science,
pp. 330–338, 1996.

Bshouty, N. H. A new composition theorem for learning
algorithms. In Proceedings of the 30th Annual ACM
Symposium on the Theory of Computing, pp. 583–589,
1998.

Bshouty, N. H., Eiron, N., and Kushilevitz, E. PAC learning
with nasty noise. Theoretical Computer Science, 288(2):
255–275, 2002.

Cesa-Bianchi, N., Dichterman, E., Fischer, P., Shamir, E.,
and Simon, H. U. Sample-efficient strategies for learning
in the presence of noise. Journal of the ACM, 46(5):
684–719, 1999.

Daniely, A. A PTAS for agnostically learning halfspaces. In
Proceedings of the 28th Annual Conference on Learning
Theory, volume 40, pp. 484–502, 2015.

Diakonikolas, I. and Kane, D. M. Recent advances in
algorithmic high-dimensional robust statistics. CoRR,
abs/1911.05911, 2019.

Diakonikolas, I., Kamath, G., Kane, D. M., Li, J., Moitra,
A., and Stewart, A. Robust estimators in high dimensions
without the computational intractability. In Proceedings
of the 57th Annual IEEE Symposium on Foundations of
Computer Science, pp. 655–664, 2016.

Diakonikolas, I., Kane, D. M., and Stewart, A. Learning ge-
ometric concepts with nasty noise. In Proceedings of the
50th Annual ACM Symposium on Theory of Computing,
pp. 1061–1073, 2018.

Diakonikolas, I., Gouleakis, T., and Tzamos, C. Distribution-
independent PAC learning of halfspaces with Massart
noise. In Proceedings of the 33rd Annual Conference on
Neural Information Processing Systems, pp. 4751–4762,
2019.

Diakonikolas, I., Kane, D., and Zarifis, N. Near-optimal
SQ lower bounds for agnostically learning halfspaces
and ReLUs under gaussian marginals. In Proceedings
of the 34th Annual Conference on Neural Information
Processing Systems, pp. 13586–13596, 2020a.

Diakonikolas, I., Kane, D. M., Kontonis, V., Tzamos, C.,
and Zarifis, N. A polynomial time algorithm for learning
halfspaces with Tsybakov noise. CoRR, abs/2010.01705,
2020b.

Diakonikolas, I., Kontonis, V., Tzamos, C., and Zarifis, N.
Learning halfspaces with Massart noise under structured
distributions. In Proceedings of the 33rd Annual Confer-
ence on Learning Theory, pp. 1486–1513, 2020c.

Haussler, D. Decision theoretic generalizations of the PAC
model for neural net and other learning applications. In-
formation and Computation, 100(1):78–150, 1992.

Kalai, A. T., Klivans, A. R., Mansour, Y., and Servedio,
R. A. Agnostically learning halfspaces. In Proceedings
of the 46th Annual IEEE Symposium on Foundations of
Computer Science, pp. 11–20, 2005.



Sample-Optimal PAC Learning of Halfspaces with Malicious Noise

Kearns, M. J. and Li, M. Learning in the presence of ma-
licious errors. In Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, pp. 267–280, 1988.

Kearns, M. J., Schapire, R. E., and Sellie, L. Toward effi-
cient agnostic learning. In Haussler, D. (ed.), Proceedings
of the 5th Annual Conference on Computational Learning
Theory, pp. 341–352, 1992.

Klivans, A. R., Long, P. M., and Servedio, R. A. Learning
halfspaces with malicious noise. Journal of Machine
Learning Research, 10:2715–2740, 2009.

Lai, K. A., Rao, A. B., and Vempala, S. S. Agnostic estima-
tion of mean and covariance. In Proceedings of the 57th
Annual IEEE Symposium on Foundations of Computer
Science, pp. 665–674, 2016.

Lovász, L. and Vempala, S. S. The geometry of logconcave
functions and sampling algorithms. Random Structures
and Algorithms, 30(3):307–358, 2007.

Maass, W. and Turán, G. How fast can a threshold gate
learn? In Proceedings of a workshop on computational
learning theory and natural learning systems (vol. 1):
constraints and prospects, pp. 381–414, 1994.
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