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Abstract
Importance sampling-based estimators for off-
policy evaluation (OPE) are valued for their sim-
plicity, unbiasedness, and reliance on relatively
few assumptions. However, the variance of these
estimators is often high, especially when trajecto-
ries are of different lengths. In this work, we in-
troduce Omitting-States-Irrelevant-to-Return Im-
portance Sampling (OSIRIS), an estimator which
reduces variance by strategically omitting like-
lihood ratios associated with certain states. We
formalize the conditions under which OSIRIS is
unbiased and has lower variance than ordinary
importance sampling, and we demonstrate these
properties empirically.

1. Introduction
In the context of reinforcement learning, our work focuses
on the off-policy evaluation (OPE) problem, where the goal
is to estimate the value of a given policy using historical
data collected under a different policy (Sutton & Barto,
2018). OPE is often a necessary step in many real-world
applications of reinforcement learning whenever running
evaluation policies is costly or risky, for example, in health-
care and education settings (Murphy et al., 2001; Mandel
et al., 2014). In particular, we focus on the OPE approaches
based on importance sampling (IS), which correct the histor-
ical data to account for the difference between the policies
(Precup et al., 2000). IS-based estimators are popular for
their appealing statistical properties (Thomas & Brunskill,
2016; Jiang & Li, 2016; Farajtabar et al., 2018; Thomas,
2015).

However, current IS-based estimators struggle in scenarios
involving trajectories of different lengths. In these settings,
IS-based estimators have large variance that increases with
trajectory length because IS weights are products of likeli-
hood ratios (Doroudi et al., 2018). Resolving this issue is
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important as many domains have trajectories with different
lengths: in health settings, patients’ length of stays may
vary drastically; in education settings, students may spend
different amounts of time using various online tools.

Motivated by the observation that IS variance is driven
by a large and varying number of likelihood ratios, we
present a new estimator, Omitting-States-Irrelevant-to-
Return Importance Sampling (OSIRIS), which strategically
omits likelihood ratios associated with certain states. The
goal of the estimator is to reduce IS variance while introduc-
ing minimal bias. We first identify the variance contributed
to ordinary IS by likelihood ratios that would be omitted
by OSIRIS. This analysis motivates the method’s idea to
omit likelihood ratios corresponding to “irrelevant” states,
where the action taken does not affect the trajectory return,
and this omission criterion keeps OSIRIS unbiased. Based
on this criterion, we describe a practical algorithm using a
statistical test to estimate state relevance. Finally, we exper-
imentally validate this implementation of OSIRIS on a suite
of discrete- and continuous-state environments. Because
the estimator’s procedure is to set “irrelevant” likelihood
ratios to 1, it can be easily used alongside other variants of
importance sampling estimators.

2. Background
Markov Decision Process We consider a standard rein-
forcement learning framework in which an agent, character-
ized by a policy π, interacts with a finite Markov decision
process (MDP), characterized by a tuple (S,A, P,R, γ). S
and A represent the state and action spaces, respectively;
P (s′ | s, a) and R(s, a) represent the transition distribution
and the reward function, respectively; and γ ∈ [0, 1] is the
temporal discount factor. The agent starts at an initial state
s1 drawn from the initial state distribution P (s1). At each
time step t, the agent performs an action at ∼ π(· | st),
observes reward rt = R(st, at), and transitions to state
st+1 ∼ P (· | st, at). Once the agent reaches a terminal state
(e.g. at time T +1), the trajectory is complete and is defined
as τ = (s1, a1, r1, . . . , sT , aT , rT , sT+1). The discounted
rewards collected between any times t1 and t2 in trajec-
tory τ is defined as gt1:t2(τ) ≡

∑t2
t=t1

γt−t1rt, and the full
trajectory return is simply denoted by g(τ) ≡ g1:T (τ).
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Policy Evaluation In the policy evaluation problem, we
are given historical data as a batch of trajectories D ≡
{τ (1), ..., τ (N)} collected under a behavior policy πb, and
we want to estimate the value V πe ≡ E

τ∼πe
[g(τ)] of an eval-

uation policy πe. We use the notation τ ∼ π to indicate that
trajectories τ are sampled from the joint probability distribu-
tion P (τ ;π) = P (s1)

∏T
t=1 π(at | st)P (st+1 | st, at), and

D ∼ π indicates i.i.d. sampling of N such trajectories.

If πb = πe, we can perform on-policy evaluation with
the unbiased Monte Carlo (MC) estimator V̂ πeMC(D) ≡

1
|D|
∑
τ∈D g(τ).

Importance Sampling In many real-world scenarios,
πb 6= πe, so we can only perform off-policy evaluation.
Among OPE methods, estimators based on importance sam-
pling (IS) are valued for their simplicity, unbiasedness, and
reliance on relatively few assumptions (Precup et al., 2000).
The ordinary IS estimator is given by the weighted average

V̂ πeIS (D) ≡ 1

|D|
∑
τ∈D

g(τ)ρ(τ) (1)

where the weight ρ(τ) is the product of likelihood ratios

ρ(τ) ≡
T∏
t=1

πe(at | st)
πb(at | st)

(2)

We also introduce shorthand notation: ρt(τ) ≡ πe(at | st)
πb(at | st)

and ρt1:t2(τ) ≡
∏t2
t=t1

ρt(τ). The IS estimator is an un-
biased estimator of V πe but typically has large variance,
which is the subject of Section 4.1. To reduce variance, the
commonly used weighted IS (WIS) estimator effectively
scales the importance weights ρ(τ) to be between 0 and
1: V̂ πeWIS(D) =

∑
τ∈D g(τ)ρ(τ)∑
τ∈D ρ(τ) (Precup et al., 2000). This

estimator becomes biased but is consistent.

3. Related Work
There has recently been significant interest in improving
the accuracy of estimation based on importance sampling.
Some approaches have included importance weight trun-
cation (Ionides, 2008; Su et al., 2019), confidence bounds
(Thomas et al., 2015a;b; Papini et al., 2019; Metelli et al.,
2020), and doubly robust estimation (Jiang & Li, 2016;
Thomas & Brunskill, 2016; Su et al., 2019). In this work,
we focus on the unique challenges presented by the long-
horizon setting (Doroudi et al., 2018).

Instead of weighting entire observed trajectories, a recent
family of methods showed promising results by calculating
weights using estimates of the steady-state visitation distri-
bution (Liu et al., 2018; Xie et al., 2019). This approach
was shown to improve asymptotic behavior with respect to

the horizon. However, all IS estimators will suffer when tra-
jectories are long, so our fundamentally different approach
is to strategically shorten the horizon. Furthermore, there is
still merit in trying to treat trajectories as a whole rather than
breaking them apart into individual transitions, especially if
the state space is believed to be partially observable.

Doroudi et al. (2018) propose a per-horizon estimator which
first groups trajectories by their lengths, performs WIS on
each group, and finally averages these sub-estimates using
horizon-corrective weights. However, if each such group is
small, the sub-estimates will have large bias because WIS
is biased. Furthermore, it is difficult to estimate the distri-
bution of trajectory lengths under πe, which is necessary to
compute the horizon-corrective weights.

Guo et al. (2017) are motivated by options-based policies
and leverage temporal abstraction to modify the per-decision
importance sampling (PDIS) estimator, which weights the
individual rewards from each transition. For settings without
access to well-defined options-based policies, the authors
suggest dropping all but the k-most recent likelihood ratios
from each PDIS weight, where k is chosen to minimize an
estimate of the estimator’s MSE. However, in addition to
the difficulty of accurately estimating MSE, the estimator
tends to overweight rewards near the end of a trajectory
because they are multiplied by fewer likelihood ratios. Our
perspective reveals using state relevance to flexibly omit
likelihood ratios without favoring any part of the trajectory
a priori.

Rowland et al. (2020) present a framework for conditional
importance sampling, including the return-conditioned im-
portance sampling (RCIS) estimator, which uses IS weights
that are conditioned on trajectory return. This approach is
designed to remove noise that is unrelated to determining
trajectory return. However, RCIS uses a regressor to fit IS
weights that are uncorrected and thus still vulnerable to the
trajectory length issues discussed in Section 4.1. Under
this conditional IS framework, OSIRIS weights are condi-
tioned on richer relevance information rather than only the
trajectory returns, and OSIRIS’s likelihood ratio omission
is designed to directly address trajectory length issues.

4. Variance Reduction by Omitting
Likelihood Ratios

4.1. Sources of Trajectory Length Variance

We are motivated by the observation that a major source
of variance in IS-based estimators is the large and variable
number of likelihood ratios in the IS weight.

Because the IS weight is the product of likelihood ratios,
each of which is a random variable, the IS weight tends to
have larger variance when trajectories are long:
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Proposition 1. For any subsets T1 ( T2 ⊆ {1, . . . , T}, if
πe 6= πb, and ρ1(τ), . . . , ρT (τ) are mutually independent,
then

Var
τ∼πb

[ ∏
t∈T1

ρt(τ) | s1, . . . , sT
]

< Var
τ∼πb

[ ∏
t∈T2

ρt(τ) | s1, . . . , sT
]

(3)

The proof is in Appendix B.1. To address this issue, we
propose to strategically omit likelihood ratios from the IS
weight product by setting them to 1, which has zero vari-
ance.

Furthermore, when trajectory lengths are variable, they
contribute variance that is not inherently meaningful to OPE.
Intuitively, there are at least two kinds of information that
can be represented in the IS weight: the individual actions
taken during the trajectory and the trajectory length. First,
each likelihood ratio in the IS weight measures how well a
transition in the historical data follows the evaluation policy.
This feature is intentional so that, in expectation, the overall
IS weight corrects for the difference between the behavior
and evaluation policies. However the distribution of the IS
weight is also directly related to the number of likelihood
ratios multiplied together. This is a result of the skew of
the distribution of likelihood ratios: because the behavior
probability πb appears in the denominator of the likelihood
ratio, it is very rare to observe large/exploding likelihood
ratios for transitions in the finite historical data, which are
sampled from πb, but it can be very common to observe
small/vanishing likelihood ratios. The effect of this skew
is that longer trajectories tend to have smaller IS weights
because they multiply more likelihood ratios. This idea is
formalized in:
Proposition 2. For any subsets T1 ( T2 ⊆ {1, . . . , T}, if
πe 6= πb, then

E
τ∼πb

[
log

∏
t∈T1

ρt(τ)
]
> E
τ∼πb

[
log

∏
t∈T2

ρt(τ)
]

(4)

The proof is in Appendix B.2. The log allows us to easily
reveal the relationship between trajectory length and IS
weight, and it is appropriate because the IS weight multiplies
likelihood ratios together. Although the IS estimator is
unbiased in expectation, this relationship can be problematic
for finite data sizes and especially when trajectory lengths
are long and highly variable. In these cases, the IS weights
can become dominated by the information about the number
of likelihood ratios rather than the meaningful information
about how well the trajectory follows the evaluation policy.

4.2. Omission of Meaningless Likelihood Ratios

We have identified two problems: when trajectory lengths
are variable, IS tends to overweight short trajectories in a

way that is not inherently meaningful; and when trajectory
lengths are long, the extra likelihood ratios contribute extra
IS variance overall. Our goal is then to strategically omit
likelihood ratios in a way that preserves/emphasizes mean-
ingful variance related to the actions taken in the historical
data while minimizing meaningless variance that is only
related to trajectory length. We begin by decomposing the
IS estimator variance, which will suggest such a method.

Assume we have a mapping θ′ : S → {0, 1} that identifies
which likelihood ratios should be kept vs omitted in the IS
weight.1 Omitting likelihood ratios is equivalent to setting
them to 1. This procedure can easily be applied to any
IS-based estimator (see Extensions in Section 5), but for
now we formally define the procedure on the ordinary IS
estimator:

Definition 1. Given any mapping θ′ : S → {0, 1}, the
OSIRIS weight is defined as

ρθ′(τ) ≡
T∏
t=1

[
ρt(τ)

]θ′(st) (5)

and accordingly, the OSIRIS estimator is defined as

V̂ πeOSIRIS(D; θ′) ≡ 1

|D|
∑
τ∈D

g(τ) ρθ′(τ) (6)

We also introduce notation for the product of the omitted
likelihood ratios: ρ{θ′(τ) ≡

∏T
t=1

[
ρt(τ)

]1−θ′(st). This
quantity directly relates the OSIRIS estimator to the ordinary
IS estimator:

V̂ πeIS (τ) = V̂ πeOSIRIS(τ ; θ′) · ρ{θ′(τ) (7)

where we have abused notation by writing V̂ πe(τ) to repre-
sent the single-trajectory estimator V̂ πe({τ}). We use this
fact to decompose the IS estimator variance:

Theorem 1. Given any mapping θ′ : S → {0, 1}, the
variance of the OSIRIS estimator is:

Var
D∼πb

[V̂ πeOSIRIS(D; θ′)] = Var
D∼πb

[V̂ πeIS (D)]

+
1

|D| E
D∼πb

[V̂ πeIS (τ (1))]2 − 1

|D| E
D∼πb

[V̂ πeOSIRIS(τ (1); θ′)]2

(8a)

− 1

|D| E
D∼πb

[V̂ πeOSIRIS(τ (1); θ′)2] Var
D∼πb

[ρ{θ′(τ
(1))] (8b)

− 1

|D|
Cov
D∼πb

[V̂ πeOSIRIS(τ (1); θ′)2, ρ{θ′(τ
(1))2] (8c)

1The analysis here in Section 4.2 works for any general map-
ping θ′. But we write the input space as just S in order to smoothly
introduce the idea of state relevance in Section 5.
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The derivation is in Appendix C.1. Term (8a) adjusts for
the locations of the respective estimator distributions. It is
generally much smaller in magnitude than all other terms,
which is plausible by the Cauchy-Schwarz inequality.2 Term
(8b) represents the variance of the omitted likelihood ratios.
This term cannot be positive, so it can only act to decrease
variance. The key conclusion is about Term (8c), which
mirrors3 the bias term:

Theorem 2. Given any mapping θ′ : S → {0, 1}, the mean
of the OSIRIS estimator is:

E
D∼πb

[V̂ πeOSIRIS(D; θ′)] =

V πe − Cov
D∼πb

[V̂ πeOSIRIS(τ (1); θ′), ρ{θ′(τ
(1))] (9)

The derivation is in Appendix C.2. If the covariance be-
tween V̂ πeOSIRIS(τ ; θ′) and ρ{θ′(τ) is zero, then the estimator
is unbiased by Theorem 2 and likely has reduced variance
by Theorem 1. This observation suggests an algorithm that
chooses θ′ to minimize this covariance term.

However, accurate estimation of the covariance term is chal-
lenging: high-variance estimates of the covariance can in-
troduce large variance to the OPE estimator by outputting
drastically different θ′ per sample, which would increase
length variance. Accurate estimation of the covariance term
is further complicated by independence requirements that
restrict the usable data. First, Equations 8c and 9 say the
covariance term should be estimated over i.i.d. data sets
D, each of which has its own θ′; but in practice, any cal-
culation of θ′ will probably incorporate all data in a single
sample of D. Furthermore, Theorems 1 and 2 use the fact
that ED∼πb [ρ{θ′(τ (1))] = 1, which is generally only true if
θ′ is calculated using D \ {τ (1)} (Appendix A).

Towards getting around these problems associated with pick-
ing θ′, we further interpret the covariance term between
V̂ πeOSIRIS(τ ; θ′) and ρ{θ′(τ) as a measure of the statistical
dependence between the trajectory outcome under πe and
the product of omitted likelihood ratios, respectively. As
discussed in Section 4.1, the product of likelihood ratios can
represent both the number of transitions included and how
well those transitions follow πe. Assuming that trajectory
length is not inherently meaningful to trajectory outcome,
the information contained in ρ{θ′(τ) is then primarily about
the actions taken during the trajectory. Indeed, the covari-
ance term involving the product of likelihood ratios is the
sum of covariances involving each individual likelihood ra-
tio (Appendix C.3). This decomposition suggests omitting
individual likelihood ratios that are independent of the kept

2Terms (8b) and (8c) are of the form E[x2] while the terms in
(8a) are of the form E[x]2.

3By definition, the variance involves second moments, so the
variables in Term (8c) are squared but not in Equation 9.

terms in the IS estimator. We refine this idea towards a
practical estimator algorithm in the next section.

5. State Relevance
We have motivated the idea to reduce IS variance without
introducing bias by omitting individual likelihood ratios
where there is no statistical dependence between the action
taken and the trajectory outcome. Now we present another
perspective of this idea, suggesting a practical algorithm
that circumvents the challenges associated with directly
estimating the covariance term.

We want to calculate θ to measure the dependence of the
trajectory outcome on each individual action taken. Because
the actions are sampled from policies that are conditioned
on states, we assume that there are some states where the
action taken does not matter to the trajectory outcome. We
formalize this idea as the relevance of a state:
Definition 2. A state s ∈ S is irrelevant if

E
τ∼πe

[gt:T (τ) | st = s, at = a] = constant, ∀a ∈ A.
(10)

Otherwise, s is relevant. Using this condition, we define the
true relevance mapping θ : S → {0, 1} where θ(s) = 0 if s
is irrelevant, and θ(s) = 1 if s is relevant.4

In other words, a state is irrelevant if the average return-
to-go is not affected by the action taken in that state. For
example, if state sA always takes the agent to sB and no
reward is given for that transition, then sA is considered
irrelevant. Or if paths diverge out of sA but later converge
to sB and no reward is given for those transitions, then
sA is still considered irrelevant. sA can even be irrele-
vant if non-zero rewards are given, as long as the expected
value of the return-to-go (aka state-action value function
Qπe(s, a) ≡ Eτ∼πe [gt:T (τ) | st = s, at = a]) remains the
same regardless of the action taken in sA. Likelihood ratios
corresponding to all transitions between sA and sB still get
multiplied in the ordinary IS weight. But these likelihood
ratios have no effect in correcting the difference between
πe and πb, so they just add meaningless variance to the IS
estimator.

Definition 2 tells us that in these irrelevant states, the trajec-
tory outcome is unaffected by the action taken. As such, we
can pretend that in irrelevant states, the evaluation policy
will actually draw actions from πb rather than πe. This idea
is formalized in:
Lemma 1. Let π′e be a composite policy:

π′e(a | s; θ) ≡

{
πe(a | s) if θ(s) = 1 (relevant)
πb(a | s) if θ(s) = 0 (irrelevant)

(11)

4If Equation 10 is true for some t, then it must be true for all t
by the MDP setup.
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Then the policy values of πe and π′e are equal:

V πe = V π
′
e (12)

The proof is in Appendix D.1. Performing importance sam-
pling while treating π′e as the evaluation policy is equiva-
lent to setting the importance sampling likelihood ratios to
πb(a | s)
πb(a | s) = 1 wherever s is irrelevant. This perspective is
exactly the likelihood ratio omission strategy in OSIRIS.
Thus, the OSIRIS estimator using the true state relevance
mapping is unbiased:

Theorem 3. Given the true relevance mapping θ, the mean
of the OSIRIS estimator is

E
D∼πb

[V̂ πeOSIRIS(D; θ)] = V πe (13)

The proof is in Appendix D.2, where we also show that the
estimator remains unbiased if we keep irrelevant likelihood
ratios, but it is biased if we omit relevant likelihood ratios.

Implementation A key assumption of our analysis so far
is that we have access to the true relevance mapping θ, but
practically, we will almost always need to estimate relevance
from the historical data. Definition 2 naturally suggests a
class of algorithms to do so by estimating the state-action
value function Qπe(s, a) and then comparing the estimate
Q̂πe(s, a) for different actions a within state s. If Q̂πe(s, a)
is (approximately5) constant for all actions a, then the algo-
rithm should consider s irrelevant. Otherwise s should be
relevant.

We will focus on presenting one possible implementation,
summarized in Algorithm 1, that uses IS with a statistical
test because it is simple yet effective and can guarantee esti-
mator consistency. For each visit to state s in the historical
data, we pre-calculate the associated return-to-go gt:T (τ (n))
multiplied by the IS weight-to-go ρt:T (τ (n)). This is an
unbiased estimate of the expected return-to-go under the
evaluation policy πe after taking action a in state s (aka
Qπe(s, a)). Although these samples likely come from dif-
ferent times t, the MDP setup says they still come from the
same distribution conditioned on s. Thus, for a given s, we
collect these estimates together for all visits to s into either
the list G+ or G− depending on whether the likelihood ratio
corresponding to the transition is > 1 or ≤ 1, respectively.
This procedure effectively produces a binary action space,
which allows us to use popular two-sample statistical tests6

5Inevitably, Q̂πe will be an imperfect estimator. But this error
could be advantageous because it effectively enforces a softer
version of Definition 2, which may allow the estimator to also
ignore states that are “mostly” irrelevant.

6If Smirnov’s non-parametric test (Hodges, 1958) is used in-
stead, we observe the same qualitative trends as our reported results
(Appendix F.1).

Algorithm 1 Estimating state relevance θ̂(s;D)

Input: state s, data D, significance level α
Initialize G+ ← ∅ and G− ← ∅.
for n = 1 to N and t = 1 to T do

if s(n)
t = s then

if ρt(τ (n)) > 1 then
Append G+ ← G+ ∪ {gt:T (τ (n))ρt:T (τ (n))}

else
Append G− ← G− ∪ {gt:T (τ (n))ρt:T (τ (n))}

end if
end if

end for
Perform Welch’s two-sample t-test comparing the sam-
ples G+ and G− with significance level α
if null hypothesis is rejected then

Output: θ̂(s;D) ≡ 1 (relevant)
else

Output: θ̂(s;D) ≡ 0 (irrelevant)
end if

to compare G+ and G−. In particular, we use Welch’s t-test
(Welch, 1951) where the null hypothesis is Equation 10 with
|A| = 2. Because the statistical test assumes the individual
samples in G+ and G− are i.i.d., we need to assume that state
s is visited at most once per trajectory, which is otherwise
sampled i.i.d.

By using Equation 10 as the null hypothesis, this state rele-
vance estimation procedure assumes that states are irrelevant
until “proven” relevant. Now, we will characterize the effect
of this property on accuracy.

Incorrectly identifying a truly irrelevant state as relevant
occurs with probability ≤ α, resulting from a type I error
of the statistical test. This error will not affect the bias of
the OSIRIS estimator because the likelihood ratios corre-
sponding to truly irrelevant states can take any value without
introducing bias (Appendix D.2). Although Term (8c) of the
variance should also be unaffected by this error because it
mirrors the bias term, Term (8b) will likely increase variance
because fewer likelihood ratios are omitted (Proposition 1).

Meanwhile, the type II error, of incorrectly identifying
a truly relevant state as irrelevant, introduces bias (Ap-
pendix D.2). But this bias goes to zero as data size increases
because the statistical test is consistent:

Theorem 4. If |A| = 2 and α > 0, then as |D| → ∞

E
D∼πb

[V̂ πeOSIRIS(D; θ̂( · ;D))] = V πe (14)

The proof is in Appendix D.3. The purpose of the assump-
tion |A| = 2 is to account for the fact that our binary classi-
fication (for practical implementation of the statistical test)
loses information about the actions. Generally, the action
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space will be larger than 2, but we expect the estimator
to still be consistent if the action space is partitioned in a
way that that preserves any dependence between actions and
return-to-go. We proposed classifying actions based on their
likelihood ratios, which is reasonable because following
vs deviating from the evaluation policy could cause drastic
differences in trajectory outcome. For example, in a policy
improvement setting where the policies are ε-greedy, fol-
lowing the optimal action would lead to higher rewards than
a random action. Furthermore, our partitioning strategy is
based on the likelihood ratios, which are the entities that di-
rectly appear in the covariance term in Equations 8 and 9. In
Appendix F.1, we explored another partition strategy, which
gave the same qualitative trends as our reported results.

Altogether, because α trades off the probabilities of type I
and II error, it can also be seen as a parameter that trades off
OSIRIS bias and variance by mixing two OPE approaches:
a naive average of behavior trajectory returns (α = 0 i.e. all
likelihood ratios are irrelevant) and an unbiased but high-
variance IS estimator (α = 1 i.e. all likelihood ratios are
relevant).7 This perspective also points out that for smaller
data size, Algorithm 1 will more aggressively label states as
irrelevant. Equivalently, it prioritizes variance reduction for
smaller data size, which is reasonable because variance is
inversely related to data size (Theorem 1).

Alternative Implementations Clearly, the estimation in
Algorithm 1 will be more accurate if the lists G+,G− contain
more data, so it effectively requires a discrete state space.
Nonetheless, the method can easily be extended to settings
with continuous state spaces: in Section 6, we show the
method still works if we use discretized states to perform
the statistical test and use the original continuous states for
all other calculations in the estimator.

In Appendix F.1, we present empirical results for other
possible implementations. Notably, we also tried directly
estimating Q̂πe with a neural network model, which can
certainly handle comparisons within continuous states and
across more than two actions. This approach produces the
same qualitative trends as our reported results, which demon-
strates the extent to which our analysis is robust to specific
implementation choices. An important conclusion from
these results is that simpler implementations are generally
advantageous because they involve fewer degrees of free-
dom that can vary across datasets and thus introduce less
estimator variance. At the same time, large variance in
the estimate of Qπe should be limited in its effect on our
overall OSIRIS estimator because Q̂πe is only used for
comparisons. Furthermore, the binary output of the compar-
ison θ̂(s;D) ∈ {0, 1} further weakens any statistical depen-

7Interestingly, the jump in the estimator’s behavior from α = 0
to α > 0 is non-continuous because it involves the first introduc-
tion of an IS likelihood ratio.

dence between θ̂(s;D) and each individual trajectory in the
dataset, which could violate the independence assumptions
discussed in Section 4.2.

Extensions From the perspective presented in Lemma 1,
the OSIRIS procedure is equivalent to performing ordinary
IS while treating the composite policy π′e as the evaluation
policy, and doing so does not introduce any new bias. Thus,
it is natural to use variants of OSIRIS corresponding to any
variant of IS (Thomas & Brunskill, 2016; Thomas, 2015;
Jiang & Li, 2016). For example, analogous to WIS, we
provide empirical results in Section 6 for OSIRWIS:

V̂ πeOSIRWIS(D; θ′) ≡
∑
τ∈D g(τ) ρθ′(τ ; θ′)∑

τ∈D ρθ′(τ)
. (15)

This principle also directly extends to a step-wise IS frame-
work (Precup et al., 2000; Jiang & Li, 2016). Alternatively,
because step-wise IS is fundamentally estimating the ex-
pected reward collected at each time step, it presents an
interesting opportunity to define and use the relevance of a
state to the reward ∆t ∈ Z time steps away (rather than to
the overall trajectory outcome):

Theorem 5. Let state s ∈ S be irrelevant to the reward
∆t-steps away if

E
τ∼πe

[rt+∆t | st = s, at = a] = constant, ∀a ∈ A.
(16)

Otherwise, s is relevant to the reward ∆t-steps away. Us-
ing this condition, we define θ∆t : S → {0, 1} where
θ∆t(s) = 0 if s is irrelevant to the reward ∆t-steps away,
and otherwise θ∆t(s) = 1. Then

V̂ πestep-wise
OSIRIS

(D; θ∆t) ≡

1

|D|
∑
τ∈D

T∑
t′=1

(
γt
′−1rt′

T∏
t=1

[
ρt(τ)

]θt′−t(st)) (17)

is an unbiased estimator of V πe .

The proof is in Appendix D.4, which uses similar techniques
as for Lemma 1 and Theorem 3. Notice that the per-decision
importance sampling (PDIS) estimator (Precup et al., 2000)
can be seen as a special case of this strategy if we use
the relevance mapping θPDIS

∆t (s) ≡ 1{∆t ≥ 0}, and this
observation is reflected in Equation 16 because the MDP
setup assumes at depends only on st.

Using this step-wise OSIRIS framework, it is straightfor-
ward to extend OSIRIS to the doubly robust (DR) esti-
mator (Jiang & Li, 2016) by replacing ρt′(τ)rt′ in each
term of Equation 17 with the corresponding DR estimate
ρt′(τ)

[
rt′ − Q̂πe(st′ , at′)

]
+
∑
a∈A πe(a | st′)Q̂πe(st′ , a)

where Q̂πe is some estimate of Qπe . Alternatively, the prin-
ciple behind ordinary OSIRIS can be applied.
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Figure 1: Environment and policies for Gridworld experi-
ments. States with blue arrows comprise the “corridor.”

6. Experiments
In this section, we experimentally validate the efficacy of
the likelihood ratio omission procedure of OSIRIS and the
relevance estimation procedure in Algorithm 1. We demon-
strate that they improve estimator accuracy. We demonstrate
that this occurs by reducing meaningless variance associated
with trajectory length while strategically using θ̂(s;D) to
identify meaningful variance to be kept.

Environment Descriptions Detailed descriptions of the
environments and methods are in Appendix E. In summary:
All policies are ε-greedy where ε is smaller in the evalua-
tion policy. We consider variants of the discrete gridworld
shown in Figure 1. The agent spends a variable number of
transitions dilly-dallying in the “corridor” before navigating
to terminal states that award either +5 or −5. Compared
to this Dilly-Dallying Gridworld, the only difference in the
Express Gridworld variant is that the behavior policy uses
an even smaller ε but only in the corridor, which reduces
the spread of the number of dilly-dallying transitions and
thus alleviates trajectory length issues in IS. We also demon-
strate that our implementation in Algorithm 1 extends to
continuous state spaces, specifically the popular benchmark
environments Cart Pole and Lunar Lander. For only the
calculation of state relevance, we discretized the state space
by creating linearly spaced bins per state dimension. In
Cart Pole, the agent receives +1 reward for each transi-
tion while it can keep an inverted pendulum upright. In
Lunar Lander, the agent is rewarded for landing on target,
penalized for firing its engines, and harshly penalized for
crashing. Unless specified otherwise, results are aggregated
from 200 trials where |D| = 25 for the Gridworlds and
|D| = 50 for Cart Pole and Lunar Lander. All code and
models used to generate these results are publicly accessible
at github.com/dtak/osiris.

OSIRIS/OSIRWIS mean-squared errors are generally
lower than their IS counterparts. The estimator means,
standard deviations, and RMSEs for each environment are
listed together in Table 1. OSIRIS/OSIRWIS generally out-

performs IS, WIS, PHWIS (Doroudi et al., 2018), INCRIS
(Guo et al., 2017), and MIS (Xie et al., 2019). The RMSE
improvement is mostly driven by variance reduction. Ex-
press Gridworld is the exception (see discussion below),
where OSIRIS/OSIRWIS is not expected to do better be-
cause we modified the environment to produce trajectories
with less length variability. MIS also performs well in the
Gridworlds where the state space is small.

OSIRWIS bias decreases as |D| or α increases. The dis-
tributions of OPE value estimates are plotted for different
data sizes |D| and values of α in Figure 2. These results
reflect the expected consistency behavior (Theorem 4). As
the data size increases, the OSIRWIS estimator mean ap-
proaches the true policy value. As α increases, OSIRWIS
becomes more similar to the WIS estimator.

Dilly-dallying contributes high variance to IS/WIS but
is ignored by OSIRIS/OSIRWIS. In Section 4.1, we ar-
gued that IS weights correlate with the trajectory length,
so if trajectory length varies, then that can directly con-
tribute meaningless variance to the IS estimate. This point
is reflected in Figure 3.

Consider the Dilly-Dallying Gridworld environment, where
the agent will dilly-dally in the corridor (blue arrows in Fig-
ure 1). While the random number of dilly-dally transitions
affects trajectory length, it does not affect the trajectory
return because the agent accumulates zero reward in the
corridor and almost always exits the corridor from the same
state. IS/WIS is distracted by dilly-dally transitions in the
corridor: the likelihood ratios corresponding to these low-
probability transitions are less than 1, so each dilly-dally
transition makes the IS/WIS weight smaller. A large and
variable number of dilly-dally likelihood ratios dominates
the IS/WIS weights and masks the informative likelihood
ratios corresponding to transitions outside the corridor. As
such, the IS/WIS weights become more informative of the
number of dilly-dally transitions (trajectory length) than
whether a behavior trajectory is representative of the evalu-
ation policy (scatter plot in Figure 3a). Because trajectory
length is not directly meaningful in this setting, this infor-
mation hurts IS/WIS accuracy by contributing meaningless
variance. Meanwhile, the OSIRIS/OSIRWIS estimator sig-
nificantly reduces this source of variance (boxplots in Fig-
ure 3a) by omitting likelihood ratios corresponding to these
corridor states (Figure 4a).

In contrast, the Express Gridworld variant generates tra-
jectories with less dilly-dallying in the corridor. Although
this modification of the environment/policies does not affect
policy value, it reduces the meaningless spread of trajec-
tory lengths. Because there are fewer distracting likeli-
hood ratios, the IS/WIS estimator becomes more accurate.
Meanwhile, the OSIRIS/OSIRWIS estimator is robust to

https://github.com/dtak/osiris
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Table 1: Comparison of mean squared errors for IS-based estimators. OSIRIS/OSIRWIS with α = 0.05 generally
outperforms its IS counterparts except in Express Gridworld (see text).

IS WIS PHWIS INCRIS MIS OSIRIS OSIRWIS ON-POLICY

DILLY-DALLYING
GRIDWORLD

MEAN 3.5 1.1 −0.3 −0.1 5.8 1.3 1.1 4.3
STD 6.8 3.5 1.0 4.8 1.6 2.0 1.8 0.6
RMSE 6.9 4.7 4.7 6.5 2.2 3.6 3.7 0.6

EXPRESS
GRIDWORLD

MEAN 3.0 2.7 0.3 4.3 5.1 0.7 0.8 4.3
STD 3.5 2.2 1.1 4.0 1.7 1.2 1.3 0.6
RMSE 3.7 2.7 4.1 4.0 1.9 3.8 3.7 0.6

CART POLE
MEAN 1073.5 452.2 608.2 1048.4 2498.6 1068.9 759.7 1503.6
STD 10202.2 272.5 97.6 4437.7 583.1 3961.8 318.5 244.8
RMSE 10211.3 1086.1 900.7 4461.0 1153.3 3985.5 809.2 244.8

LUNAR LANDER
MEAN 305.6 264.2 239.6 83.8 281.9 244.6 234.8 245.3
STD 768.7 14.9 9.1 149.6 139.6 55.3 23.5 6.8
RMSE 771.1 24.1 10.7 220.2 144.3 55.3 25.7 6.8
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Figure 2: Distributions of OSIRWIS estimates showing estimator consistency. Dots represent means, error bars represent
standard deviations, and horizontal line represents the mean of the on-policy MC estimator. Colors indicate α values, where
α = 1 is equivalent to ordinary WIS.

this modification: estimator accuracy remains constant (Ta-
ble 1), and the other reported results still show the same
qualitative trends (Appendix F.2).

While is difficult to precisely interpret dilly-dallying in the
high-dimensional Cart Pole and Lunar Lander environments,
we still observe the same variance reduction trend (Fig-
ures 3b and c).

Estimated state relevance θ̂ identifies key decision
points where trajectory outcome is sensitive to the ac-
tion taken. Figure 4 plots the proportion of trials in
which the indicated state was estimated to be relevant (i.e.
θ̂(s;D) = 1). As designed, θ̂(s;D) = 1 identifies key de-
cision points where trajectory outcome is sensitive to the
action taken, and often many different trajectory outcomes
are accessible from the state.

For example, in the Dilly-Dallying Gridworld, consider the
state marked with a green star in Figure 4a. Here, if the agent
moves east, then the corresponding likelihood ratio< 1, and
the trajectory ends with−5 return. If the agent moves south,
then the corresponding likelihood ratio > 1, and the agent

will very likely end the trajectory with +5 return. Thus,
there is a clear relationship between likelihood ratio and
trajectory return in this state, which is reflected by OSIRIS’s
tendency to set θ̂(s;D) = 1. Meanwhile, θ̂(s;D) is often
0 in the corridor (blue arrows in Figure 1). In any of these
corridor states, the likelihood ratio > 1 if the agent takes
the main policy action or < 1 if it dilly-dallies. However,
by the Markov assumption, this decision is independent
of the agent’s future actions to receive either +5 or −5
trajectory return. As such, the statistical test should not
find any relationship between likelihood ratio and trajectory
return, which is reflected by the tendency for θ̂(s;D) = 0.

The Lunar Lander and Cart Pole environments also demon-
strate this principle: θ̂(s;D) = 1 identifies relevant states
where the agent can avoid crashing by following the optimal
policy action but will likely crash if a random action is taken.
This establishes a positive correlation between trajectory re-
turn and likelihood ratio that is detected by the statistical
test. In Cart Pole, the detected relevant states tend to have
large angular velocity that can be stabilized by taking the
optimal policy action instead of a random action (Figure 4b).
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Figure 3: Scatter plots show correlation between OSIRIS weights and effective trajectory lengths
∑T
t=1 θ̂(st). Boxplots

show variance reduction of OSIRIS weights by shortening and evening of the effective trajectory lengths. Colors indicate α
values, where α = 1 is equivalent to ordinary IS.
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Figure 4: Mean of estimated state relevance θ̂(s) from visits to the indicated states is represented by color (a) or on the y
axis (b, c). States identified as relevant (i.e. θ̂(s) = 1) are key decision points where trajectory outcome is sensitive to action
taken.

Similarly, in Lunar Lander, when the agent is not level, it
is important whether the agent chooses stabilizing actions
(Figure 4c). But interestingly, if it has rotated too far, the
state tends to be considered irrelevant – at this point, there is
no hope as the agent will likely crash no matter what action
it takes. This principle can be observed in the other state
dimensions too (Appendix F.3).

7. Discussion and Conclusion
We presented the OSIRIS estimator to reduce importance
sampling variance in settings with long and varying trajec-
tory lengths. The algorithm strategically identifies and omits
irrelevant likelihood ratios in a way that introduces minimal
bias. This procedure can technically be applied to any IS-
based estimator or even for the purposes of interpretability
(Gottesman et al., 2020).

We also describe when OSIRIS will provide the most bene-
fit. In environments where trajectory length is not directly
correlated with the trajectory return, OSIRIS will shine be-
cause the covariance term in Equations 8 and 9 is small:
length is meaningless (assumed in these environments) and
the individual omitted likelihood ratios are also meaning-
less (by state irrelevance). In contrast, in environments like
Cart Pole, where trajectory length is directly related to tra-
jectory return, likelihood ratio omission could disrupt any

naturally occurring relationship between trajectory return
and IS weight (aka trajectory length). Depending on the di-
rection of the relationship, which determines the sign of the
covariance term (aka the bias term), this could be favorable
or harmful by shifting the estimator distribution closer to or
further from the true value.

More broadly, OSIRIS’s likelihood ratio omission directly
addresses the variance of long trajectories, but depending
on the environment, it may create more varying trajectory
length, e.g. by omitting several likelihood ratios in some
trajectories while leaving others untouched. While we did
not see this as a dominating factor in our experiments, fu-
ture extensions could address this issue of uneven lengths
by keeping only the Tmax-most relevant likelihood ratios for
some constant Tmax. Nonetheless, because we omit irrele-
vant likelihood ratios, we at least expect the OSIRIS weight
to give more attention to the relevant likelihood ratios.
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