
A. PELT Algorithm
The pruned exact linear time (PELT) algorithm is shown below:

Algorithm 1: PELT Algorithm
Input: Data observations x1:N . Cost Function C. Penalization β. Pruning parameter K.
Output: cp, position of changepoints.

1 Initialize F (0) = −β. cp = {}, R1 = {0}
2 for τ∗ = 1, ..., N do
3 Calculate F (τ∗) = minτ∈Rτ∗ [F (τ) + C(x(τ+1):τ∗) + β]
4 Let τ ′ = arg minτ∈Rτ∗ [F (τ) + C(x(τ+1):τ∗ + β)
5 Append τ ′ to cp
6 Set Rτ∗+1 = {τ ∈ Rτ∗ ∪ {τ∗} : F (τ) + C(x(τ+1):τ∗) + β ≤ F (τ∗)

7 return cp

Array R stores the changepoints under consideration for the optimal segmentation. Line 6 contains the pruning condition of
PELT. After computation of the optimal sub-solution, PELT removes changepoints which cannot be optimal, as determined
by equation (16-17) of the main text. In LatSegODE, we flip this algorithm to perform maximization instead of minimization
by switching the relevant signs. We set β to be zero, and use the marginal likelihood from equation (15) of the main text
as C. The choice of K is problem dependent. Increasing K increases the threshold required to prune a changepoint. This
increases segmentation accuracy at the cost of runtime.

B. Runtime
Here, we document the trade-off between K and segmentation runtime. Setting a high K allows more changepoints to be
considered for the optimal segmentation. This means an optimal changepoint will be accidentally pruned with less frequency.
Naturally, considering additional changepoints increases runtime, which we visualize in Figure 1.

(a) One ground truth changepoint. (b) Two ground truth changepoints.

Figure 1. Run time as a function of K. X axis is in log scale.

We vary the K term, and measure the wall runtime of LatSegODE segmentation. In subplot (a), we segment trajectories
from the Lotka Volterra data set with one changepoint. These trajectories contains 410 observations on average. In subplot
(b), we segment trajectories from the Lotka Volterra data set containing two changepoints containing 620 observations
on average. We observe that segmentation accuracy increases as we increase K. This relationship is shown in Table 1.
Accuracy when using low values of K is very poor. Accuracy rapidly increases as K is increased, and then plateaus. For the
Lotka-Volterra benchmark, a K value around 50-100 offers the best performance for its runtime.
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10 0.7781 131.6 0.5578 1.4 0.8662 150.8 0.5714 0.133
25 0.8344 103.8 0.8133 0.4 0.9342 105.8 0.6929 1.0
50 0.9024 66.4 0.9333 0.2 0.9585 24.6 0.5524 0.6
100 0.9016 66.6 0.9333 0.2 0.9659 19.6 0.5619 0.4
200 0.9031 66.2 0.9333 0.2 0.9582 22.4 0.4952 0.4

Table 1. Segmentation accuracy as a function of K. Metrics averaged over 5 runs.

C. Neural Event ODEs
Here, we demonstrate our intuition on why the Neural ODE and Neural Event ODE methods are unable to converge within
our problem domains. Neural ODEs represent trajectories as a deterministic function of its initial state. Furthermore, two
different trajectories cannot evolve from an identical initial state. In experimental benchmarks, and time series modelling in
general, trajectories may start at identical initial states but later diverge. Neural ODEs and Neural Event ODEs, which can
only encode one trajectory per initial state, are not designed to represent this class of time series. Consequently, we observe
that Neural ODEs and Neural Event ODEs do not converge during training on our benchmarks. An example is shown in
Figure 2.

Figure 2. An example of trajectories which cannot be simultaneously represented by a single Neural Event ODE. Both trajectories begin
with an initial value of zero, but evolve with opposite dynamics.

The figure shows two sine waves with opposite amplitudes a shared initial value of zero. As expected, we see that Neural
Event ODE reconstructions are poor, and did not converge during training. The Neural Event ODE was trained using the sine
wave benchmark data set. The ODE function is parameterized using a 3 layer neural network (NN) with Tanh activations
and 256 units in hidden layers. We use a 2 layer NN with 256 width and ReLU activations to parameterize the update and
event functions. Hyper-parameter search was performed by varying the number of layers and hidden layer width in the
ranges (2, 3) and (64, 128, 256).

Latent ODEs does not suffer this representational limitation. We consider the example in the figure. The Latent ODE can
represent this example by using two different latent trajectories which begin at non-identical latent initial states. The decoder
neural network can then learn a surjective function which maps the non-identical latent initial states to identical initial values
in data space. Extension of the Neural Event ODE to a latent architecture is a promising direction to circumvent limitations.

D. General Experimental Design
All experiments are run on a single Titan Xp GPU. Due to computational constraints, each training run was only performed
once per hyper-parameter choice. Each segmentation evaluation was also only run once due to computational constraints.



D.1. Reconstructive Baselines

Reconstructive performance was baselined using several methods. First, we selected the GRU model, a standard choice
in representing time series. The GRU ∆t model uses the time delta between observations as an additional input feature.
Inclusion of the time delta improved extrapolation performance. The GRU-ODE model uses a Neural ODE to evolve hidden
state between GRU updates. All of these methods are trained in an auto-regressive manner. During training, scheduled
sampling (Bengio et al., 2015) is used. At each time step, with 25% probability, the input data is replaced with the prediction
output of the previous time point. We also mask 25% of the observations at the end of the trajectory (in addition to masking
described in main text), and include the prediction loss on these points. These models are trained using the mean squared
error loss between ground truth and predicted data points.

As the LatSegODE is provided changepoint positions (and thus isolated simple dynamical flows) during training, we also
provide this information to baseline methods. We trained models on trajectories which have been split into simple dynamical
flows (SDFs), and also separately trained on entire hybrid trajectories. The best performing model resulting from these two
training configurations is reported.

We trained vanilla Latent ODEs using only whole hybrid trajectories. Obtaining convergence was difficult, and required days
of training. We use the training strategy from (Rackauckas et al., 2020), where we iterative grow the learned reconstruction.
We experimented using an augmented Neural ODE (Dupont et al., 2019) to represent latent dynamics, but did not observe
significant benefit. We applied an adjoint computation modification to speed up training (Kidger et al., 2020), but did not
perform rigorous empirical testing to evaluate its benefits.

We hacked data generation to enable faster experimentation. Generated observation times were irregularly sampled, but
aligned for all trajectories. This enables batch training. In practice, Latent ODEs can handle non-aligned irregularly sampled
time series by solving for the union of all time points in a mini-batch. This is drastically increases memory usage and
runtime. Thus, for convenience, we adopt the aforementioned hack.

D.2. Segmentation

We report the specific formulations of the CPD methods and metrics used in our benchmarks. These descriptions are
referenced from the ruptures (Truong et al., 2020) package documentation.

METRICS

The Rand Index (Rand, 1971) measures the overlap between the predicted segmentation and the ground truth segmentation
for a segmentation S on data points x1:T . A membership matrix A is defined such that Aij = 1 if xi and xj are in the same
segment. Otherwise, Aij = 0. Membership matrices are generated for both the ground truth segmentation (A) and the
predicted segmentation (Ã). The Rand index is defined as:

RandIndex =

∑
i<j 1[A == Ã]

T (T − 1)/2
(1)

The Hausdorff metric (Rockafellar & Wets, 2009) is a measure of the maximal distance between the predicted segmentation
and the ground truth segmentation. Given a set of ground truth changepoints t1, t2, ... and predicted changepoints t̂1, t̂2, ...,
it is computed as:

Hausdorff({tk}k, {t̂k}k) = max{max
k

min
l
|tk − t̂l|,max

k
min
l
|tl − t̂k|} (2)

Intuitively, it returns the max of the set of distances from each predicted changepoint to their closest ground truth changepoint.

The F1 score is calculated as the standard F1 score, namely the harmonic mean between precision and recall:

F1 = 2× precision× recall
precision + recall

(3)

A changepoint prediction is considered correct if a falls within 10 indices of a true changepoint. This definition of correctness
is used to calculate precision and recall for the F1 score.

The annotation error reports the difference between the count of predicted changepoints, and the count of true changepoints.



METHODS

We outline the three cost functions used in the main text. Other cost functions (L1/L2 deviation, rank transformation,
Mahalanobis distance) were evaluated not reported due to inferior performance. These cost functions are used with PELT.
Alternative search methods such as binary segmentation and sliding windows were not considered. They are prone to
returning sub-optimal results, as they are greedy methods.

RPT-RBF: This cost function detects changes in the distribution of a sequence of i.i.d. random variables. It introduces a
kernel k(., .) : Rd × Rd → R and a feature map Φ : Rd → H where H is a Hilbert space. RPT-RBF embeds a signal as
{Φ(xt)}t, and detects changes in the mean so that the cost function on an interval I is:

c(xI) =
∑
t∈I
||Φ(xt)− µ̄||2H (4)

where µ̄ is the empirical mean of the sub-trajectory {Φ(xt)}t∈I . RPT-RBF uses the radial basis function, which is defined
as:

k(x, y) = exp(−γ||x− y||2) (5)

where ||.|| is the Euclidean norm and γ > 0 is a smoothing parameter known as the bandwidth. Two other kernels are
provided, which use a cosine similarity kernel, and a linear model. We use the RBF as it provided better performance.

RPT-NORM: This cost function scores a segment using a sequence of multivariate Gaussian random variables, i.e., a
Gaussian Process. For a signal {xt}t on interval I , this cost is defined as:

c(xI) = |I| log det Σ̂I (6)

where Σ̂I is the empirical covariance matrix of the data points {xt}t∈I .

RPT-AR: This cost function introduces an auto-regressive model. It represent unknown changepoint indices as 0 < t1 <
.. < tN . A piece-wise auto-regressive model is introduced:

xt = z′tδj + εt ∀t = tj , ..., tj+1 − 1 (7)

To clarify, tj is the segmentation boundary, while t represents actual time indices. Thus, j > 1 represents the number of a
segment. The variable zt = [xt−1, ...xt−p] is the lag vector, with p being the order of the auto-regressive model.

On an interval I , the cost is defined as:
c(xI) = min

δ∈Rp

∑
t∈I
||xt − δ′zt||22 (8)

For this cost function, the lag term is a hyper-parameter. We chose the default value (ten) and a small grid search around this
value confirmed it performs the best.

E. Sine Wave Experimental Setup
We simulate 7500 total trajectories, of which 300 is used for validation and 150 for test. Each trajectory can contain up to two
changepoints. The time length and number of observations in each SDF between changepoints is uniformly sampled from
the ranges (3, 5) and (50, 150) respectively. The amplitude and frequency of SDFs are uniformly sampled from the ranges
(−8, 8) and (2, 4), respectively. The phase of each SDF is also randomly drawn, which introduces jump discontinuities.
The time points of observation were randomly sampled using a uniform distribution on the range of the segment, but were
forcibly aligned for experimental convenience. The absolute change in amplitude between SDFs is at least 2.5, and we
added independent Gaussian noise with standard deviation 0.025 to simulate noise. At evaluation time, all segmentation
methods use a minimum segment length of 20, and we use a K term of 200.

Next, we report architecture hyperparameters and training procedure. Unless otherwise stated, hyper-parameter search was
mainly performed on by adjusting the depth and width of NNs used to parameterize the Neural ODEs in various architectures.
We start with a 3 layer NN with 50 units, and increase width/depth until the model can fit the data.

GRU / GRU∆t The GRU model used 100 units in the GRU, and a 20 dimensional hidden state. A 2 layer NN with 100
units and ReLU activations is used for the output network. The GRU ∆t model used an identical architecture. These



hyperparameters were selected using grid search. We started with 50 units in the GRU, and increased number of units until
overfit occurred. Both models were trained using Adamax (Kingma & Ba, 2015), with a learning rate of 0.01. Learning rate
was manually decayed to 1e-3 and then 1e-4 when loss plateaued. A batch size of 512 was used. This was selected based on
memory constraints, as larger batch sizes allowed for faster convergence.

GRU-ODE The GRU-ODE model used 100 units in the GRU, and a 10 dimensional hidden state. The output network is a 2
layer 100 unit NN with ReLU activations. The Neural ODE component of the GRU-ODE is parameterized by a 3 layer 100
unit NN with Tanh activations. We found that using batch size 1 provided good results, at the cost of a very long training
run. The model was optimized using Adamax, with manual learning rate reduction on plateaus from 0.01 to 1e-3 to 1e-4.

Latent ODE The vanilla Latent ODE model used a encoder with a 32 dimensional hidden state. The latent dynamics were
16 dimensional. The dimensionality in the vanilla Latent ODE is larger than the base model used in the LatSegODE, as the
latent initial state for vanilla Latent ODEs must encode more information. The encoder GRU contains 100 units, and the
encoder Neural ODE was parameterized by a 3 layer 100 units NN with Tanh activations. The Neural ODE representing
latent dynamics was parameterized identically. We used a 2 layer 100 unit NN with ReLU activations as the decoder. The
Latent ODE is trained using Adamax with learning rate 0.01. The learning rate was manually decayed to 1e-3 when loss
plateaued. A batch size of 128 was used. We used KL annealing (Fu et al., 2019), such that the KL weight was 0 at the start
of training, and reached 1 at epoch 5. The fixed variance used to compute the ELBO was set to 1. Latent dynamics were
solved using the dopri5 solver using relative and absolute tolerances of 1e-8 and 1e-8. The encoder Neural ODE was solved
using Euler’s method.

LatSegODE The LatSegODE used a 10 dimensional hidden state in the encoder, and a 5 dimensional latent dynamical
state. The original Latent ODE paper observed that the dimension of the encoder hidden state must be larger than the
dimension of the latent dynamical state. Our experimentation supported this claim, and training was not possible if this rule
was violated. The GRU in the GRU-ODE encoder uses 100 units, and the encoder Neural ODE is a 2 layer 100 unit NN
with Tanh activations. The Neural ODE used to represent latent dynamics used the same hyperparameters. We found that
Tanh activations were required for stable training in Latent ODEs. We attempted other activations such as Swish, ReLU,
and Softplus, but found this caused numerical under/overflow. We used a 2 layer 100 unit decoder network with ReLU
activations.

It is important to use ReLU activations in the decoder network. Alternative activations such as the Tanh or SoftPlus are
bijective activations, meaning the initial observed data point in data space can never map to multiple latent initial states.
Using the Tanh activation greatly limits the representational power of the Latent ODE base model when representing data
trajectories which start at the same value, but later diverge.

The LatSegODE was trained using Adamax using learning rate 0.01, reduced to 1e-3 manually when validation loss
plateaued. We used a batch size of 256. We used the dopri5 solver to solve latent dynamics with relative tolerance of 1e-5
and absolute tolerance of 1e-6. Increasing the ODE solve tolerance had no adverse effects on results and sped up training.
The encoder Neural ODE used Euler’s method to solve dynamics. We used KL annealing during training.

The fixed variance used to compute ELBO is set to 1. At segmentation time, it was critical to use the same fixed variance to
evaluate marginal likelihood. We used 100 Monte Carlo samples to estimate marginal likelihood. We used a K term of 200.
To reduce the memory cost of segmentation, we rounded times of observation to the nearest 0.01, reducing the size of the
union of time points which must be solved.



F. Sine Wave Results
Experimental results on the Sine Wave dataset. The Latent ODE trained on input augmented with a binary time series of
changepoint locations is denoted Aug. Latent ODE.

Reconstruction Segmentation

Method
Total
MSE

Interp.
MSE

Extrap.
MSE

Rand
Index (↑) F1

Score (↑) Hausdorff
Metric (↓) Annot.

Error
LatSegODE 1.933 0.639 4.266 0.993 0.989 2.107 0.033
GRU 8.065 0.862 20.634 - - - -
GRU ∆t 6.911 0.973 17.560 - - - -
GRU-ODE 6.616 0.815 17.130 - - - -
Latent ODE 12.877 9.111 17.721 - - - -
Aug. Latent ODE 13.273 4.914 26.922 - - - -
RPT-RBF - - - 0.918 0.837 25.220 -
RPT-AR - - - 0.938 0.887 26.013 -
RPT-NORM - - - 0.855 0.761 47.213 -

Table 2. Evaluation on Sine Wave data set. Values are averages over 150 test trajectories. Arrows beside metric denote whether higher
values (↑) or lower values (↓) indicate better performance.

G. Lotka-Volterra Experimental Setup
Here, we report the parameters used to generate the Lotka Volterra data set, and the model hyper-parameters used during
bench marking. As previously reported, we simulated 34000 training hybrid trajectories, with 600 trajectories used as a
validation set, and 150 used for test. Each trajectory contained zero to two changepoints. Changepoints in these trajectories
are labelled, and the LatSegODE base model is trained on the SDFs between changepoints. The vanilla Latent ODE baseline
is trained only on the hybrid trajectories, while other baselines were trained both on full hybrid trajectories and SDFs
separately, with the best result reported.

Each SDF between changepoints was generated with between 175 to 225 observations, and ends at a time ran-
domly sampled between (14, 16). The coefficients for the Lotka-Volterra SDFs were uniformly sampled from ranges
(0.5, 1.5), (0.5, 1.5), (1.5, 2.5), (0.5, 1.5) for coefficients α, β, δ, γ respectively. We enforced a minimum change in the
norm of coefficients of 0.6 between SDFs, and added independent Gaussian noise of 0.01 to all trajectories. We masked
20% of data points for interpolation testing, and the last 100 data points for extrapolation testing, as reported in the main
text.

In the next appendix, we separately evaluate performance on data sets containing jump discontinuity (JD) and without (SD).
For the JD set, each SDF within a trajectory is restarted at a new initial population at changepoints, uniformly sampled
from ranges (1.5, 2.5), (0.5.1.5) for x, y respectively. In the SD set, SDFs are initialized from the same distribution, but
remain continuous at subsequent changepoints. To clarify, trajectories in the SD set do not contain jump discontinuities at
changepoints, and these locations only feature a switch in dynamical mode.

Next, we report the hyperparameters and training procedures in the Lotka Volterra experiments. We performed hyperparam-
eter search over the width and depth of the NNs parameterizing Neural ODEs in our architectures. We started with a one
layer 64 unit NN, and increased the number of layers and units until convergence was possible. Latent dimension selection
was difficult. We started with a latent dimension of 64, and slowly decreased capacity until under-fitting occurred.

GRU / GRU∆t We found that the GRU always performed worse than the GRU∆t, so we did not report its results. The GRU
∆t model used 16 dimensions in its hidden state, and 200 units in the GRU. A 2 layer 100 unit NN with ReLU activations
was used as an output network. The model was trained using Adamax, where learning rate was decayed from 1e-2 to 1e-3 to
1e-4 each time validation loss plateaued. We used a batch size of 512.

GRU-ODE The GRU-ODE model used a hidden state with dimension 50, and GRU with 100 units. A 2 layer 100 unit
output network with ReLU activations was used. The Neural ODE was parameterized with using a 3 layer 200 unit NN with
Tanh activations. The GRU-ODE was trained by Adamax using a constant 1e-3 learning rate. The Neural ODE solutions
were solved using dopri5 with relative and absolute tolerances of 1e-3 and 1e-4.



Latent ODE Latent ODE models were very hard to train, and many approaches were taken. First, we attempted to tune
hyperparameters, increasing both latent dimension size, and the number of parameters in NNs parameterizing Neural ODEs.
The rationale was that the added complexity in hybrid trajectories necessitated increased model complexity. We found that
model reconstruction accuracy in both data sets were poor even after many epochs. A more successful strategy was to adopt
an iterative growing scheme for training (Rackauckas et al., 2020). We also adopted a forward prediction training strategy.
We started training on a masked sub-trajectory with only the first 50 data points, and evaluate loss on prediction of the
next 50 data points. The training loss was computed using all observed points. After each epoch, we increased the number
of observed data points by 50. We also found that taking multiple samples of the latent initial state during training could
stabilize gradient estimates, and we used 3 samples per trajectory.

Latent ODEs used were trained using Adamax with a constant learning rate of 5e-3, decayed to 1e-3 after 10 epochs. A
batch size of 256 is used. Latent ODEs were trained using KL annealing such that a KL weight of 1 was reached after 10
epochs. A fixed variance of 0.01 was used in the ELBO.

The Latent ODE models had a hidden state of dimension 16, and a latent state of dimension 8. The encoder used 100 GRU
units, with its Neural ODE parameterized by a 3 layer 100 unit NN with Tanh activations. The identical hyper parameters
are used for the latent Neural ODE neural network. We used a linear decoder. Latent dynamics were solved using dopri5
with relative and absolute tolerance of 1e-4 and 1e-4.

LatSegODE The LatSegODE used a base model with a hidden state of dimension 16, and a latent state with dimension 8.
The encoder used GRUs with 100 units, and both the encoder Neural ODE and latent Neural ODE was parameterized by 3
layer 100 unit NNs with Tanh activations. A decoder network with 2 layer 100 units with ReLU activations was used.

We trained our model using Adamax, with an initial learning of 5e-3. Learning rate was decayed to 1e-3 after 10 epochs, and
reduced to 1e-4 after validation loss plateaued. A batch size of 256 was used. Latent dynamics were solved using dopri5,
with relative and absolute tolerances of 1e-4 and 1e-4. Training used KL annealing such that KL weight started from 0 and
reached 1 after 10 epochs. A fixed variance of 0.01 was used to compute the ELBO.

At segmentation time, we used a fixed variance of 0.01 to compute the marginal likelihood. We took 100 MC samples to
compute the marginal likelihood, and rounded times of observation to 2 decimal places.



H. Lotka-Volterra Expanded Experiments
We report the full results of Lotka-Volterra experiments on additional data sets, jump discontinuous (JD) and switching
dynamics (SD). The JD set is identical to the set reported in the main text. The SD does not contain jump discontinuity at
changepoints, and the trajectory only switches to a new dynamical mode. The SD set is included evaluate performance of
the LatSegODE without discontinuous jumps, which may be theoretically easier to solve since ODE solves do not need to
bridge a jump discontinuity. We find the opposite actually occurs, as the less distinct changepoints in the SD set yields a
harder data set, shown by the decreased performance of baselines. We report the metrics in Table 3 below.

Reconstruction Segmentation

Method
Total
MSE

Interp.
MSE

Extrap.
MSE

Rand
Index (↑) F1

Score (↑) Hausdorff
Metric (↓) Annot.

Error
LatSegODE 0.068 0.0312 0.2396 0.9464 0.8268 47.67 0.76
GRU ∆t 0.1718 0.0193 0.8329 - - - -
GRU-ODE 0.2747 0.1201 2.0358 - - - -
Latent ODE 0.6155 0.5072 0.9505 - - -
RPT-RBF - - - 0.7956 0.4167 84.7 -
RPT-AR - - - 0.6994 0.4367 164.65 -
RPT-GPNorm - - - 0.7693 0.42 105.92 -

(a) Jump discontinuous (JD) test set.

Reconstruction Segmentation

Method
Total
MSE

Interp.
MSE

Extrap.
MSE

Rand
Index (↑) F1

Score (↑) Hausdorff
Metric (↓) Annot.

Error
LatSegODE 0.2284 0.2176 1.010 0.8758 0.6857 75.66 2.42
GRU ∆t 0.4519 0.0383 2.427 - - - -
GRU-ODE 0.4386 0.2176 3.280 - - - -
Latent ODE 1.4027 1.1924 2.1314 - - - -
RPT-RBF - - - 0.7833 0.4233 77.77 -
RPT-AR - - - 0.7020 0.4433 138.24 -
RPT-GPNorm - - - 0.7672 0.4233 94.44 -

(b) Switching dynamical mode (SD) test set.

Table 3. Expanded results on Lotka Volterra hybrid trajectory benchmark. Values are averages over 150 test trajectories. Arrows beside
metric denote whether higher values (↑) or lower values (↓) indicate better performance.

I. Data Augmentation Strategies
We report two data augmentation techniques which can increase training speed and the ability for the Latent ODE to
generalize. These techniques are applied on data batches prior to each training iteration. First, we propose sub-sampling
trajectories by randomly removing a percentage of observed points. This method resembles techniques which iteratively
grows trajectory length throughout training to avoid local minima (Rackauckas et al., 2020), and we hypothesize sub-
sampling confers a similar benefit. We also introduce start-truncation, where the first N data observations are cropped. We
hypothesize this augmentation decreases generalization error by exposing the Latent ODE encoder to more initial states.

To demonstrate the efficacy of these augmentation methods, we generate 10000 SDFs from each of the previous experimental
domains, with 500 trajectories held for validation and 500 for test evaluation. Each trajectory contains 200 samples. For
sub-sampling, we randomly select between 40 to 200 data points to train per batch. For truncation, we randomly select
the number of data points to remove from range (0, 160). We train Latent ODE models with and without augmentation
techniques, and plot the validation loss curve for each training run in Figure 3.

The augmentation methods accelerate training, and achieve faster convergence. In Table 4, we report the generalization error
calculated using test trajectories, and the wall time for training to complete 350 / 400 epochs, which both decrease. We
report parameters used to run the data augmentation experiments.

The Sine Wave data set was generated using amplitudes and frequencies sampled from (−8, 8) and (2, 4) respectively.
Phase was randomly sampled. 20000 training trajectories of length 5 and with 200 samples were generated. 2000



(a) (b)

Figure 3. Validation loss curves using data augmentations. Plot (a) shows runs on Sine Wave data, while (b) shows runs on Lotka Volterra
data.

Sine Wave Lotka Volterra

Method Test MSE
Runtime
(hrs) Test MSE

Runtime
(hrs)

None 1.8032 13:10 3.9742 22:55
Subsampling 0.1750 9:06 0.1005 18:44
Truncation 0.14713 9:28 0.6525 18:21
Both 0.3405 6:18 0.7672 13:11

Table 4. Comparison of augmentation methods.

validation trajectories were generated, and 2000 test trajectories were generated. The Lotka-Volterra data set was generated
using coefficients sampled from range (0.5, 1.5), (0.5, 1.5), (1.5, 2.5), (0.5, 1.5) for α, β, δ, γ. The initial populations were
sampled from range (1.5, 2.5), (0.5, 1.5). 10000 training trajectories were generated, with 500 validation trajectories and
500 test trajectories. Training trajectories contained 200 samples, while validation and test trajectories contained 100
samples. Trajectories were all of length 15.

The Latent ODE in both Lotka Volterra and Sine Wave training runs were trained using Adamax with constant 1e-3 learning
rate. A batch size of 256 was used. A latent dimension of 8 was used, while the encoder hidden state was of dimension
200. GRUs contained 200 units. A decoder network with 2 layer and 50 units with ReLU activation was used. In the Lotka
Volterra data set, a 3 layer 200 units NN with Tanh activations parameterized both the encoder and latent Neural ODEs. In
the Sine wave data set, the neural network width was reduced to 100.

J. Character Trajectory Experimental Hyperparameters
The LatSegODE base model was trained using a latent dimension of 8, and an encoder hidden state dimension of 16.
Encoder GRUs contained 200 units. We parameterized the Neural ODEs in the encoder and latent dynamics using a 5 layer
200 unit NN with Tanh activations. The decoder network was a 3 layer 200 unit NN with ReLU activations. Hyperparameter
search was performed by modifying the number of units in hidden layers and number of layers in all Neural ODE NNs. We
started with 128 units per layer and 2 layers, and gradually increased the number of parameters until a good reconstruction
was found.

The base model was trained using Adamax at a learning rate of 1e-3, reduced to 1e-4 when validation loss plateaued. Data
augmentation was used, randomly sampling truncation bounds from (30, trajectory length) and the number of points to
sub-sample from (30, trajectory length). KL annealing was used, such that the training run started with KL weight of 0, and
reached a weight of 1 at epoch 50. We clipped gradients to a norm of 2. A fixed variance of 0.01 is used to compute the
ELBO. Latent dynamics were solved using the dopri5 solver, with relative and absolute tolerances of 1e-5 and 1e-5. The
encoder Neural ODE dynamics were solved using Euler’s method.

At segmentation time, the LatSegODE used a fixed variance of 0.01 to compute marginal likelihood using 200 MC samples.
A K term of 100 was used. Time of observation was rounded to 2 decimal places. We set the minimum possible segment



length to 20, similar to baselines.

K. Sine Wave Ablation Study
We report the effects of the number of training trajectories and number of samples per trajectory on LatSegODE performance.
A unique LatSegODE is trained for each combination of the two parameters. We measure segmentation performance using
the previously established metrics. The Sine Wave dataset is used with the same data generation and model hyper-parameters
as in the main body Sine Wave experiments. The test set contains 75 trajectories each with zero to two changepoints. Each
test trajectory contains 100 observed samples. The results are shown in Table 5. See Table 2 for baseline results.

# Trajectory Samples
50 100 200

# Train
Trajectory

Rand
Index F1 Score

Hausdorff
Metric

Rand
Index F1 Score

Hausdorff
Metric

Rand
Index F1 Score

Hausdorff
Metric

3000 0.700 0.577 56.0 0.71 0.666 50.21 0.853 0.512 29.28
10000 0.663 0.601 49.6 0.842 0.813 28.2 0.968 0.961 6.29
30000 0.866 0.809 25.28 0.911 0.900 15.23 0.981 0.979 4.92

Table 5. LatSegODE performance measured by segmentation metrics, as a function of training set size and number of samples in training
trajectories.
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