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Abstract 
Smooth dynamics interrupted by discontinuities 
are known as hybrid systems and arise commonly 
in nature. Latent ODEs allow for powerful rep-
resentation of irregularly sampled time series but 
are not designed to capture trajectories arising 
from hybrid systems. Here, we propose the Latent 
Segmented ODE (LatSegODE), which uses La-
tent ODEs to perform reconstruction and change-
point detection within hybrid trajectories featur-
ing jump discontinuities and switching dynamical 
modes. Where it is possible to train a Latent ODE 
on the smooth dynamical fows between discon-
tinuities, we apply the pruned exact linear time 
(PELT) algorithm to detect changepoints where 
latent dynamics restart, thereby maximizing the 
joint probability of a piece-wise continuous la-
tent dynamical representation. We propose us-
age of the marginal likelihood as a score func-
tion for PELT, circumventing the need for model-
complexity-based penalization. The LatSegODE 
outperforms baselines in reconstructive and seg-
mentation tasks including synthetic data sets of 
sine waves, Lotka Volterra dynamics, and UCI 
Character Trajectories. 

1. Introduction 
The complexity of modelling time-series data increases 
when accounting for discontinuous changes in dynamical 
behavior. As a motivational example, consider the Lotka-
Volterra equations, a simplifed model of predator-prey in-
teractions. The system is described by the pair of ordinary 
differential equations (ODEs): 

dx dy 
= αx − βxy = δxy − γy (1)

dt dt 

where x and y are the population size of predators and 
prey respectively. Coeffcients α, β, δ, γ describe interac-

tion characteristics, such as the rate of encounter, and rate of 
successful predation per encounter. When these parameters 
are fxed, modelling this system from observed population 
trajectories is straightforward. However, external factors 
can perturb the system. Additional predators can suddenly 
be introduced via migration midway in an observed popu-
lation trajectory, causing a jump discontinuity in the trajec-
tory. The coeffcients describing predator-prey interaction 
may also abruptly change, instantaneously changing the 
dynamical mode of the system. Systems featuring smooth 
dynamical fows (SDFs) interrupted by discontinuities are 
known as hybrid systems (Van Der Schaft & Schumacher, 
2000). These discontinuities can arise as discrete jumps or 
instantaneous switches in dynamical mode (Ackerson & Fu, 
1970), shown in Figure 1 at times (a) and (b) respectively. 
We propose a method to model the hybrid trajectories which 
arise from hybrid systems. 
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Figure 1. A Lotka-Volterra hybrid trajectory composed of three 
smooth dynamical fows. The plot shows populations of predators 
and prey over time. At time (a), a jump discontinuity occurs. At 
time (b), a distributional shift in dynamical coeffcients occurs. 

Recently, the Latent ODE architecture (Rubanova et al., 
2019) has been introduced to represent time series using 
latent dynamical trajectories. However, Latent ODEs are not 
designed to model discontinuous latent dynamics and, thus, 
represent hybrid trajectories poorly. Here, we propose the 
Latent Segmented ODE (LatSegODE), an extension of a La-
tent ODE explicitly designed for hybrid trajectories. Given 
a base model Latent ODE trained on the segments of SDFs 
between discontinuities, we apply the Pruned Exact Linear 
Time (PELT) search algorithm (Killick et al., 2012) to model 
hybrid trajectories as a sequence of samples from the base 
model, each with a different initial state. The LatSegODE 
detects the positions where the latent ODE dynamics are 
restarted with a new initial state, thus modelling hybrid tra-
jectories using a piece-wise continuous latent trajectory. We 
provide a novel way to use deep architectures in conjunction 
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with offine changepoint detection (CPD) methods. Using 
the marginal likelihood under the Latent ODE as a score 
function, we fnd the Bayesian Occam’s Razor (MacKay, 
1992) effect automatically prevents over-segmentation in 
CPD methods. 

We evaluate LatSegODE on data sets of 1D sine wave hy-
brid trajectories, Lotka-Volterra hybrid trajectories, and a 
synthetically composed UCI Character Trajectories data set. 
We demonstrate that the LatSegODE interpolates, extrapo-
lates, and fnds the changepoints in hybrid trajectories with 
high accuracy compared to current baseline methods. 

2. Background 
2.1. Latent ODEs 

The Latent ODE architecture (Rubanova et al., 2019) is an 
extension of the Neural ODE method (Chen et al., 2018), 
which provides memory-effcient gradient computation with-
out back-propagation through ODE solve operations. Neu-
ral ODEs represent trajectories as the solution to the initial 
value problem: 

dh(t) 
= fθ(h(t), t) (2)

dt 
h0:N = ODESolve(fθ, h0, t0:N ) (3) 

where fθ is parameterized by a neural network, and h(t) 
represents hidden dynamics. The continuous dynamical 
representation allows Neural ODEs to natively incorporate 
irregularly sampled time series. 

Latent ODEs arrange Neural ODEs in an encoder-decoder 
architecture. Observed trajectories are encoded using a 
GRU-ODE architecture (Brouwer et al., 2019; Rubanova 
et al., 2019). The GRU-ODE combines a Neural ODE with 
a gated recurrent unit (GRU) (Cho et al., 2014). Observed 
trajectories are encoded by the GRU into a hidden state, 
which is continuously evolved between observations by a 
Neural ODE parameterized by neural network fθ. The GRU-
ODE encodes the observed data sequence into parameters 
for a variational posterior. Using the reparameterization 
trick (Kingma & Welling, 2014), a differentiable sample 
of the latent initial state z0 is obtained. A Neural ODE pa-
rameterized by neural network fΨ deterministically solves a 
latent trajectory from the latent initial state. Finally, a neural 
network fΦ decodes the latent trajectory into data space. 
The Latent ODE architecture can thus be represented as: 

µz0, σ
2 
z0 = GRUODEfθ (x1:N , t1:N ) (4)

z0 ∼ q(z0|x1:N ) = N (µz0, σ
2
z 0) (5) 

z1:N = ODESolve(fΨ, z0, t1:N ) (6) 

xi ∼ N (fΦ(zi), σ
2) for i = 1, ..., N (7) 

where σ2 is a fxed variance term. The Latent ODE is trained 
by maximizing the evidence lower-bound (ELBO). Letting 

X = x1:N , the ELBO is: 

Ez0∼q(z0|X)[log p(X)] − KL [q(z0|X) || p(z0)] (8) 

2.2. Representational Limitations of the Neural ODE 

Latent ODEs use Neural ODEs to represent latent dynamics, 
and thus inherit their representational limitations. The accu-
racy of an ODE solver used by a Neural ODE depends on 
the smoothness of the solution; the local error of the solution 
can exceed ODE solver tolerances when a jump discontinu-
ity occurs (Calvo et al., 2008). At a jump, adaptive ODE 
solvers will continuously reduce step size in response to 
increased error, possibly until numerical underfow occurs. 
Even if integration is possible across the jump, it is slow, 
and the global error of the solution can be adversely affected 
(Calvo et al., 2003). Typically, these issues can be easily 
avoided by restarting ODE solutions at the discontinuity but 
this requires these positions to be known. Classical meth-
ods use the increase in local error or adaptive rejections 
associated with jump discontinuity as criteria to restart so-
lutions (Calvo et al., 2008). Recently, Neural Event ODEs 
(Chen et al., 2020) uses a similar paradigm of discontinuity 
detection, using an event function parameterized by a neu-
ral network to detect locations to restart the ODE solution. 
With all event detection approaches, failure to accurately 
detect jump discontinuity will cause the local error bound 
decrease to a lower order (Stewart, 2011). Hybrid trajecto-
ries with discontinuous change in the dynamical coeffcients 
present different but still hard modeling challenges due to 
the representational limitations of Neural ODEs. 

Latent ODEs do not circumvent these limitations, and can-
not generalize in hybrid trajectories. When a hybrid trajec-
tory is encountered, the Latent ODE can only encode the 
exact sequence of SDFs into a single latent representation. 
Should a permutation of these SDFs arise at test time, the 
Latent ODE will not be able to reconstruct the test trajectory. 

3. Method 
The LatSegODE detects positions of jump discontinuity or 
switching dynamical mode by representing a hybrid trajec-
tory as a piece-wise combination of samples from a learned 
base model Latent ODE. At each changepoint, the latent 
dynamics of the base model are restarted from a new initial 
state. We apply the PELT algorithm to effciently search 
through all possible positions to restart ODE dynamics, 
and return changepoints that correspond to the positions 
of restart which maximize the joint probability of a hybrid 
trajectory. This avoids the need to train an event detector, 
and guarantees optimal segmentation, but the LatSegODE 
requires the availability of a training data set of SDFs on 
which the base model can be trained. 
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Figure 2. Schematic of the LatSegODE reconstructing a hybrid trajectory. Arrows indicate computation fow. Data in each segment is 
encoded into parameters for the variational posterior, from which a latent initial state is sampled. Each latent segment is solved using 
shared latent dynamic fΦ, which continues until the next point of change. The latent trajectory is decoded into data space. At evaluation 
time, an arbitrary number of changepoints can be detected by the PELT algorithm. Plot adapted from (Rubanova et al., 2019). 

3.1. Extension to Hybrid Trajectories 

We frst defne the class of hybrid trajectories which can 
be represented by the LatSegODE. Consider a sequential 
series of data X = x1, x2, ..., xN and associated times of 
observation T = t1, t2, ..., tN . We represent a hybrid trajec-
tory as a piece-wise sequence of C continuous dynamical 
segments. Each observed data point can only belong to a 
single segment. Each segment is bounded by starting index 
si and ending index ei, where 0 ≤ i ≤ C, s0 = 1, and 
eC = N . Segments are sequential and do not intersect, 
i.e., si+1 = ei + 1. The boundaries of segments repre-
sent locations of jump discontinuity or switch in dynamical 
mode. The trajectory within each segment is represented by 
a sample from the base model Latent ODE. 

The LatSegODE can be applied to hybrid trajectories con-
taining an unknown number and order of SDFs. The Lat-
SegODE aims to approximate each SDF using a segment. 
Using offine CPD, the LatSegODE detects positions of 
jump discontinuity or switching dynamical mode, and in-
troduces a latent discontinuity at the timepoint indexed by 
si. At these timepoints, indexed by si, the latent dynamics 
are restarted from a new latent initial condition z0i, which 
is obtained from the Latent ODE encoder network acting 
on segment data points xsi:ei . The latent dynamics are 
solved using the same latent Neural ODE parameterized by 
fΦ. We provide a schematic visualizing LatSegODE hybrid 
trajectory reconstruction in Figure 2. The example hybrid 
trajectory is represented by a sequence of base model Latent 
ODE reconstructions, each starting from a new initial latent 
state which can discontinuously jump from the previous 
dynamic. An arbitrary number of restarts can be detected at 
test time. 

To fnish the problem formulation, we defne I as the un-
known ground truth set of segment boundaries and latent 
initial states, such that each hybrid trajectory is associated 
with set: 

I = (si, ei, z0i) 0 ≤ i ≤ C (9) 

Where Z = z0:C , the joint log probability of an observed 

hybrid trajectory can be represented as: 
CX 

log p(X, Z|s1:C , e1:C ) = log p(xsi:ei , z0i) (10) 
i=0 

This formulation assumes independence between observa-
tions in separate segments, such that xsi:ei ⊥ (X \ xsi:ei ). 
While this assumption can be limiting in trajectories with 
long term dependencies, it also allows for increased re-
construction performance in the absence of inter-segment 
dependency. In these situations, given a trajectory with two 
dynamical modes, allowing latent dynamics to completely 
restart at the time of modal change allows for a better rep-
resentation. In comparison, methods which cannot account 
for shifts in latent dynamics will be forced to adopt an aver-
aged representation between the two dynamical modes. This 
intuition is later demonstrated in the experimental section. 

We note that the LatSegODE does not represent the loca-
tion of changepoints using a random process. Since event 
detection is non-probabilistic, the method is not suitable for 
hybrid trajectories which self-excite or otherwise change 
dynamical mode past the observed trajectory. 

3.2. Optimal Segmentation 

Given this formulation of hybrid trajectories, the key chal-
lenge is fnding the unknown set I which maximizes the 
joint probability of an observed hybrid trajectory. We pro-
pose application of optimized search algorithms from the 
feld of offine changepoint detection (CPD) to recover lo-
cations of jump discontinuity and switches in dynamical 
mode, and consequently I. Through complexity penaliza-
tion, these search algorithms can automatically determine 
the optimal number and location of segments without prior 
specifcation. 

Offine CPD methods attempt to discover changepoints 
which defne segment boundaries. A combination of seg-
ments which reconstruct a trajectory is referred to as a 
segmentation. We allow each observed timepoint to be 
a potential changepoint. Thus, the space of all possible 
segmentations is formed by all combinations of an arbitrary 
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number of changepoints. At either extremes, placing no 
changepoints or a changepoint at each time of observation 
are both valid segmentations. The space of all possible seg-
mentations grows exponentially (2N ) with the number of 
observations (N). 

The optimal partitioning method (Jackson et al., 2005) uses 
dynamical programming to search through this large space 
of solutions. Where C is a cost function, m is the number 
of changepoints, and τ is a set of changepoints such that 
τ0 = 0, τm+1 = n, it minimizes 

m+1X 
C(xτi−1+1:τi ) + β (11) 

i=1 

with respect to τ using dynamic programming. Of all possi-
ble segmentations up to data index t, we let F (t) represent 
the one which results in the minimal cost. This result is 
memoized. For a new data index s > t, we can extend the 
optimal solution via recursion 

F (s) = min F (t) + C(x(t+1):s) + β (12) 
t 

Thus, we begin by solving for F (1), and incrementally ex-
tend the solution until F (N), at which point the optimal 
segmentation is returned. The memoization of previous op-
timal sub-solutions allows a quadratic runtime with respect 
to number of observations. The full algorithm is provided 
in Appendix A. The β term penalizes over-segmentation, 
and typically scales with the number of parameters intro-
duced by each additional changepoint. When a maximum 
likelihood cost function is used without a β penalty, opti-
mal partitioning degenerates by placing a changepoint at 
each possible index. The presence of β enforces a trade-off 
between accuracy and model complexity. With an appro-
priate β, this formulation also conveniently recovers the 
segmentation with the minimized Bayesian Information Cri-
terion (BIC) (Schwarz et al., 1978) through minimization of 
equation (11). 

Choice of β is a key challenge in using CPD methods with 
deep architectures. It is not always clear how many effec-
tive parameters are introduced by each additional segment, 
though this number is upper bounded by the dimensional-
ity of the latent initial state. Additionally, the theoretical 
assumptions required by the BIC are violated by neural 
network architectures (Watanabe, 2013). The LatSegODE 
circumvents these challenges by using the marginal likeli-
hood under the Latent ODE as the score function for each 
segment. 

We compute a Monte Carlo estimate of the marginal likeli-
hood by importance sampling using a variational approxi-

mation to the posterior over the initial state: Z 
log p(xs:e) = log p(xs:e|z0) p(z0) dz0 (13) � � 

p(z0) 
= Ez0∼q(z0|xs:e ) p(xs:e|z0) (14) 

q(z0|xs:e) 
M 

1 X N (z0j |0, 1) 
= N (x 2

 s:e|xs:e, σ ) (15)
M N (z0j |µz0, σ2 

z0)j=1 

where xs:e is the output of the Latent ODE base model, 
µz0, σ

2 
z0 is obtained by the GRU-ODE encoder, and z0j

is sampled as N (µz0, σ
2
z 0). The variance σ2 is fxed, and 

set to the same value used to compute the ELBO during 
training. We take M samples for the Monte Carlo estimate. 

Because we use the marginal likelihood, the complexity of 
the recovered segmentation is implicitly regularized by the 
Bayesian Occam’s Razor (MacKay, 1992). Refecting this, 
in our experiments, we show that the penalization term β 
can be set to 0 without over-segmentation. Thus, we can 
simply set C in equation (11) to be the marginal likelihood 
computed by equation (15), and solve for the set of change-
points τ which maximize the joint probability of the entire 
trajectory using optimal partitioning (the original objective 
is a minimization, but this can trivially be switched to maxi-
mization). 

The quadratic runtime of optimal partitioning can be re-
duced to between O(N) and O(N2) through the pruned 
exact linear time (PELT) (Killick et al., 2012) algorithm. 
Using an identical search algorithm, PELT introduces a 
pruning condition which allows removal of sub-solutions 
from consideration. Given the existence of K such that for 
all changepoint indexes s, t, T such that t < s < T : 

C(x(t+1):s) + C(x(s+1):T ) + K ≤ C(x(t+1):T ) (16) 

Then if 
F (t) + C(x(t+1):s) + K ≥ F (s) (17) 

we are able to discard the changepoint t from future consid-
eration, asymptotically reducing the number of operations 
required. Due to noise in the estimates of the score function, 
fnding an analytic method to determine K is an area for fur-
ther research. If K is set too low, sub-optimal solutions are 
recovered. In practice, this issue is not limiting, as setting K 
to a suffciently high value allows for near-optimal solutions 
at the cost of higher runtime. This trade-off is documented 
in Appendix B. 

The computation of F (t), the optimal segmentation up to 
length t, and Monte Carlo estimate of the marginal likeli-
hood can all be batch parallelized using GPU computation. 
An implementation is available at: https://github. 
com/IanShi1996/LatentSegmentedODE. 

https://github.com/IanShi1996/LatentSegmentedODE
https://github.com/IanShi1996/LatentSegmentedODE
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3.3. When can I use this method? 

The LatSegODE requires a Latent ODE base model trained 
on a family of SDFs. We propose two scenarios where SDFs 
may be available. First, the LatSegODE is applicable when 
a training set of hybrid trajectories with labelled change-
points exists. In this case, given a training set of N hybrid 
trajectories X = (x(i), t(i))N 

i=1 each with C labelled SDF 
boundaries (i) 

(sk, e
C

k)
 

k=0 , we treat each xsj :ej as an indepen-
dent training trajectory, and train on the union of all SDFs. 
The LatSegODE can also be applied when physical simula-
tion is available. In these scenarios, the base model can be 
trained on trajectories which are simulated in the range of 
dynamical modes which we expect in hybrid trajectories at 
test time. These two use cases are illustrated in the frst two 
experiments. 

4. Related work 
Switching Dynamical Systems: Hybrid trajectories have 
previously been modelled as Switching Linear Dynamical 
Systems (SLDS). We provide a non-exhaustive summary of 
these methods. Typically, trajectories are represented by a 
Bayesian network containing a sequence of latent variables, 
from which observations are emitted. Latent variables are 
updated linearly, while a higher order of latent variable 
represents the current dynamical mode. Structured VAEs 
(Johnson et al., 2016) introduce a discrete latent variable 
to control dynamical mode, and use a VAE observation 
model. GPHSMMs (Nakamura et al., 2017) uses a Gaussian 
Process observation model within a hidden semi-Markov 
model. Kalman VAEs integrate a Kalman Filter with a VAE 
observation model (Fraccaro et al., 2017). Models in this 
class are generally trained via an inference procedure (Dong 
et al., 2020), while several are fully differentiable (Kipf 
et al., 2019). These methods are unsupervised, requiring no 
training data with labelled changepoint locations. 

In contrast, the LatSegODE requires a base model to be 
trained on SDFs. It does not model dependency between 
segments unlike methods such as rSLDS (Linderman et al., 
2017). At evaluation time, the LatSegODE operates with-
out specifcation of the number of segments or dynamical 
modes. This is an advantage compared to previously dis-
cussed works, where performance is sensitive to these hy-
perparameters (Dong et al., 2020). 

The Neural Event ODE (Chen et al., 2020) is closely re-
lated to the LatSegODE. It represents observed dynamics 
using a Neural ODE and trains a neural network to detect 
the positions and update values of a switching dynamical 
system. The Neural Event ODE can be trained in an unsu-
pervised fashion, without prior knowledge of change point 
locations in training data. When extrapolating past observed 
data, it is able to introduce additional change points, which 

the LatSegODE cannot model. However, the Neural Event 
ODE inherits the same limitations as the Neural ODE: it 
cannot model a data set which cannot be described by a 
single ODE function in data space. So, for example, two dif-
ferent dynamics cannot start from the same observed point. 
This issue is elaborated in Appendix C. The LatSegODE 
circumvents these limitation by modelling the data using an 
ODE in latent space. 

Offine Changepoint Detection: The LatSegODE closely 
relates to offine CPD, and we refer to Truong et al. (2020) 
for an in-depth review. The LatSegODE leverages search 
algorithms from offine CPD, but represents the behavior 
within segments using a complex generative model, as op-
posed to a simple statistical cost function. The use of the 
Latent ODE allows for higher representational power and 
extrapolation/interpolation within segments. However, train-
ing data is required to ft the base model and, as such, its 
total runtime is signifcantly higher. Other methods have 
incorporated deep architectures with CPD search methods 
(Lee et al., 2018), but use a sliding window search with 
predefned window size, and use a feature distance metric to 
determine boundaries as opposed to the marginal likelihood 
used by LatSegODE. 

Miscellaneous: A distantly related class of methods classify 
individual observations into class labels, which can be seen 
as segmentation (Supratak et al., 2017). These approaches 
are distinct as they do not explicitly model dynamics, and 
require a fxed segment size and trajectory length, a limita-
tion which the LatSegODE does not have. The LatSegODE 
does not treat positions of jump discontinuity or switching 
dynamical mode as a random variable, unlike methods that 
model these jumps as a random process (Mei & Eisner, 
2017; Jia & Benson, 2019). 

5. Experiments 
Here we investigate the LatSegODE’s ability to simultane-
ously perform accurate reconstruction and segmentation on 
synthetic and semi-synthetic data sets. 

When training the base model, we mask observations from 
the last 20% of the timepoints and 25% of internal time-
points, this 25% is shared across all training and test ex-
amples. When evaluating the model on the test set, we 
use the 55% of unmasked timepoints to infer the initial 
states and perform segmentation, and then attempt to recon-
struct the observations at the masked timepoints. We report 
the mean squared error (MSE) between ground truth and 
predicted observations on test trajectories. We benchmark 
against auto-regressive and vanilla Latent ODE baselines 
for reconstructive tasks. We augment the input data for 
the vanilla Latent ODE with a binary-valued time series 
denoting changepoint positions. This ensures it has access 
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to the same information as the LatSegODE. We report per-
formance on an extrapolation region which assumes the 
last observed dynamical mode continues. We attempted to 
benchmark against Neural ODEs and Neural Event ODEs, 
but found that their training did not converge on any of our 
benchmarks (see Appendix C). 

We benchmark the segmentation performance of the Lat-
SegODE against classic CPD algorithms using Gaussian 
kernelized mean change (Arlot et al., 2019), auto regres-
sive (Bai et al., 2000), and Gaussian Process (Lavielle & 
Teyssiere, 2006) cost functions. These are denoted RPT-
RBF, RPT-AR, and RPT-NORM respectively. 

Segmentation performance is measured using the Rand In-
dex (Rand, 1971), the Hausdorff metric (Rockafellar & Wets, 
2009), and the F1 score. The Rand Index measures the over-
lap between the predicted segmentation and the ground truth 
segmentation. Given data points x1:N , a membership matrix 
A is defned such that Aij = 1 if xi and xj are in the same 
segment. Otherwise, Aij = 0. Membership matrices are 
generated for the ground truth segmentation (A) and the 
predicted segmentation (Ã). Using these two matrices, the 
Rand Index is calculated as: P 

1[A == Ã]i<j (18)
N(N − 1)/2 

The Hausdorff metric is a measure of the maximal error 
between the predicted segmentation and the ground truth 
segmentation. Given a set of ground truth changepoints 
T and predicted changepoints P , the Hausdorff metric is 
computed as: � � 

max max min |τ − ρ|, max min |τ − ρ| (19)
τ ∈T ρ∈P ρ∈P τ ∈T 

We use the ruptures library (Truong et al., 2020) imple-
mentation of these baseline methods and metrics. 

We found that the segmentation baselines performed ex-
tremely poorly when using penalized detection of change-
points. In response, we simplifed the problem for them 
by providing the correct number of changepoints, so that 
they only needed to choose the correct locations. In con-
trast, we did not provide LatSegODE with the number of 
changepoints, thus the evaluation was biased in favor of 
the baselines. Also, we excluded trajectories with zero 
changepoints from this benchmark because they are trivially 
correct. Irregular locations of data observation is handled 
by applying linear interpolation prior to segmentation. An 
extended description of baselines, metrics, and experimental 
set up is provided in Appendix D. 

5.1. Sine Wave Hybrid Trajectories 

We evaluate the LatSegODE on a benchmark data set of 1D 
sine wave hybrid trajectories. Here, we assume access to 

trajectories with labelled changepoint positions, one of the 
situations where the LatSegODE can be realistically applied. 
We generate 7500 hybrid trajectories each containing up to 
two changepoints. Between each changepoint, segment tra-
jectories are sine waves generated under random parameters. 
We hold out 300 validation trajectories, 150 test trajectories, 
and train the LatSegODE base model on the SDFs contained 
in the remaining trajectories. Data parameters, model ar-
chitecture and hyper-parameters are reported in Appendix 
E. In Figure 3, we provide a visual comparison of the Lat-
SegODE against baselines on an example test set trajectory. 
The LatSegODE outperforms baselines in both reconstruc-
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Figure 3. Comparison against baselines in a sample 1D Sine Wave 
hybrid trajectory. Top: Reconstructed trajectories are shown. Data 
in the extrapolation region is held out from all models during 
training. Bottom: Segmentation results are shown. Each distinctly 
colored region represents a segment. 

tion and segmentation tasks. The presence of discontinu-
ities prevent vanilla Latent ODEs from learning accurate 
representations. Although Latent ODEs can represent the 
initial SDFs, they lack the ability to represent switches to 
the dynamical mode. As time progresses, the Latent ODE 
reconstruction collapses near zero, a local minima which 
minimizes error given its reconstructive limitations. In con-
trast, because the LatSegODE can restart latent dynamics, 
it can represent trajectories with jump discontinuities. The 
LatSegODE provides an accurate reconstruction, and we 
see the periodic solution is cleanly captured in the extrapo-
lation region. The GRU-ODE method can ft observed data 
well, but yields poor interpolations and extrapolations. The 
LatSegODE recovers the segmentation closest to the ground 
truth segmentation. The trends observed in this example 
trajectory are refected in the overall test results, where 
the LatSegODE outperforms all baselines. These results 
are reported in Appendix F. We found that inclusion of the 
binary-valued changepoint location time series did not result 
in signifcant improvement, and we omit this feature from 
further experiments. We report the effects of the training set 
size and the number of samples per training trajectory on 
LatSegODE performance in Appendix K. 
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Figure 4. Comparison of reconstructions of Lotka Volterra hybrid trajectories. Top row contains baseline reconstruction by Latent ODE. 
Bottom row shows reconstruction by LatSegODE. Sample hybrid trajectories contain the same number of ground truth changepoints in 
each column. Ground truth segments are shown as a contiguous background color block. Yellow background indicates extrapolation 
region which assumes that the last observed dynamical mode continues. Visualization inspired by ruptures package (Truong et al., 2020). 

5.2. Lotka-Volterra Hybrid Trajectories 

Next, we evaluate the LatSegODE on hybrid trajectories 
whose SDFs are the Lotka-Volterra dynamics described in 
equation (1). We simulate 34000/600/150 hybrid trajectories 
for the training/validation/test set. Lotka-Volterra dynamics 
are generated by randomly sampling coeffcients (α, β, δ, γ) 
from ranges [(0.5, 1.5), (0.5, 1.5), (1.5, 2.5), (0.5, 1.5)] re-
spectively. Each trajectory contains up to two changepoints, 
and at each changepoint we restart dynamics from new 
initial values sampled from [(0.5, 1.5), (1.5, 2.5)]. We re-
sample the coeffcient vector at changepoints, so the trajecto-
ries feature both jump discontinuity and switch of dynamical 
mode. We train the LatSegODE base model on the SDFs in 
the generated training trajectories. The vanilla Latent ODE 
baseline is trained on full hybrid trajectories, while other 
baselines were separately trained on both full trajectories 
and SDFs, with the best performing result reported. The 
data generation procedure, and model architectures/training 
is documented in Appendix G. 

Results are reported in Table 1, where metrics are averages 
over 150 test trajectories. The LatSegODE outperforms 
baselines in both segmentation and reconstruction. An ex-
panded evaluation with additional metrics and experiments 
is provided in Appendix H. 

In Figure 4, we show sample trajectory reconstructions from 
the LatSegODE versus the vanilla Latent ODE baseline. All 
vanilla Latent ODE reconstructions over-ft to the change-
point locations observed in training data. It is diffcult for 
vanilla Latent ODEs to generalize on permutations of the 
piece-wise hybrid training trajectories, because they need 
to encode all sequence information into a single latent ini-
tial state. When a permutation in the sequence of SDFs is 
encountered, the non-robust latent representation predicts ar-

Table 1. Results on Lotka Volterra hybrid trajectories. Metrics 
generated using 150 test trajectories. Best result is bolded. 

METHOD TEST 
MSE 

RAND 
INDEX 

HAUSDORFF 
METRIC 

LATSEGODE 0.068 0.9464 47.67 

GRUΔt 
GRU-ODE 
LATENT ODE 

0.1718 
0.2747 
0.6155 

-
-
-

-
-
-

RPT-RBF 
RPT-AR 
RPT-NORM 

-
-
-

0.7956 
0.6994 
0.7693 

84.7 
164.65 
105.92 

bitrary dynamical shifts. The vanilla Latent ODE performs 
badly even in the zero change point reconstruction in Figure 
4 where one might expect it to do well, likely because it is 
anticipating potential change points. In contrast, the struc-
tured nature of the LatSegODE bypasses this need to learn 
a complex latent representation. Segmenting trajectories 
into SDFs allows for a complex hybrid trajectories to be 
represented by a sequence of simpler dynamics, yielding 
the accurate reconstructions shown. 

While the base model Latent ODE can powerfully represent 
SDFs, the LatSegODE method also inherits limitations of 
the architecture. We visualize two common failure modes in 
Figure 6. We observed that learning limit cycles was chal-
lenging for the base model Latent ODE. In the top trajectory, 
imprecise base model representations cause deviation from 
the true periodic solution as time progresses. Eventually, 
enough error accumulates such that the accuracy gain from 
introducing a new segment overcomes the complexity cost 
of this action, resulting in over-segmentation. In the bot-
tom trajectory, a failure mode is caused by the inability for 
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Figure 6. Example failure modes encountered in Lotka Volterra 
modelling. See Figure 4 for legend. 

the base model to generalize. Over-segmentation occurs if 
test trajectories contain SDFs which start outside of initial 
values founds in training data, such as at the second true 
changepoint. The base model cannot generalize well to 
unseen dynamical modes or initial values, so changepoints 
are erroneously introduced to improve ft. In Appendix I, 
we report data augmentation tricks which slightly improve 
generalization, remedying these issues. 

This experiment also shows how the LatSegODE can be 
used in conjunction with physical simulators in a paradigm 
similar to simulator based inference (Cranmer et al., 2020). 
We train a MLP to map latent initial states from a trained 
base model to the labelled Lotka-Volterra coeffcients of 
training SDFs. On test trajectories where the correct num-
ber of changepoints were predicted, we could recover the 
dynamical coeffcients with a MSE of 0.08 ± 0.01. In con-
texts such as Wright-Fisher population dynamics (Fisher, 
1923; Wright, 1931), where forward simulation is available 
but cannot be expressed in closed form, the LatSegODE 
could be applied to solve inverse parameter estimation prob-
lems. 

5.3. UCI Character Trajectories 

Finally, we apply the LatSegODE to the UCI Character Tra-
jectory data set (Dua & Graff, 2017). This data set contains 

2858 pen tip trajectories collected while writing letters of 
the alphabet. The trajectories are three dimensional, corre-
sponding to x / y coordinates and pen pressure while writing 
one character. The data set is pre-processed by normal-
ization and smoothing. Trajectories are regularly sampled 
with a maximum of 205 observations. We sanitized the 
data set by removing sections at the beginning and end of 
trajectories where no movement occurs. We use 5% of the 
data for validation, and hold out 5% for testing. The Lat-
SegODE base model is trained on the remaining data, using 
each character trajectory as a SDF. Model architecture and 
hyper-parameters are reported in Appendix J. 

We synthetically construct hybrid test trajectories by com-
posing character trajectories. We randomly sampled a base 
character trajectory from the test set, then append up to 
two further randomly sampled character trajectories. To 
increase task diffculty, we add independent Gaussian noise 
with standard deviation of 0.2. We also sub-sample the 
test trajectories to reduce number of observations the La-
tent ODE base model is able to condition upon. Using this 
method, we generate 75 synthetic test hybrid trajectories, 
each containing zero to two changepoints. We report Lat-
SegODE’s segmentation performance on this synthetic test 
set in Table 2. 

Table 2. Segmentation results on UCI Character Trajectories. 

METHOD RAND 
INDEX 

HAUSDORFF 
METRIC 

F1 
SCORE 

LATSEGODE 0.9732 4.493 0.977 

RPT-RBF 
RPT-AR 
RPT-NORM 

0.7956 
0.6994 
0.7693 

84.7 
164.65 
105.92 

0.656 
0.738 
0.611 

In Figure 5, we provide an example reconstruction of a 
hybrid trajectory constructed by composing six character 
trajectories sampled from the test set. In both this fgure and 
Table 2, the LatSegODE performs well in reconstructing 
long sequences of realistic data with noise, and accurately 
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detects position of change in dynamical mode. 

6. Scope and Limitations 
Data Labelling: The LatSegODE requires SDF training 
data, typically obtained by splitting hybrid trajectories using 
labelled changepoints. This can be hard to obtain, so ideally, 
LatSegODE could be extended so it could be trained directly 
on hybrid trajectories. One approach would be marginal-
izing over changepoints during training using an inference 
procedure or a iterated-conditional-modes-like procedure 
that iterates between estimating an optimal segmentation 
given the current base model, and updating the base model 
given the segmentation. 

Dependency on Dynamical Models: The LatSegODE re-
lies on a Latent ODE base model to capture SDF behavior. 
Thus, it inherits many limitations of Latent ODEs, but any 
future advancements in the architecture and training of La-
tent ODEs can be directly integrated. While we chose to 
use Latent ODEs due its powerful representational ability, 
it could be replaced with any model for which marginal 
likelihood can be computed. Bayesian approaches to Neural 
ODEs such as the ODE2VAE (Yildiz et al., 2019) and Neural 
ODE Process (Norcliffe et al., 2021), as well as the Latent 
SDE (Li et al., 2020) method, could replace the Latent ODE 
base model with modifcations. Thus, our framework can be 
used a paradigm for an expanded family of methods which 
combine PELT and dynamical models. 

Runtime: The runtime of the LatSegODE can be improved. 
The current implementation naively computes the ODE so-
lution for the union of batch timepoints. Chen et al. (2020) 
provide a change of variables method to solve ODEs with 
irregular timepoints in parallel. This can reduce the memory 
bottleneck of the current approach, allowing additional par-
allelism to decrease evaluation runtime. The LatSegODE 
can integrated with recent methods to regularize ODE dy-
namics (Kelly et al., 2020), (Finlay et al., 2020), which 
decrease evaluation runtime. 

7. Conclusion 
Here, we present the LatSegODE which leverages Latent 
ODEs to represent hybrid trajectories. Using a Latent ODE 
base model trained on SDFs and the PELT changepoint 
detection algorithm, we identify positions of jump discon-
tinuity and switching dynamical mode, and restart latent 
dynamics from new initial states at these points. We pro-
vide a novel integration of Latent ODEs and CPD methods 
that uses the marginal likelihood of segments as a scoring 
function. We fnd that this Bayesian Occam’s Razor ef-
fect prevents over-segmentation. We compared LatSegODE 
to baselines on synthetic and semi-synthetic benchmarks. 
Through qualitative analysis of example reconstructions, 

we highlight LatSegODE’s ability to represent hybrid tra-
jectories, and demonstrate common failure modes. The 
LatSegODE outperforms all baselines in both reconstruc-
tion and segmentation, supporting it as a novel approach to 
modelling hybrid trajectories governed by hybrid systems. 

Acknowledgements 
We thank Tianxing Li and David Duvenaud for their helpful 
feedback and preliminary reviewing. We also thank Haoran 
Zhang, Yulia Rubanova, and other members of the Morris 
Lab for many helpful suggestions. Finally, we thank the 
ICML reviewers of this paper for their insightful feedback. 
Resources used in preparing this research were provided, 
in part, by the Memorial Sloan Kettering Cancer Center, 
Province of Ontario, the Government of Canada through 
CIFAR, and companies sponsoring the Vector Institute www. 
vectorinstitute.ai/partners. 

References 
Ackerson, G. and Fu, K. On state estimation in switching 

environments. IEEE transactions on automatic control, 
15(1):10–17, 1970. 

Arlot, S., Celisse, A., and Harchaoui, Z. A kernel multiple 
change-point algorithm via model selection. Journal of 
Machine Learning Research, 20(162):1–56, 2019. 

Bai, J. et al. Vector autoregressive models with struc-
tural changes in regression coeffcients and in variance-
covariance matrices. Technical report, China Economics 
and Management Academy, Central University of Fi-
nance and Economics, 2000. 

Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. Sched-
uled sampling for sequence prediction with recurrent 
neural networks. In Advances in Neural Information 
Processing Systems 28: Annual Conference on Neural 
Information Processing Systems 2015, December 7-12, 
2015, Montreal, Quebec, Canada, pp. 1171–1179, 2015. 

Brouwer, E. D., Simm, J., Arany, A., and Moreau, Y. 
GRU-ODE-Bayes: Continuous modeling of sporadically-
observed time series. In Advances in Neural Information 
Processing Systems 32: Annual Conference on Neural 
Information Processing Systems 2019, NeurIPS 2019, 
December 8-14, 2019, Vancouver, BC, Canada, pp. 7377– 
7388, 2019. 

Calvo, M., Montijano, J., and Randez, ´ L. On the solu-
tion of discontinuous IVPs by adaptive Runge–Kutta 
codes. Numerical Algorithms, 33, 2003. doi: 10.1023/A: 
1025507920426. 

Calvo, M., Montijano, J., and Randez, ´ L. The numerical 

www.vectorinstitute.ai/partners
www.vectorinstitute.ai/partners


Segmenting Hybrid Trajectories using Latent ODEs 

solution of discontinuous IVPs by Runge-Kutta codes: A 
review. SeMA Journal, 44, 2008. 

Chen, R. T., Amos, B., and Nickel, M. Learning neural 
event functions for ordinary differential equations. arXiv 
preprint arXiv:2011.03902, 2020. 

Chen, T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, 
D. Neural ordinary differential equations. In Advances 
in Neural Information Processing Systems 31: Annual 
Conference on Neural Information Processing Systems 
2018, NeurIPS 2018, December 3-8, 2018, Montréal, 
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