
Supplementary File for
Large-Scale Meta-Learning with Continual Trajectory Shifting

JaeWoong Shin * 1 Hae Beom Lee * 1 Boqing Gong 2 1 Sung Ju Hwang 1 3

This supplementary file consists of the following contents:

• Section A: We show that the type of inner-optimizer (e.g. SGD with momentum or Adam) can largely affect the quality
of the initialization parameters at convergence.

• Section B: We visualize the effect of trajectory shifting with the synthetic experiments.

• Section C: We provide detailed description of the experimental setup for each experiment in the main paper, including
the synthetic experiment, the image classification, the ImageNet experiment, and the empirical error analysis.

• Section D: We derive Eq. (5) in the main paper, which is the complexity of the approximation error caused by the
proposed continual trajectory shifting.

• Section E: We prove that we can use the same shifting rule even with the momentum optimizer and weight decaying.

A. Effect of Inner-optimizer Type
We briefly discuss if we can add in weight decay or change the type of optimizers in defining Uk(φ), without changing the
results of Eq. (5) in the main paper. We also discuss which optimizer works relatively better over the others. The type of
inner-optimizer is highly relevant to the quality of φ at convergence. Specifically, inner-optimizers with faster convergence
result in faster meta-convergence as well, showing the strong dependency between the inner- and meta- optimization. Also,
inner-optimizers that exhibit oscillating behavior helps the meta learner to escape from bad local minima. Momentum
optimizer (Sutskever et al., 2013) is the one with all those properties.

Momentum and weight decay Given the momentum µ ∈ [0, 1] and weight decay λ ≥ 0, we can show that we can apply
the same shifting rule θk ← θk + ∆k introduced in the main paper. This will only result in higher approximation error
compared to the vanilla SGD case. See Section E for the derivation of the following results:

Uk

(
φ+

k−1∑
i=1

∆i

)
= U1(· · ·U1(U1(φ) + ∆1) · · ·+ ∆k−1) +O

(
βα(h+ 2λ)k2 + β2k

)
(1)

for k ≥ 2.

Adam Unfortunately, the analogous derivation for Adam optimizer (Kingma & Ba, 2014) requires to differentiate very
complicated expression involving element-wise square root division. Therefore, although we may use the same shifting
rule θk ← θk + ∆k together with the Adam optimizer, we cannot expect that the approximation error will be bounded in
any reasonable way. However, we do not have to consider Adam as an inner-optimizer in context of meta-training because
oscillating property of momentum optimizer is preferable over stable learning trajectory provided by Adam optimizer. In our
synthetic experiment, we tried applying Adam, but obtained much worse initial model parameters than using momentum.
See Figure 1 for the actual meta-learning trajectories obtained with the various optimizers.

*Equal contribution 1Graduate School of AI, KAIST, South Korea 2Google, LA 3AITRICS, South Korea. Correspondence to: Sung Ju
Hwang <sjhwang82@kaist.ac.kr>.

Proceedings of the 38 th International Conference on Machine Learning, PMLR 139, 2021. Copyright 2021 by the author(s).



Large-Scale Meta-Learning with Continual Trajectory Shifting

5 0 5 10 155

0

5

10

15

SGD
Ours Adam
SGD \w Momentum

(a) Starting point: (-5, 5)

5 0 5 10 155

0

5

10

15
SGD
Adam
SGD \w Momentum

(b) Starting point: (15, 5)

5 0 5 10 15
5

0

5

10

15
SGD
Adam
SGD \w Momentum

6

8

10

12

14

16

18

20

(c) Starting point: (5, -5)

Figure 1. Lines: Meta-training trajectory of our method with various types of inner-optimizers. Background contour: Task-average loss
after 100 gradient steps. The darker the background contour, the better quality of the initialization point.

B. Visualization of Trajectory Shifting
In Figure 2, we visualize the actual trajectory shifting with the synthetic experiments. We can see how each of the
inner-learning trajectories is interleaved with a sequence of meta-updates.

20 10 0 10 20 3020

10

0

10

20

30

Inner­step
Trajectory shifting
Meta­learning

(a) Task 1

20 10 0 10 20 3020

10

0

10

20

30

(b) Task 2

20 10 0 10 20 3020

10

0

10

20

30

(c) Task 3

20 10 0 10 20 3020

10

0

10

20

30

(d) Task 4

20 10 0 10 20 3020

10

0

10

20

30

(e) Task 1

20 10 0 10 20 3020

10

0

10

20

30

(f) Task 2

20 10 0 10 20 3020

10

0

10

20

30

(g) Task 3

20 10 0 10 20 3020

10

0

10

20

30

(h) Task 4
Figure 2. Visualization of the trajectory shifting with the four tasks (Task 1 - Task 4) from the synthetic experiments. Top row: starting
point: (-5, 5). Bottom row: starting point: (15, 5).

C. Experimental Setup
In this section, we provide the detailed experimental setup for the synthetic experiments, the image classifications, the
ImageNet experiments, and the empirical error analysis.

C.1. Synthetic experiments

We visualize in Figure 3 the loss surfaces of all the eight tasks used for the synthetic experiments.



Large-Scale Meta-Learning with Continual Trajectory Shifting

20 10 0 10 20 3020

10

0

10

20

30

(a) Task 1

20 10 0 10 20 3020

10

0

10

20

30

(b) Task 2

20 10 0 10 20 3020

10

0

10

20

30

(c) Task 3

20 10 0 10 20 3020

10

0

10

20

30

(d) Task 4

20 10 0 10 20 3020

10

0

10

20

30

(e) Task 5

20 10 0 10 20 3020

10

0

10

20

30

(f) Task 6

20 10 0 10 20 3020

10

0

10

20

30

(g) Task 7

20 10 0 10 20 3020

10

0

10

20

30

(h) Task 8
Figure 3. Loss surfaces of the eight tasks.

C.2. Image classifications

We provide some additional information about the experimental setup for the image classification experiments.

Table 1. Meta-training datasets for the image classification experiments.

Dataset # training instances # test instances # classes Image size Note
Tiny ImageNet split 1 (tin) 50,000 5,000 100 64 Class 1-100
Tiny ImageNet split 2 (tin) 50,000 5,000 100 64 Class 101-200

CIFAR100 (Krizhevsky et al., 2009) 50,000 10,000 100 32
Stanford Dogs (Khosla et al., 2011) 11,999 8,580 120 84

Aircraft (Maji et al., 2013) 6,667 3,333 100 84
CUB (Wah et al., 2011) 5,994 5,794 200 84

Fashion-MNIST (Xiao et al., 2017) 60,000 10,000 10 28 Grey-scale
SVHN (Netzer et al., 2011) 73,257 26,032 10 32

Table 2. Target datasets for the image classification experiments.

Dataset # training instances # test instances # classes Image size Note
Stanford Cars (Krause et al., 2013) 8,144 8,041 196 84

QuickDraw (Ha & Eck, 2017) 34,500 34,500 345 28 Grey-scale
VGG Flowers (Nilsback & Zisserman, 2008) 2,040 6,149 102 84

VGG Pets (Parkhi et al., 2012) 3,680 3,669 37 84
STL10 (Coates et al., 2011) 5,000 8,000 10 32

Table 3. The value of β used for the image classification experiments.

K
Method 10 100 1000

FOMAML (Finn et al., 2017) 0.5 0.2 0.1
Leap (Flennerhag et al., 2019) 0.1 0.1 0.1
Reptile (Nichol et al., 2018) 5 2 1

Ours 1 0.1 0.01

• See Table 1 for more information about the datasets used for meta-training and Table 2 for meta-testing.



Large-Scale Meta-Learning with Continual Trajectory Shifting

• We carefully tuned the meta-learning rate β for all the meta-learning baselines. Notably, we found that the optimal β
should increase as we reduce the length of inner-optimization trajectory K. See Table 3 for the actual value of β we
used in the experiments.

• The last fully connected layer (classifier) is a part of θ, but not included in φ. Batch norm parameters (i.e. scale and
shift) are included in both θ and φ. However, batch statistics (i.e. running mean and running variance) are neither a part
of θ nor φ.

• Recall from the Algorithm 1 and 2 in the main paper that we repeat the inner-optimization process M times, and we
reset the task-specific parameters before starting each process. Note that we do not reset the following information: the
statistics for the optimizer, the parameters for the last fully connected layer, and the batch norm statistics. Conceptually,
it would be natural to reset the above information as well because we do not transfer them to meta-testing. However,
we found that it makes no difference in terms of meta-testing performance.

C.3. ImageNet experiments

We next provide the detailed description about the datasets used for the ImageNet experiments in Figure 4, Table 4, and
Table 5.

bird (52)

invertebrate (61)

reptile, reptilian (36) mammal, mammalian (95)

domestic animal, domesticated animal (121)

device (121) conveyance, transport (26) container (94) furnishing (24) equipment (38) implement (33)

commodity, trade good, good (62) covering (38) structure, construction (55)

entity (1000)

physical entity (992)

object, physical object (946)

whole, unit (936)

living thing, animate thing (407) artifact, artefact (521)

organism, being (407) instrumentality, instrumentation (348)

vertebrate, craniate (207)

chordate (207)

animal, animate being, beast, brute, creature, fauna (398)

Figure 4. ImageNet splits based on the WordNet hierarchy. Each node correspones to a WordNet label and the number of its subclasses
is shown in the parenthesis. The nodes of the same split are shown in the same color. We do not show the nodes of the last split 8 for
better visualization.

Table 4. ImageNet splits for meta-training
Split # training instances # test instances # classes WordNet label (# classes)

1 146,741 5,650 113 bird (52)
invertebrate (61)

2 169,582 6,550 131 reptile (36)
mammal (95)

3 151,773 6,050 121 domestic animal(121)
4 154,047 6,050 121 device (121)

5 154,373 6,000 120 conveyance, transport (26)
container (94)

6 121,344 4,750 95
furnishing (24)
equipment (38)
implement (33)

7 198,314 7,750 155
commodity, trade good, good (62)

covering (38)
structure, construction (55)

8 184,993 7,200 144 etc



Large-Scale Meta-Learning with Continual Trajectory Shifting

Table 5. Target datasets for the ImageNet experiments.

Dataset # training instances # test instances # classes Image size Note
CIFAR100 (Krizhevsky et al., 2009) 50,000 10,000 100 128 Upscaled from 32×32
CIFAR10 (Krizhevsky et al., 2009) 50,000 10,000 10 128 Upscaled from 32×32

SVHN (Netzer et al., 2011) 73,257 26,032 10 128 Upscaled from 32×32
Stanford Dogs (Khosla et al., 2011) 11,999 8,580 120 224

VGG Pets (Parkhi et al., 2012) 3,680 3,669 37 224
VGG Flowers (Nilsback & Zisserman, 2008) 2,040 6,149 102 224

Food-101 (Bossard et al., 2014) 75,750 25,250 101 224
CUB (Wah et al., 2011) 5,994 5,794 200 224

DTD (Cimpoi et al., 2014) 4,230 1,410 47 224 Texture dataset

C.4. Empirical error analysis

We explain the experimental setup for the Figure 3 in the main paper. We define the approximation error as:

ε := Uk(φ+ ∆1 + · · ·+ ∆k−1)− U1(· · ·U1(U1(φ) + ∆1) · · ·+ ∆k−1) (2)

and report log10 ‖ε‖2 versus inner-learning rate α, meta-learning rate β, length of inner-learning trajectory k, and type of
network activations (ReLU vs. Softplus).

• We use ResNet20.

• We use the first split of TinyImageNet dataset to generate a sequence of losses L0, . . . ,Lk−1. Batch size is set to 128.

• We use vanilla SGD for Uk, such that Uk(φ) := φ− α
∑k−1
i=0 ∇θLi|θ=θi .

• Note that ∆i = β ·MetaGradi. In order to compute the approximation error ε in a feasible amount of time, we assume
that MetaGrad0, . . . ,MetaGradk−1 are sampled from the following synthetic distribution: MetaGradi = xi/‖xi‖2,
where xi ∼ N(0, I) for i = 0, . . . , k − 1. Therefore, we have ‖∆0‖2 = · · · = ‖∆k−1‖2 = β, i.e. the size of
meta-update is fixed as β, but the direction is randomized. We use the same sequence of ∆0, . . . ,∆k−1 in computing
the first and second term of Eq. (2).

D. Derivation of the Error Complexity
In this section, we derive Eq. (5) in the main paper, the complexity of the approximation error. We first recap the notations:

• φ: Shared initial model parameters that we meta-learn

• α: Inner-learning rate

• β: Meta-learning rate

• Uk(ω): Task-specific parameters after k SGD steps from ω, i.e.

Uk(ω) = Uk−1(ω)− α∇ωLk−1|ω=Uk−1(ω) = ω − α
k−1∑
i=0

∇ωLi

• θk: Task-specific parameters after k SGD steps from φ, i.e. Uk(φ)

• Hk: Hessian of loss function at θk

• ∆k: Meta-update (or trajectory shifting) at step k, i.e.

∆k = −β ·MetaGrad(φ; θk)

Our derivation is based on the following assumptions:



Large-Scale Meta-Learning with Continual Trajectory Shifting

1. Uk is infinitely differentiable.

2. Norm of the Hessian is bounded by h at everywhere, i.e. ‖H‖ = O(h).

3. Norm of meta-update is bounded by β for every step, i.e. ‖∆k‖ = O(β) for every k.

Theorem D.1. For k ≥ 1 and any ∆ whose norm is sufficiently small,

Uk(φ+ ∆) = Uk(φ) + ∆ +O(αhk‖∆‖+ ‖∆‖2)

Proof. Using the Talyor approximation,

Uk(φ+ ∆) = Uk(φ) +
∂Uk(φ)

∂φ
∆ +

1

2
∆>

∂2Uk(φ)

∂φ2
∆ + · · ·

= Uk(φ) +
∂Uk(φ)

∂φ
∆ +O(‖∆‖2)

On the other hand,

∂Uk(φ)

∂φ
=

∂Uk(φ)

∂Uk−1(φ)
· · · ∂U1(φ)

∂φ
=

k−1∏
i=0

(I − αHi)

= I −
k−1∑
i=0

αHi +

k−1∑
i=0

k−1∑
j=i+1

α2HiHj + · · · = I +O(αhk)

Combining the two approximations,

Uk(φ+ ∆) = Uk(φ) + (I +O(αhk))∆ +O(‖∆‖2)

= Uk(φ) + ∆ +O(αhk‖∆‖+ ‖∆‖2)

Theorem D.2. For k ≥ 1 and any {∆i} with ‖∆i‖ = O(β),

Uk

(
φ+

k∑
i=1

∆i

)
= U1(· · ·U1(U1(φ) + ∆1) · · ·+ ∆k−1) + ∆k +O(βαhk2 + β2k)

Proof. For k = 1,

U1(φ+ ∆1) = U1(φ) + ∆1 +O(βαh+ β2) (Theorem D.1)



Large-Scale Meta-Learning with Continual Trajectory Shifting

With the assumption at step k,

Uk+1

(
φ+

k+1∑
i=1

∆i

)
= Uk+1

(
φ+

k∑
i=1

∆i

)
+ ∆k+1 +O

(
αh(k + 1)‖∆k+1‖+ ‖∆k+1‖2

)
(Theorem D.1)

= U1

(
Uk

(
φ+

k∑
i=1

∆i

))
+ ∆k+1 +O(βαh(k + 1) + β2)

= U1

(
U1 (· · ·U1(U1(φ) + ∆1) · · ·+ ∆k−1) + ∆k +O(βαhk2 + β2k)

)
+ ∆k+1 +O(βαh(k + 1) + β2)

(Assumption at step k)

= U1 (U1(· · ·U1(U1(φ) + ∆1) · · ·+ ∆k−1) + ∆k) +O(βαhk2 + β2k)

+O(αh(βαhk2 + β2k) + (βαhk2 + β2k)2)

+ ∆k+1 +O(βαh(k + 1) + β2)

(Theorem D.1)

= U1(U1(· · ·U1(U1(φ) + ∆1) · · ·+ ∆k−1) + ∆k) + ∆k+1 +O(βαh(k + 1)2 + β2(k + 1))

Corollary 1. Asymptotic approximation error of proposed continual trajectory shifting is as follows:

Uk

(
φ+

k−1∑
i=1

∆i

)
= U1(· · ·U1(U1(φ) + ∆1) · · ·+ ∆k−1) +O(βαhk2 + β2k)

for k ≥ 2.

Proof.

Uk

(
φ+

k−1∑
i=1

∆i

)
= U1

(
Uk−1

(
φ+

k−1∑
i=1

∆i

))
= U1(U1(· · ·U1(U1(φ) + ∆1) · · · ) + ∆k−1 +O(βαh(k − 1)2 + β2(k − 1)))

(Theorem D.2)

= U1(· · ·U1(U1(φ) + ∆1) · · ·+ ∆k−1) +O(βαh(k − 1)2 + β2(k − 1))

+O(αh(βαh(k − 1)2 + β2(k − 1)) + (βαh(k − 1)2 + β2(k − 1))2)

(Theorem D.1)

= U1(· · ·U1(U1(φ) + ∆1) · · ·+ ∆k−1) +O(βαhk2 + β2k)

E. Derivation for the momentum optimizer
In this section, we prove that we can use the same shifting rule even with the momentum optimizer and weight decaying.
See Section A for more discussion about the empirical effect of the type of inner-optimizer.

Momentum Note that the update function of SGD with momentum µ is:

Uk(ω) = Uk−1(ω)− α · gk(ω)

where gk(ω) = µ · gk−1(ω) +∇ωLk−1|ω=Uk−1(ω).

Then, the following lemma holds:



Large-Scale Meta-Learning with Continual Trajectory Shifting

Lemma E.1. The approximation of Jacobian is

∂Uk(φ)

∂φ
= I +O

(
αhk

1− µ

)

Proof. Let the approximation error of Jacobian at step k be εk, i.e.

∂Uk(φ)

∂φ
= I + εk

For k ≥ 2,

Uk(φ) = Uk−1(φ)− α · gk(φ)

= Uk−1(φ)− α · (µ · gk−1(φ) +∇φLk−1|φ=Uk−1(φ))

= Uk−1(φ)− µ · α · gk−1(φ)− α · ∇φLk−1|φ=Uk−1(φ)

= Uk−1(φ)− µ · (Uk−1(φ)− Uk−2(φ))− α · ∇φLk−1|φ=Uk−1(φ)

Then, we compute the Jacobian as

∂Uk(φ)

∂φ
=
∂Uk−1(φ)

∂φ
− µ ·

(
∂Uk−1(φ)

∂φ
− ∂Uk−2(φ)

∂φ

)
− α ·

∂∇φLk−1|φ=Uk−1(φ)

∂φ

= (I + εk−1) + µ · (εk−1 − εk−2)− α ·
∂∇φLk−1|φ=Uk−1(φ)

∂Uk−1(φ)
· ∂Uk−1(φ)

∂φ

= I + εk−1 + µ · (εk−1 − εk−2)− αHk−1 · (I + εk−1)

Thus,

εk = εk−1 + µ · (εk−1 − εk−2) +O(αh(1 + εk−1))

We can say ε0 = 0 and for k = 1,

∂U1(φ)

∂φ
=
∂(φ− α · ∇φL0|φ=φ)

∂φ
= I − αH0 → ε1 = O(αh)

Then,

εk − εk−1 = µ · (εk−1 − εk−2) +O(αh(1 + εk−1))

= µ2 · (εk−2 − εk−3) +O(αh(1 + εk−1 + µ(1 + εk−2)))

= · · ·

= µk−1 · (ε1 − ε0) +O

(
αh

(
k−2∑
i=0

µi(1 + εk−1−i)

))

= O

(
αh

(
k−1∑
i=0

µi +

k−2∑
i=0

µiεk−1−i)

))



Large-Scale Meta-Learning with Continual Trajectory Shifting

Since the second term O(αh
∑k−2
i=0 µ

iεk−1−i) is quadratic to αh, dropping the term,

εk = εk−1 +O

(
αh

k−1∑
i=0

µi

)

= εk−1 +O

(
αh

1− µk

1− µ

)
= εk−2 +O

(
αh

(
1− µk

1− µ
+

1− µk−1

1− µ

))
= · · ·

= ε0 +O

(
αh

k∑
i=1

1− µi

1− µ

)

= O

(
αh

1− µ

(
k + 1− 1− µk+1

1− µ

))
= O

(
αhk

1− µ

)

Then, as Theorem D.1, approximation error between Uk(φ+ ∆) and Uk(φ) + ∆ is as follows:

Theorem E.1. For any ∆ that with sufficiently small norm,

Uk(φ+ ∆) = Uk(φ) + ∆ +O

(
αhk

1− µ
‖∆‖+ ‖∆‖2

)
and as Corollary 1,

Corollary 2. Asymptotic approximation error of proposed Continual Correction with SGD and momentum µ is as follows:

Uk

(
φ+

k−1∑
i=1

∆i

)
= U1(· · ·U1(U1(φ) + ∆1) · · ·+ ∆k−1) +O

(
βαhk2

1− µ
+ β2k

)
for k ≥ 2.

We omit the proofs since only the coefficients are different.

Weight decay Denote the update function of SGD with weight decay λ by:

Uk(ω) = Uk−1(ω)− α ·
(
∇ω
(
Lk−1|ω=Uk−1(ω) + λ‖Uk−1(ω)‖2

))
.

Then, following lemma holds:

Lemma E.2. Approximation of Jacobian is

∂Uk(φ)

∂φ
= I +O (α(h+ 2λ)k)

Proof.

∂Uk(φ)

∂φ
=

∂Uk(φ)

∂Uk−1(φ)
· · · ∂U1(φ)

∂φ
=

k−1∏
i=0

(I − αHi + 2λ)

= I +O(α(h+ 2λ)k)

Then, as previous,



Large-Scale Meta-Learning with Continual Trajectory Shifting

Corollary 3. Asymptotic approximation error of proposed continual trajectory shifting with SGD and weight decay λ is
as follows:

Uk

(
φ+

k−1∑
i=1

∆i

)
= U1(· · ·U1(U1(φ) + ∆1) · · ·+ ∆k−1) +O

(
βα(h+ 2λ)k2 + β2k

)
for k ≥ 2.

References
https://tiny-imagenet.herokuapp.com/.

Bossard, L., Guillaumin, M., and Gool, L. V. Food-101 - mining discriminative components with random forests. In ECCV,
2014.

Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., , and Vedaldi, A. Describing textures in the wild. In Proceedings of the
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014.

Coates, A., Ng, A., and Lee, H. An Analysis of Single-Layer Networks in Unsupervised Feature Learning. In AISTATS,
2011.

Finn, C., Abbeel, P., and Levine, S. Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks. In ICML, 2017.

Flennerhag, S., Moreno, P. G., Lawrence, N., and Damianou, A. Transferring Knowledge across Learning Processes. In
ICLR, 2019.

Ha, D. and Eck, D. A neural representation of sketch drawings. CoRR, abs/1704.03477, 2017. URL http://arxiv.
org/abs/1704.03477.

Khosla, A., Jayadevaprakash, N., Yao, B., and Fei-Fei, L. Novel dataset for fine-grained image categorization. In First
Workshop on Fine-Grained Visual Categorization, CVPR, 2011.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Krause, J., Stark, M., Deng, J., and Fei-Fei, L. 3d object representations for fine-grained categorization. In 4th International
IEEE Workshop on 3D Representation and Recognition (3dRR-13), 2013.

Krizhevsky, A., Hinton, G., et al. Learning Multiple Layers of features from Tiny Images. 2009.

Maji, S., Rahtu, E., Kannala, J., Blaschko, M., and Vedaldi, A. Fine-Grained Visual Classification of Aircraft. arXiv preprint
arXiv:1306.5151, 2013.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and Ng, A. Y. Reading Digits in Natural Images with Unsupervised
Feature Learning. 2011.

Nichol, A., Achiam, J., and Schulman, J. On First-Order Meta-Learning Algorithms. arXiv e-prints, 2018.

Nilsback, M.-E. and Zisserman, A. Automated flower classification over a large number of classes. In Indian Conference on
Computer Vision, Graphics and Image Processing, 2008.

Parkhi, O. M., Vedaldi, A., Zisserman, A., and Jawahar, C. V. Cats and dogs. In IEEE Conference on Computer Vision and
Pattern Recognition, 2012.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. On the importance of initialization and momentum in deep learning. In
ICML, 2013.

Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie, S. The Caltech-UCSD Birds-200-2011 Dataset. Technical
Report CNS-TR-2011-001, California Institute of Technology, 2011.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
Algorithms. arXiv preprint arXiv:1708.07747, 2017.

https://tiny-imagenet.herokuapp.com/
http://arxiv.org/abs/1704.03477
http://arxiv.org/abs/1704.03477

	Effect of Inner-optimizer Type
	Visualization of Trajectory Shifting
	Experimental Setup
	Synthetic experiments
	Image classifications
	ImageNet experiments
	Empirical error analysis

	Derivation of the Error Complexity
	Derivation for the momentum optimizer

