Large-Scale Meta-Learning with Continual Trajectory Shifting

JaeWoong Shin *! Hae Beom Lee ! Bogqing Gong?

Abstract

Meta-learning of shared initialization parame-
ters has shown to be highly effective in solving
few-shot learning tasks. However, extending the
framework to many-shot scenarios, which may
further enhance its practicality, has been relatively
overlooked due to the technical difficulties of
meta-learning over long chains of inner-gradient
steps. In this paper, we first show that allowing
the meta-learners to take a larger number of in-
ner gradient steps better captures the structure
of heterogeneous and large-scale task distribu-
tions, thus results in obtaining better initialization
points. Further, in order to increase the frequency
of meta-updates even with the excessively long
inner-optimization trajectories, we propose to esti-
mate the required shift of the task-specific parame-
ters with respect to the change of the initialization
parameters. By doing so, we can arbitrarily in-
crease the frequency of meta-updates and thus
greatly improve the meta-level convergence as
well as the quality of the learned initializations.
We validate our method on a heterogeneous set
of large-scale tasks and show that the algorithm
largely outperforms the previous first-order meta-
learning methods in terms of both generalization
performance and convergence, as well as multi-
task learning and fine-tuning baselines.

1. Introduction

Meta-learning (Schmidhuber, 1987; Thrun & Pratt, 1998)
is a framework for learning a learning process itself by
extracting common knowledge over a task distribution. As
this meta-knowledge allows task learners to adapt to newly
given tasks in a sample efficient manner, meta-learning has
frequently been used for solving few-shot learning problems
where each of the task learners is given only a few training

*Equal contribution 'Graduate School of Al, KAIST, South
Korea “Google, LA *AITRICS, South Korea. Correspondence to:
Sung Ju Hwang <sjhwang82 @kaist.ac.kr>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

! Sung Ju Hwang '3

examples (Lake et al., 2015; Vinyals et al., 2016; Santoro
etal., 2016; Snell et al., 2017; Finn et al., 2017). While there
exists a vast literature on meta-learning methods that tackle
few-shot learning, one of the most popular approaches is
the optimization-based method such as Model Agnostic
Meta-Learning (MAML) (Finn et al., 2017), which aims
to improve the generalization ability of few-shot learners
by learning good initialization parameters, from which the
model can rapidly adapt to novel tasks within only a few
gradient steps.

Then, a natural question is if the same meta-learning strat-
egy is applicable to tasks with a larger number of exam-
ples, for instance STL10 (Coates et al., 2011) and Stanford
Cars (Krause et al., 2013). It is well known that such stan-
dard learning tasks with a large number of training examples
also benefit from good initialization parameters for better
convergence and generalization, when compared with ran-
dom initializations (Kornblith et al., 2019). A prevalent
approach to enhance generalization for large-scale tasks
is to pre-train the model with a large dataset such as Ima-
geNet (Russakovsky et al., 2015), and further finetune the
pretrained model parameters with the target dataset. This
demonstrates that knowledge transfer is also highly benefi-
cial for tasks with larger training sets.

However, the meta-learning of shared initialization parame-
ters for many-shot learning problems has not received much
attention. One reason may be that ImageNet pretraining
has been practically effective for most of the standard ob-
ject classification tasks or other computer vision problems.
However, Kornblith et al. (2019) empirically show that Ima-
geNet pretraining may not obtain meaningful performance
gains on fine-grained classification tasks. This is because
fine-grained classification tasks may require features that
are more domain-specific or local for the discrimination
of highly similar visual classes, for which the ImageNet
features learned for general object classification may be in-
effective. In other words, pretraining neural networks only
on a single large-scale dataset will not sufficiently cover the
heterogeneity of datasets and tasks that the model needs to
handle at inference time. One of the effective ways to handle
such heterogeneity is to train the model via meta-learning
over a heterogeneous task distribution.

There have been several attempts to apply meta-learning to

Large-Scale Meta-Learning with Continual Trajectory Shifting

. v
X

4' s
Task1

(a) Previous meta-learning

Figure 1. Concepts of large-scale meta-learning, whose inner learning trajectories have to be long enough to fit each large-scale
individual task. (a) Previous meta-learning which is vulnerable to bad meta-level local minima and waits for the excessively long inner
learning trajectories between two meta-updates. (b) Our method that performs frequent meta-updates by interleaving them with the
inner-learning trajectories, plus continual trajectory shiftings, and is less prone to bad local minima by gradually growing the trajectory

length k.

large-scale settings, where the training set consists of a large
number of instances (Nichol et al., 2018; Flennerhag et al.,
2019; 2020). While these methods alleviate the computa-
tional cost for large-scale meta-learning, they are not truly
scalable to tasks that are considered in conventional learning
scenarios. The main difficulty of meta-learning with shared
initialization for large-scale tasks, is that they require a large
number of gradient steps to converge, since otherwise the
meta-learner would suffer from the short horizon bias prob-
lem (Wu et al., 2018). Note that the computational cost of
a single meta update increases linearly with respect to the
number of inner gradient steps. Therefore, a single meta-
gradient update for gradient-based meta-learning algorithms
(e.g. MAML, Reptile (Nichol et al., 2018)) would require
probably thousands of subsequent inner-gradient steps for
the given tasks (See Figure 1(a)).

J /o

& y * &

Task1 Task1

-

— :lInner-step
-------- » : Meta-step
—— : Meta-learning
: Meta-loss surface

------- : Trajectory shifting

(b) Meta-learning with Continual Trajectory Shifting

etal., 2011).

gorithms, while preserving the connection between the ini-
tialization point and the task learning trajectories up to the
approximation error. Our method enjoys significantly faster
convergence over existing first-order meta-learning algo-
rithms, and the learned initialization by our method leads to
better generalization performance as well.

We validate our method by meta-training over a heteroge-
neous set of standard, many-shot learning tasks such as
Aircraft (Maji et al., 2013), CUB (Wah et al., 2011), and
Fashion MNIST (Xiao et al., 2017b) that require at least a
thousand of gradient steps for an accurate estimation of meta
gradients. We then meta-test the learned initial model param-
eters by finetuning with a similar set of diverse datasets such
as Stanford Cars (Krause et al., 2013) and STL10 (Coates

We summarize our contributions as follows:

The key to this challenging problem of large-scale meta-

learning, is how to perform frequent meta-updates for meta-
convergence while allowing the learning trajectories of inner
optimization problems to become sufficiently long. How-
ever, due to the strong dependency between the initialization
parameters and learning trajectories for each task, naively
updating the initialization parameters without correcting
the learning trajectories may be suboptimal. We tackle this
by proposing a novel idea: estimating the corresponding To this end, we propose a novel and an efficient al-
change of the task-specific parameters with respect to the
change of the initialization point. If we can estimate such
an update direction with a reasonable accuracy, then we
will be able to arbitrarily increase the frequency of meta
updates with the corresponding shifting for the task learning
trajectories (See Figure 1(b)).

In this paper, we show that first-order Taylor expansion to-

gether with the first-order approximation of Jacobian over
the learning trajectories (Finn et al., 2017; Nichol et al., 2. Related Work
2018; Flennerhag et al., 2019) yields a surprisingly simple

but effective shifting rule, shifting the entire learning trajec-
tories to the direction and the amount for each meta update.
By doing so, we can perform more frequent meta-updates
compared to existing optimization-based meta-learning al-

Meta-learning Meta-learning
Thrun & Pratt, 1998) aims to learn how to learn on novel
tasks, without overfitting to seen tasks.
is usually done by assuming a task distribution (Vinyals
et al., 2016; Ravi & Larochelle, 2017) from which tasks

* We show that large-scale meta-learning requires sub-
stantially a larger number of inner gradient steps than
what are reqruied for few-shot learning.

* We show that gradually extending the length of inner-
learning trajectories lowers the risk of converging to
poor meta-level local optima.

gorithm for large-scale meta-learning that frequently
performs meta-optimization even with excessively long
inner-learning trajectories.

* We verify our algorithm on a heterogeneous set of
tasks, on which it achieves significant improvements
over existing meta-learning algorithms in terms of
meta-convergence and generalization performance.

(Schmidhuber, 1987;

Meta-learning

Large-Scale Meta-Learning with Continual Trajectory Shifting

are sampled and a meta-learner which solves them by
extracting common meta-knowledge among the given tasks.
Many recent works have demonstrated the effectiveness
of such a strategy in few-shot learning settings where
the learner should adapt to novel tasks with few training
samples for each task (Lee & Choi, 2018; Mishra et al.,
2018; Rusu et al., 2019; Liu et al., 2019; Lee et al., 2019).
A popular approach to meta-learning is to learn a common
metric space over a task distribution (Vinyals et al., 2016;
Snell et al., 2017; Yang et al., 2017; Oreshkin et al., 2018),
that can be used for the prediction for a novel task. For
classification, the space could be learned to map each
instance (query instance) closer to either another instance
from the same class, or the prototype of the class. However,
in many-shot scenario we target, it is not trivial to fully
exploit the task information without taking a sufficient
number of gradient steps. Therefore, we focus more on
optimization-based meta-learning methods (Finn et al.,
2017) that are model-agnostic, whose goal is to learn a
shared initialization parameters from which each of the
target tasks can adapt after taking some amount of gradient
steps. The shared initialization parameters are meta-learned
by backpropagating through the learning trajectories.

Efficient Meta-learning Early optimization-based meta-
learning algorithms usually require computing the second-
order derivatives in order to obtain the meta-gradients (Finn
et al., 2017). Yet, due to the heavy computational cost
in computing them, many prior works propose to use a
first order approximation to obtain the meta-gradient (Finn
et al., 2017; Nichol et al., 2018; Flennerhag et al., 2019),
based on the empirical observation that given a sufficiently
small stepsize for the inner-gradient steps, curvature infor-
mation around a local region, i.e. Hessian, can be safely
ignored. Other ways to efficiently compute meta-gradients
include Rajeswaran et al. (2019b) and Song et al. (2020).
However, despite their computational efficiency, none of
the existing gradient-based meta-learning methods are truly
scalable to large-scale meta-learning that involves a large
number of inner-gradient steps, since this will slow down
the meta-convergence as the meta-update frequency will de-
crease as the trajectory lengths for the inner-gradient steps
increase. In this paper, we propose a novel algorithm for
effectively increase the frequency of meta-updates while
preserving the connection between the shared initialization
and task learning trajectories.

Transfer and multi-task learning It is possible to use
transfer learning as an alternative of meta-learning for large-
scale sceanarios to avoid the excessive computational cost
associated with it. Specifically, finetuning from a pretrained
network on a large dataset such as ImageNet (Russakovsky
et al., 2015) is a simple yet an effective method that is
known to perform well in practice. Dhillon et al. (2020) re-
cently showed that a simple variant of finetuning strategy in

transductive setting outperforms most of the current sophis-
ticated meta-learning algorithms. Yet, finetuning strategies
are based on a strong assumption that a feature extractor
learned from a single big dataset is beneficial in boosting
the generalization performance of the target datasets, which
may not hold when the target tasks have largely different
distributions from the source task (Kornblith et al., 2019).
While more sophisticated transfer learning or domain adap-
tation methods can tackle this problem (Jang et al., 2019),
it remains an important question whether we can learn in-
tialization parameters that can generalize well even to tasks
with large distributional shifts, such as fine-grained classi-
fication. Also, although there exist abundant datasets that
may contribute to meta-knowledge, it is not trivial to decide
which datasets to use for pretraining. Multi-task learning
(MTL) is an effective way to achieve generalization across
tasks. However a naive MTL approach with joint training
of multiple tasks is vulnerable to negative transfer under
a heterogeneous task distribution, degrading the quality of
the learned feature extractor that will be used for finetuning
the target tasks. Optimization based meta-learning can be
a natural solution to tackle the negative transfer problem,
since it finds an intialization point that can lead to optimal
solutions for heterogeneous tasks, rather than trying to find
a solution that are jointly optimal for all tasks.

3. Approach

We start by describing our problem setup. Our goal is to
learn shared initialization parameters ¢ that can lead to good
solutions for diverse tasks after task-specific adaptation.
Suppose that we have T tasks (or datasets) D), ... D)
that will be used for meta-training, and each of the tasks has
a large number of training examples. We further assume that
there exist substantial distributional discrepancies among
the tasks. In this large-scale heterogeneous meta-learning
setup, it is crucial for the task-specific model parameters
6 to fully adapt to a given task D*) by taking a sufficient
number (K) of gradient steps (e.g. K = 1,000 steps) from
the shared initialization ¢. We also let the inner-optimization
processes repeat M times in order to make the initialization
parameters ¢ fully converge. As a result, we expect the
meta-learned ¢ to work well on new tasks or datasets.

3.1. Limitations of previous methods

Naturally, backpropagating through a learning process re-
quires to compute the second-order derivatives such as Hes-
sians (Finn et al., 2017). Due to its heavy computational
cost, we focus on the first-order meta-learning algorithms
such as FOMAML (Finn et al., 2017), Reptile (Nichol et al.,
2018), or Leap (Flennerhag et al., 2019) which are more suit-
able for large-scale meta-learning. We sketch the method
in Algorithm 1. For instance, the meta-gradient of FO-

MAML is MetaGrad(¢; 9&?) = Vgﬁg? o Where ,C,(f)
K

lo—

Large-Scale Meta-Learning with Continual Trajectory Shifting

Algorithm 1 Previous meta-learning algorithms

Algorithm 2 Meta-learning with continual shifting

1: Input: A set of tasks Dm, .. ,D(T>

2: Input: Inner-learning rate o, meta-learning rate 3

3: Qutput: Meta-learned initialization ¢

4: Randomly initialize ¢.

5: form =1to M do > Repeating inner-opt. processes
6: fort =1to 7T do

7: Gét) — ¢ > Resetting each task learner
8: for k = 1to K do > Inner-optimization
9: 0,(:) — 9,(:31 — aV(;E(kt)‘eie(t)

k-1

10: end for
11: end for
12: ¢ ¢— Bt Zthl MetaGrad(¢; 9%)) > Meta-update

13: end for

—Pp : Inner-step

> . T P : Meta-step
¢.——’V U1 (¢) (Zl AI ----- P : Trajectory shifting
Ay S R d ACAORIS
‘Y Us(p + Ay)
@ k=1 b)) k=2

Figure 2. Illustration of the proposed continual trajectory shifting.

denotes loss of task ¢ at step k, and the Reptile gradient
is MetaGrad(¢; 01(,?) = ¢ — 9%). They consist of only
the first-order terms and thus are cheaper to compute than
meta-gradients with the second-order derivatives.

However, the previous meta-learning methods have to reini-
tiate each inner-optimization process right after every single
meta-update, because the inner-learning process should re-
main consistent with the updated initialization point and
start a new learning trajectory from there (see Figure 1).
This makes the large-scale meta-learning inefficient. We see
from Algorithm 1 that the interval between the current meta-
update and the previous one (in red) linearly increases with
respect to I, the total length of every inner-optimization
trajectory. For example, if we have T' = 10 tasks and
K = 1,000, then we need to take 10 x 1,000 = 10,000
gradient steps before making a single meta-gradient step,
which quickly becomes computationally expensive no mat-
ter how efficient the approximation is for computing each
meta gradient. For meta-learning, we often need to perform
a large number of meta-updates to ensure the convergence
of the meta-model ¢, but having long trajectories of inner-
gradient steps for large-scale tasks would prevent us from
making sufficient meta-updates within a computing budget.

3.2. Continual trajectory shifting

Our key idea is to interleave the meta-updates with the
inner-optimization processes to reduce the long wait be-
tween two adjacent meta-updates. This is made possible
by continual trajectory shifting described as follows. We
first introduce some notations. Let Uy(¢) denote a func-
tion that takes the initialization ¢ as input and outputs 6y,
the k-th step parameters for solving a task. Here we drop

1: Input: A set of tasks Dm, .. ,D(T>

2: Input: Inner-learning rate o, meta-learning rate 3

3: Qutput: Meta-learned initialization ¢

4: Randomly initialize ¢

5: form =1to M do > Reapating inner-opt. processes
6: Hét) —¢fort=1,...,T > Resetting task learners
7: for k = 1to K do > Inner-opt. for all tasks
8: fort =1to 71 do > Parallel for loop
9: 9,(60 — 9,(21 — O‘v9‘cl(ct)‘9_9(t)

k-1

10: end for
11: Ap + =843 MetaGrad(g; 6")
12: ¢ <— O+ Ag > Meta-update
13: 0 0 + Ay fort=1,...,T > Shifting
14: end for
15: end for

the task dependency for notational brevity. For instance,
if we use vanilla stochastic gradient descent, then we have
Up(d) =0 —« Zf:_ol VoL;|g—=g, Where 0y := ¢ and « is
the inner learning rate. ! Denote by A;, Ay, ... the series
of meta-updates induced by all tasks, such that the shared
initialization evolves as ¢, ¢ + A1, ¢ + A1 + Ao, - - .

Now we show that we can perform k meta-updates within
k inner-gradient steps, unlike the previous meta-learning
methods. Note that Reptile gradient ¢ — 8 depends only
on the task-specific parameters 0, := Uy(¢). Based
on this property?, we propose to estimate U (¢), Uz(¢ +
Ay)y...,Uk(¢p+ Ay + -+ + Ag_1) from a single inner-
optimizatin process, and perform the meta-updates with
them for every step up to k. Specifically, in Figure 2(a), we
compute the first meta-update A; based on the single-step
task-specific parameters U (¢). Then in the next step k& = 2
in Figure 2(b), in order to compute the next meta-update
As w.r.t. the new initialization point ¢ + A1, we propose to
approximate Us(¢ + A1) with Uy (U1 (¢) + A1), which we
can obtain without actually taking gradient steps at ¢ + Ay.
We generalize the approximation as follows:

Up(d+ A1 4+ Ag_q)
~Ui(--- U (Ui(9) + Ar) -+ Ap—1))]

Eq. (1) means that for every inner-step from 1 to k, we
continuously shift the task-specific learning trajectory by
the same direction and amount of each meta-update, thereby
allowing the task-learning trajectory to remain consistent
with the series of updates for the initialization parameters.
See Figure 2(b) and Algorithm 2 for the detailed procedure.
‘We name this method as Continual Trajectory Shifting.

One important aspect of our method is that k, the inner-
trajectory length used to compute each meta-update, grad-

"We do not impose any restrictions on the type of optimizers
for Ui (¢). See the supplementary file for more discussion.
Note that we can use any meta-gradients with similar property.

Large-Scale Meta-Learning with Continual Trajectory Shifting

ually increases from 1 to maximum K. In Figure 2(a), we
compute A; with the single-step task learner Uy (¢), and in
Figure 2(b) we compute A with Uy (U7 (¢) +Aq), which is
an approximation of the two-step task learner Us (¢ + Ap).
Later we will discuss the effect of gradually increasing k as
a meta-level regularizer.

3.3. Approximation error

We next analyze the approximation error in Eq. (1), which is
central to our continual trajectory shifting method. We first
show Ui (¢ + A) = Ui (¢) + A can be derived by applying
two different approximations. The first approximation is
Taylor expansion:

Uk(p+ A)

oU(9) T ?Ui(9)
d¢

0>
oU
= Un(¢) + a’“(;‘b)A +0(8?))
O(f3?) is because A = —f3 - MetaGrad(¢;0) = O(B).
Therefore, the first order Taylor approximation with Eq. (2)
is reasonable if 8 > 0 is sufficiently small.

A4

= Ui(p) + A—F%A

Secondly, we apply the Jacobian approximation frequently
used by the first-order meta-learning algorithms (Finn et al.,
2017; Nichol et al., 2018; Flennerhag et al., 2019):

dUL(®) OUL9) OU9) o |
o6 0Up(¢) 06 11 I~k
= I + O(ahk) 3)

where we let 0y := ¢, a > 0 is the inner-learning rate, H;
is the Hessian at step 4, and i denotes an upper bound of
norm of Hessians (e.g. spectral norm). As long as ahk > 0
is significantly smaller than 1, we can safely approximate
Eq. (3) with the identity matrix I. Applying Eq. (2) and
Eq. (3), we have

Ur(¢+ A) = Up(¢) + A+ O(Bahk +). (4)

Based on Eq. (4), we can derive the complexity of the ap-
proximation error caused by Eq. (1):

Ug(p+ A1+ -+ A1)
=Us(---Ur(Ui(9) + A1) -+ + A1)
+ O(Bahk® + B%k). (5)

See the supplementary file for the derivation.

Empirical analysis. Then, is the approximation error in
Eq. (5) empirically manageable? To answer the question,
we define the error € 1= Up(¢d + A1 + -+ + Ap—1) —
Ur(--- Uy (U (¢)+ A1) - - -+ Ag—1) and collect the norm of

B=1072, k=100, ReLU a=1073, k=100, ReLU a=1073, =102

=15
0 -2.0

202 -2.0

|
-

-24 =25

ell2
Il

W26 -3.0

log ||€]l2
4

[o
o -2.8 -3.5

lo

-3.0 -4.0

— RelU

_4 -32 -45
Softplus

-34 _5.0

S AT AT AT AG" AT AT AT AG AT AT © 1920 O NRRA®

5 & 3 2 A N
AT A0 AT A0 4SS AT 4D AT A0 Y A0
k

a B

(a) a (b) 8 (¢) k, Activation
Figure 3. Approximation error versus inner-learning rate o,
meta-learning rate (3, inner-learning trajectory length k, and the
type of network activations. We report the mean and 95% confi-
dence intervals over 10 draws of inner-learning trajectories. See
the supplementary file for the detailed experimental setup.

€ empirically. We see from Figure 3 that the error sharply in-
creases in proportion to «, 3, and k. Especially, Figure 3(c)
shows the difficulty of managing the error for the large-scale
tasks that require a large number of gradient steps. Further,
the use of ReLU activations and max-pooling introduces
additional errors (Balduzzi et al., 2017a;b). It is because the
Taylor expansion assumes infinitely differentiable functions,
but ReLU and max-pooling are not differentiable at cer-
tain points. See Figure 3(c) which shows that the networks
with ReL.U activations yield more inaccurate approxima-
tions over ones with Softplus activations. In conclusion, for
most of the modern convolutional networks and large-scale
tasks, we cannot guarantee that the proposed approximation
will be highly accurate. However, we empirically found
that the method still works very well even with the large
approximation error. We provide a plausible interpretation
about the results in the next subsection.

3.4. Meta-level curriculum learning with increasing &

Recall from Section 3.2 that our method computes each
meta-update with the gradually increasing k&, the number of
inner-gradient steps. The original motivation of gradually in-
creasing k came from interleaving every inner-optimization
step with a meta-update, but we find that it introduces an-
other benefit: a regularization effect. This is because our
algorithm could be considered as an instance of curriculum
learning at the meta-level. Curriculum learning (Bengio
et al., 2009) is a learning strategy where we present training
examples from easy to more difficult ones, thereby sequen-
tially controlling the complexity of the loss landscape. It
has been empirically shown that the strategy improves the
speed of convergence and the quality of local optima.

In our case, the number of inner-gradient steps k used to
compute each meta-gradient determines the complexity of
the meta-training loss landscape. Starting from k£ = 1, the
meta-learner first seeks to find a slightly better initializa-
tion point ¢ than the old one based on the very limited
information about the task learning trajectories due to the

Large-Scale Meta-Learning with Continual Trajectory Shifting

30, 30,

*

RS
£
o
20 20 =
2 2
i)
10 10 .@. o
1 @
. . % g
0 0 (@ 8
\ = -
9]
- . g
10 10 1. Translation »
1%}
2. Rotation S
200 -0 0 10 20 3 % -0 o 10 20 30
(a) Template function (b) Task 1 loss function £

e
o

N = [
@ 1S) ~ =

=3
o

©

Ours
Reptil
eptile Accurate Ours
Length.ofmn.er—opt. K. K |12, K [K...K
trajectories
. #Repet.ltlons.of MK MK u
inner-optimizations
Total cumulative MK
meta-updates
57— 100 .#Totalcumulatlve MKz |MEEFD | e
k used to obtain ¢ * inner-gradient steps

Short horizon bias (d) Computational cost

Figure 4. (a) Template function used to generate the task loss functions. (b) Task 1 loss function LY obtained by applying translation
(straight arrow) and random rotation (round arrow). (c) Task-average loss after 100 gradient steps from ¢™ vs. k used to obtain the optimal
initialization parameters ¢* over the tasks. (d) Computational cost in terms of total cumulative number of inner-gradient steps.

15,

s b e

5

10 15

10

@ k=>5 (b) £ =100

15,

0

(c) Starting point: (—5,5)

-55

15 20
—— Reptile

Ours Accurate

{x\— Ours
@\

18

10
16

\
L
J
Ours Accurate

—— Ours

0

—— Reptile

5 10

(d) Starting point: (5, —5)

Figure 5. (a,b) Meta-learning trajectories of Reptile with the length of inner-optimization fixed as k. We collect the trajectories by
initiating them from the various points in the grid of ¢ space. Meta-level local optima are shown by the red dots. (c¢,d) Background
contour: Task-average loss after taking 100 gradient steps from each point. The darker the better quality of the initialization point.
Lines: Meta-learning trajectories of ¢ obtained from the baselines and our algorithm.

short horizon bias (Wu et al., 2018). The bias simplifies the
meta-level loss landscape and thus lowers the risk of falling
into bad local minima, which is especially beneficial for the
early stage of meta-training (See Figure 1(b), left). After
alleviating the risk, the meta-learner gradually increases k to
have more complex loss surfaces and find more informative
local minima with longer horizons (See Figure 1(b), right).
It partly explains how our method finds better initialization
parameters than those by the previous meta-learning with a
fixed length of inner learning trajectories. See Figure 5(a),
5(b), and Section 4.1 for the discussions with real examples.

Curriculum learning and approximation error. The
curriculum learning effect also partly explains how our
model performs well even with the fairly large approxi-
mation error. Note that the risk of bad local optima is sig-
nificant at the beginning of the meta-training. Since our
approximation is relatively accurate when k is small, our
model can enjoy the curriculum learning effect even if the
approximation error goes up as k increases.

4. Experiments

We first examine how and why our method outperforms
the baselines with synthetic experiments. We then verify
the effectiveness of our method on a set of large-scale het-
erogeneous tasks, comparing to finetuning baselines and
first-order meta-learning algorithms.

4.1. Synthetic experiments

We first experiment with a synthetic task distribution to
provide insights on how our algorithm works.

Task distribution. We define a 2D function f(z,y) =
{(z® =10z +y +9)% + (z + y*> — 10y + 13)?} /3
which has four global minima (Figure 4(a)). We shift this
template function toward each of the red dots in Figure 4(b),
which form a circle centered at (5, 5), and randomly rotate
around each dot to generate eight task losses £(1) ... £(®),
Although the tasks share the same loss surface shape, they
are heterogeneous since the rotations are random. We
use all the eight tasks for meta-training to analyze the
meta-convergence of different methods.

Baselines. We compare Ours with Reptile (Nichol et al.,
2018) and Ours Accurate. Ours Accurate computes each
of the meta-updates A4, ..., Ay without the approximation
errors for the task-specific parameters in Eq. (5). Specif-
ically, Ours Accurate directly computes Ui (¢), Uz(¢ +
Av),...,Uk(¢p+ A1 + -+ + Ap_1) by repeatedly reini-
tiating the inner-learning processes after each meta-update,
which is computationally far more inefficient than Ours.
See Figure 4(d) for the computational cost for each method.
Note that we let the methods perform the same number of to-
tal meta-updates. Experimental setup: We use a = 0.05,
B =0.1, K =100, and M = 3. We set the inner-optimizer
to SGD with momentun (¢ = 0.9). See the supplementary

Large-Scale Meta-Learning with Continual Trajectory Shifting

3 80 .
" FOMAML 60 S
il - FONRIE g 50 ¥ Chel
S ++ <
c . [Scratch
= O Leap + 40 b sl o Ours _ Ours
‘© e — == Reptile K 30 "~ === Reptile 6 —aa Reptile .+
~ ST P [Finetuning (MTL) L L <
20 W Finetuning (TIN) 66 P 2 75 eaE
1 10 [Ours | || | sy y
0 7 a7 R W7 | 64 4
0 50K 100K 150K 200K Stanford Cars Quickdraw VGG Flower VGG Pets STL10 10 100 1000 10 100 1000
Cumulative inner steps Target Task K for meta-training K for meta-training
(a) Meta-convergence (b) Meta-testing performance of the baselines (c) VGG Pets (d) STL10

Figure 6. (a) Meta-training convergence measured as task-average training loss vs. cumulative inner-gradient steps. (b) Meta-testing
performance of the baselines. (c) Meta-testing performance vs. K used for meta-training.

70

60

O E
g
<
-
3
=

5K 10K 20K 50K 100K 200K
Cumulative inner steps

(a) Stanford Cars

5K 10K 20K 50K 100K 200K
Cumulative inner steps

(b) Quickdraw

45
5K 10K 20K 50K 100K 200K
Cumulative inner steps

(c) VGG Flowers

Test Acc
~

Test Acc.
~

5K 10K 20K 50K 100K 200K
Cumulative inner steps

(d) VGG Pets

5K 10K 20K 50K 100K 200K
Cumulative inner steps

(e) STL10

Figure 7. Meta-testing performance to show how efficient each method is in terms of cumulative inner-gradient steps spent for meta-

training. We report mean and 95% confidence intervals over 5 runs.

file for more information.

Results and analysis. We make the following observa-
tions from the synthetic experiment. Firstly, we should use
alarge K for meta-training if we want to use a large K for
meta-testing. Figure 4(c) demonstrates the existence of the
short horizon bias. It shows that the optimal initialization
¢* obtained with small K (e.g. K = 25) cannot provide
good performance even if we take a sufficient number of
gradient steps from there (e.g. K = 100).

Also, if we use a large K during meta-training, we can
allow the meta-learner to avoid bad local optima at the
early stage. It is done by gradually increasing the trajectory
length k from 1 to maximum K, which is used to compute
each meta-gradient. In order to demonstrate this effect, we
visualize the meta loss landscape over ¢ with various £ in
Figure 5(a) and 5(b), by simply collecting the meta-learning
trajectories starting from various points in the spatial grid
of ¢. We see from Figure 5(b) that there exist many local
minima for large k. It is because the longer horizons make
the task-specific parameters to sensitively react to a small
change in the initialization ¢, making the direction of meta-
gradient frequently change over the space of ¢. As a result,
comparing the local optima in Figure 5(b) with the map
of initialization quality in Figure 5(c), we see that many
of the the local optima are of low quality and also attract
the meta-learner even from the beginning. See Figure 5(c)
and 5(d) that Reptile gets stuck in a bad local minimum,
whereas Ours and Ours Accurate can circumvent it. It shows
that Ours and Ours Accurate actually make use of the much

simpler loss landscape provided by smaller k, effectively
lowering the risk of bad local minima. Note that the short
horizon bias introduced by smaller & is only temporary as
we gradually increase k up to maximum K over the course
of inner-optimization processes.

Lastly, Figure 5(c) and 5(d) show that although Ours and
Ours Accurate reveal dissimilar meta-learning trajectories
in general, the early part of the trajectories are quite similar
to each other. It means that the early part of Ours is accurate
enough to enjoy the curriculum learning effect. The approx-
imation error would increase as k grows, but the figures
show that it does not necessarily lead to worse solutions. It
explains why the performances of Ours remain robust to the
approximation error.

4.2. Image classification

Next, we verify our method on a realistic large-scale and
heterogeneous task distribution with multiple datasets.

Datasets. We consider large-scale datasets with the num-
ber of instances roughly ranging from 5, 000 up to 100, 000.
For images larger than 84 x 84, we resize their width and
height into one of {28, 32, 64, 84} for faster training. See
the supplementary file for more information. For meta-
training, we use 7 datasets: Tiny ImageNet (tin), CI-
FAR100 (Krizhevsky et al., 2009), Stanford Dogs (Khosla
et al.,, 2011), Aircraft (Maji et al., 2013), CUB (Wah
et al., 2011), Fashion-MNIST (Xiao et al., 2017a), and
SVHN (Netzer et al., 2011)). Tiny ImageNet (TIN) and CI-
FAR100 are benchmark classification datasets of general cat-

Large-Scale Meta-Learning with Continual Trajectory Shifting

egories. We class-wisely divide TIN into two splits. Other
datasets include fine-grained classifications that would re-
quire a sufficient amount of task-specific adaptations (e.g.
Aircraft), and grey-scale images (Fashion-MNIST). We
meta-test the trained model on 5 datasets: Stanford Cars,
QuickDraw (Ha & Eck, 2017), VGG Flowers (Nilsback
& Zisserman, 2008), VGG Pets (Parkhi et al., 2012), and
STL10, which are also highly heterogeneous.

Experimental setup. We use ResNet20 frequently used
for images of size 32 x 32 (e.g. CIFAR datasets). We use
random cropping and horizontal flipping as data augmenta-
tions, following the convention. For meta-training, we use
the same o« = 0.01, K = 1,000, and M = 200 for all the
baselines and our model, except for 3 that we found in the
range of {1073,1072,10~%,10°,10'}. We use SGD with
momentum (¢ = 0.9) and weight decay (A = 0.0005) as
the inner optimizer. For meta-testing, we train K = 1,000
steps for each dataset. We use SGD with Nesterov momen-
tum optimizer (px = 0.9) with an appropriate learning rate
scheduling. The starting learning rate is « = 0.1 and we use
A = 0.0005. See the supplementary file for more detail.
The code is also publicly available?.

Baselines. We first compare with Finetuning baselines.
We consider finetuning from the initialization obtained with
multi-headed multi-task learning (MTL), where we pre-
tain a single shared feature extractor across the source tasks
while the final dense layers are exclusive from one task
to the others. We also consider finetuning from the ini-
tialization obtained by learning only with Tiny ImageNet
(TIN) dataset in order to alleviate the negative transfer issue
that may come with MTL. We next consider the follow-
ing meta-learning methods. FOMAML: Meta-gradient
of this method (Finn et al., 2017) is simply the last-step
inner gradient. FOMAMULA++: (Antoniou et al., 2019) is a
variant of FOMAML which periodically accumulates the
intermediate meta-gradients (Multi-Step Loss Optimization
in MAML++). iMAML: (Rajeswaran et al., 2019a) com-
pute meta-gradient by estimating local curvature at the last
step, based on Implicit Function Theorem. Reptile: Meta-
gradient of this method (Nichol et al., 2018) is defined as
the average of differences between initialization and task-
specific parameters. Leap: This method (Flennerhag et al.,
2019) defines meta-objective as a sum of the task trajectory
lengths, and its meta-gradient is computed with the similar
first-order approximation.

Results and analysis. First of all, we see from Figure 6(a)
that Ours achieve much faster meta-convergence than other
meta-learning methods, thanks to more frequent meta-
updates with the proposed continual trajectory shifting.
Our method thus achieves competitive meta-testing perfor-

*https://github.com/JWoonglas/
ContinualTrajectoryShifting

=== Reptile s
\ — = No Shifting 76
_§) \ Random Shifting 8 -
=4 <
£ g . 4~~~ Reptile
'g i /I', — = No Shifting
70— ... Random Shifting
) 68 = Ours

5K 10K 15K 20K 30K 50K
Cumulative inner steps

0 10K 20K 30K 40K 50K
Cumulative inner steps

(a) Meta-convergence (b) Meta-testing performance
Figure 8. Ablation study. (b) VGG Pets

mances significantly faster than other meta-learning meth-
ods (Figure 7(a-e)*). Note that Reptile significantly out-
performs Leap in our experiments. We carefully tuned the
meta-learning rate of each method, and found that Reptile
allows much greater meta-learning rate (5 = 1.0) than Leap

(8 = 0.1).

We also compare with the other baselines in Figure 6(b). FO-
MAML, FOMAML++, and iMAML perform much worse
than other baselines. For FOMAML, its meta-gradient is
simply the last-step inner-gradient, which can be arbitrarily
uninformative for the meta-learner (Flennerhag et al., 2019).
iMAML estimates the meta gradient at the last step by im-
plicitly incorporating the learning trajectory based on Im-
plicit Function Theorem, but the results tell that the method
is not as effective as explicit methods such as Reptile. FO-
MAML++ outperforms FOMAML, demonstrating the im-
portance of considering the whole inner-trajectory when
computing the meta-gradients (Flennerhag et al., 2019).

For the finetuning baselines, finetuning with MTL signif-
icantly underperforms the finetuning with only TIN. It
demonstrates the effect of negative transfer problem that
frequently happens when we jointly learn with multiple
heterogeneous datasets. On the other hand, our method out-
performs both of the finetuning baselines, indicating that
meta-learning of the shared initialization can be an effec-
tive alternative for the negative transfer problem, instead of
finding a jointly optimal feature extractor for all the tasks.
Lastly, Figure 6(c) and 6(d) shows that the performance
improves as we increase the inner trajectory length up to
K = 1,000, demonstrating the effect of short horizon bias
(See also Figure 4(c)).

Ablation study. We perform the ablation study whether
the proposed shifting for the task-learning trajectories (Line
13 in Algorithm 2) is the source of performance improve-
ments. We see from Figure § that our model without shifting
(No Shifting) or the shifting with the same magnitude but
with random direction (Random Shifting) performs almost
the same as Reptile, demonstrating the effectiveness of the
proposed shifting rule.

*Note that x-axis is cumulative inner steps at meta-training, not
training steps at meta-testing.

https://github.com/JWoong148/ContinualTrajectoryShifting
https://github.com/JWoong148/ContinualTrajectoryShifting

Large-Scale Meta-Learning with Continual Trajectory Shifting

Table 1. Classification accuracies obtained with various pre-training methods (%) when the target dataset contains 1,000 images.
We report the mean accuracies and the 95% confidence intervals over 5 runs.

ImageNet Target dataset

pre-training | CIFAR100 CIFARI0 SVHN Dogs Pets Flowers Food CUB DTD Avg.

+ None 41.95+029 81.60+028 60.09+098 55.56+020 83.48+0.15 87.01+038 36.954+037 34.324046 59.394053 | 60.04

+ MTL 42.79+054 82.33+020 59.05+100 55.00+028 83.29+025 87.04+034 36.844037 34.194088 58.86+049 | 59.93

+ Reptile 47984014 84.58+012 62.39+072 56.97+012 84.25+022 87.22+031 37.35+022 35.44+048 58.98+059 | 61.68

+ Ours 48.34+021 84.42+015 62.82+056 57.53+048 84.65+011 87.54+021 37.84+020 36.40+020 59.53+025 | 62.12
P Results and analysis Table 1 shows the results. We em-
PN N Reptile pirically observe that our method is more effective when the
10 _‘_’_‘_ﬂ; task-specific learning suffers from overfitting. In order to
0 clearly see this effect, we subsample each target dataset to
00 P = contain only 1, 000 images and compare the performances.
s s Table 1 shows that our method consistently outperforms

500 1000 2000 5000 500 1000 2000 5000 500 1000 2000 5000
Training instances Training instances Training instances

(a) Pets (b) Food (c) CUB
Figure 9. Accuracy improvements (%) over ImageNet Finetuning.

4.3. Improving on ImageNet Pre-trained Model

We demonstrate that our method is capable of improving on
the ImageNet finetuning under limited data regime.

Datasets. For meta-training, we construct a heteroge-
neous data distribution by class-wisely dividing the original
ImageNet dataset into 8 subsets based on the WordNet class
hierarchy. We then meta-train the model over the obtained
subsets. See Figure 4 and Table 4 in the Supplementary
file for more information. We then meta-test with the 9
benchmark image classification datasets described in Table
5 in the Supplementary file.

Experimental setup. We use ResNet18 (He et al., 2016)
suitable for the images of size 224 x 224. We use random
cropping and horizontal flipping as data augmentations.
Meta-training: For MTL, Reptile and our model, we start
from the ImageNet pretrained model for the meta-training
to converge faster and reach a better solution than meta-
training from scratch. We use SGD with momentum (¢ =
0.9) as the inner-optimizer without applying the weight
decay (A = 0). We set the batch size to 256. For MTL,
we set the learning rate to 0.01 and train for 50, 000 steps.
For Reptile and our model, we use o = 0.01, K = 1, 000,
and M = 50, but use different meta-learning rate (6 =
1 for Reptile and 8 = 0.001 for our model), since the
optimal meta-learning rate differs across two methods. We
meta-train for 50, 000 steps. Meta-testing: We subsample
each target dataset such that each contains 1, 000 training
datapoints. We normalize each input image with the mean
and standard deviation of RGB channels across the whole
training datapoints. We set the batch size to 256. We train
K = 1,000 steps with Nesterov momentum optimizer (¢ =
0.9). The starting learning rate is v = 0.01, and we step-
wisely decay « at 400, 700, and 900 steps by multiplying
0.2. We use the weight decay A = 0.0001.

the baselines across most of the datasets when each target
dataset has a limited number of instances. Figure 9 confirms
that on most of the target datasets, the performance improve-
ments from the base ImageNet finetuning increase as the
size of each dataset gets smaller. We conjecture that the
performance improvements comes from the smoother initial
model parameter learned with our meta-learning algorithm,
which may correspond to a stronger prior over the model
parameters that can effectively regularize the task-specific
learning with the small datasets.

5. Conclusion

In this paper, we tackled the challenging problem of large-
scale meta-learning. We first showed that a large number
of inner-gradient steps allows to capture the structure of
large-scale meta-learning well. We then improve the meta-
learning efficiency with the continual trajectory shifting,
which continuously shifts the inner-learning trajectories
w.r.t. the frequent update of the initialization point. By
doing so, unlike the previous meta-learning algorithms, the
task-learners no longer need to reinitiate the learning trajec-
tory for every meta-update, thereby allowing to arbitrarily
increase the meta-update frequency. We investigated why
and how our model works well with synthetic experiment
and also validated the effectiveness of our method on the
large-scale experiments with image datasets. We believe
that our work make a meaningful step toward applying meta-
learning to large-scale real-world tasks.

Acknowledgement

This work was supported by Google AI Focused Re-
search Award, the Engineering Research Center Pro-
gram through the National Research Foundation of Ko-
rea (NRF) funded by the Korean Government MSIT
(NRF-2018R1A5A1059921), and the Institute of Informa-
tion & communications Technology Planning & Evalua-
tion (IITP) grant funded by the Korea government(MSIT)
(N0.2019-0-00075, Artificial Intelligence Graduate School
Program(KAIST))

Large-Scale Meta-Learning with Continual Trajectory Shifting

References

https://tiny-imagenet.herokuapp.com/.

Antoniou, A., Edwards, H., and Storkey, A. How to train
your MAML. In International Conference on Learning

Representations, 2019. URL https://openreview.

net/forum?id=HJGven05Y7.

Balduzzi, D., Frean, M., Leary, L., Lewis, J. P., Ma, K. W.-
D., and McWilliams, B. The shattered gradients problem:
If resnets are the answer, then what is the question? In
ICML, 2017a.

Balduzzi, D., McWilliams, B., and Butler-Yeoman, T. Neu-
ral taylor approximations: Convergence and exploration
in rectifier networks. In ICML, 2017b.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J.
Curriculum learning. In ICML, 2009.

Coates, A., Ng, A., and Lee, H. An Analysis of Single-
Layer Networks in Unsupervised Feature Learning. In
AISTATS, 2011.

Dhillon, G. S., Chaudhari, P, Ravichandran, A., and Soatto,
S. A baseline for few-shot image classification. In ICLR,
2020.

Finn, C., Abbeel, P, and Levine, S. Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. In ICML,
2017.

Flennerhag, S., Moreno, P. G., Lawrence, N., and Damianou,
A. Transferring Knowledge across Learning Processes.
In ICLR, 2019.

Flennerhag, S., Rusu, A. A., Pascanu, R., Visin, F., Yin,
H., and Hadsell, R. Meta-learning with warped gradient
descent. In ICLR, 2020.

Ha, D. and Eck, D. A neural representation of sketch
drawings. CoRR, abs/1704.03477, 2017. URL http:
//arxiv.org/abs/1704.03477.

He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual
Learning for Image Recognition. In CVPR, 2016.

Jang, Y., Lee, H., Hwang, S. J., and Shin, J. Learning What
and Where to Transfer. In ICML, 2019.

Khosla, A., Jayadevaprakash, N., Yao, B., and Fei-Fei, L.
Novel dataset for fine-grained image categorization. In

First Workshop on Fine-Grained Visual Categorization,
CVPR, 2011.

Kornblith, S., Shlens, J., and Le, Q. V. Do better imagenet
models transfer better? In CVPR, 2019.

Krause, J., Stark, M., Deng, J., and Fei-Fei, L. 3d object
representations for fine-grained categorization. In 4th
International IEEE Workshop on 3D Representation and
Recognition (3dRR-13), 2013.

Krizhevsky, A., Hinton, G., et al. Learning Multiple Layers
of features from Tiny Images. 2009.

Lake, B. M., Salakhutdinov, R., and Tenenbaum, J. B.
Human-level concept learning through probabilistic pro-
gram induction. Science, 350(6266):1332-1338, 2015.

Lee, K., Maji, S., Ravichandran, A., and Soatto, S. Meta-
learning with differentiable convex optimization. In
CVPR, 2019.

Lee, Y. and Choi, S. Gradient-based meta-learning with
learned layerwise metric and subspace. In ICML, 2018.

Liu, Y., Lee, J., Park, M., Kim, S., Yang, E., Hwang, S.,
and Yang, Y. LEARNING TO PROPAGATE LABELS:
TRANSDUCTIVE PROPAGATION NETWORK FOR
FEW-SHOT LEARNING. In ICLR, 2019.

Maji, S., Rahtu, E., Kannala, J., Blaschko, M., and Vedaldi,
A. Fine-Grained Visual Classification of Aircraft. arXiv
preprint arXiv:1306.5151, 2013.

Mishra, N., Rohaninejad, M., Chen, X., and Abbeel, P. A
simple neural attentive meta-learner. In /CLR, 2018.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
and Ng, A. Y. Reading Digits in Natural Images with
Unsupervised Feature Learning. 2011.

Nichol, A., Achiam, J., and Schulman, J. On First-Order
Meta-Learning Algorithms. arXiv e-prints, 2018.

Nilsback, M.-E. and Zisserman, A. Automated flower clas-
sification over a large number of classes. In Indian Con-
ference on Computer Vision, Graphics and Image Pro-
cessing, 2008.

Oreshkin, B., Rodriguez Lépez, P., and Lacoste, A. Tadam:
Task dependent adaptive metric for improved few-shot
learning. In NeurlPS, 2018.

Parkhi, O. M., Vedaldi, A., Zisserman, A., and Jawabhar,
C. V. Cats and dogs. In IEEE Conference on Computer
Vision and Pattern Recognition, 2012.

Rajeswaran, A., Finn, C., Kakade, S. M., and Levine, S.
Meta-learning with implicit gradients. In Wallach, H.,
Larochelle, H., Beygelzimer, A., d'Alché-Buc, F.,, Fox, E.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 32. Curran Associates,
Inc., 2019a. URL https://proceedings.
neurips.cc/paper/2019/file/
072b030bal26b2f4b2374£342be%ed44-Paper.
pdf.

https://tiny-imagenet.herokuapp.com/
https://openreview.net/forum?id=HJGven05Y7
https://openreview.net/forum?id=HJGven05Y7
http://arxiv.org/abs/1704.03477
http://arxiv.org/abs/1704.03477
https://proceedings.neurips.cc/paper/2019/file/072b030ba126b2f4b2374f342be9ed44-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/072b030ba126b2f4b2374f342be9ed44-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/072b030ba126b2f4b2374f342be9ed44-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/072b030ba126b2f4b2374f342be9ed44-Paper.pdf

Large-Scale Meta-Learning with Continual Trajectory Shifting

Rajeswaran, A., Finn, C., Kakade, S. M., and Levine, S.
Meta-Learning with Implicit Gradients. In NeurIPS,
2019b.

Ravi, S. and Larochelle, H. Optimization as a model for
few-shot learning. In ICLR, 2017.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., et al. ImageNet Large Scale Visual Recognition
Challenge. 1JCV, 2015.

Rusu, A. A, Rao, D., Sygnowski, J., Vinyals, O., Pascanu,
R., Osindero, S., and Hadsell, R. Meta-learning with
latent embedding optimization. In ICLR, 2019.

Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D., and
Lillicrap, T. Meta-learning with memory-augmented neu-
ral networks. In ICML, 2016.

Schmidhuber, J. Evolutionary principles in self-referential
learning, or on learning how to learn: the meta-meta-
... hook. PhD thesis, Technische Universitat Miinchen,
1987.

Snell, J., Swersky, K., and Zemel, R. Prototypical networks
for few-shot learning. In NIPS, 2017.

Song, X., Gao, W., Yang, Y., Choromanski, K., Pacchiano,
A., and Tang, Y. Es-maml: Simple hessian-free meta
learning. In ICLR, 2020.

Thrun, S. and Pratt, L. (eds.). Learning to Learn. Kluwer
Academic Publishers, Norwell, MA, USA, 1998. ISBN
0-7923-8047-9.

Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.
Matching Networks for One Shot Learning. In NIPS,
2016.

Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie,
S. The Caltech-UCSD Birds-200-2011 Dataset. Tech-
nical Report CNS-TR-2011-001, California Institute of
Technology, 2011.

Wu, Y., Ren, M., Liao, R., and Grosse., R. Understanding
short-horizon bias in stochastic meta-optimization. In
ICLR, 2018.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-mnist: a
novel image dataset for benchmarking machine learning
algorithms, 2017a.

Xiao, H., Rasul, K., and Vollgraf, R. Fashion-MNIST: a
Novel Image Dataset for Benchmarking Machine Learn-
ing Algorithms. arXiv preprint arXiv:1708.07747, 2017b.

Yang, F. S. Y., Zhang, L., Xiang, T., Torr, P. H., and
Hospedales, T. M. Learning to compare: Relation net-
work for few-shot learning.(2017). 2017.

