
Supplementary Material

This document presents a detailed discussion on the theo-

rems, proofs, experimental observations and setup left out

in the main paper due to space constraints.

1. Background
1.1. Preliminaries and Notations

Consider the GAN game defined by :

min
θg∈ΘG

max
θd∈ΘD

V (Dθd , Gθg ), (1)

where the generator (G, parametrized by θg) and discrim-

inator (D, parametrized by θd) are neural networks and V
is the objective function that the agents seek to optimize.

Let us denote by Pr the real data distribution and by Pθg

the generated data distribution. We consider three different

GAN formulations, each expressing the objective function

(V ) as summarized below:

Classic GAN, defined by:

Vc =
1

2
Ex∼Pr [logD(x)]+

1

2
Ex∼Pθg

[log(1−D(x))] (2)

F-GAN, defined by:

Vf = Ex∼Pr [D(x)]− Ex∼Pθg
[f∗(D(x))], (3)

where f∗ denotes the Fenchel conjugate of a convex lower

semi-continuous function f satisfying f(1) = 0.

WGAN, defined by:

Vw = Ex∼Pr
[D(x)]− Ex∼Pθg

[Dc(x)], (4)

where Dc denotes the c−transform of D.

We denote by DIV (Pθg ||Pr) the divergence between the

real and generated data distributions, defined for the three

GAN formulations as below:

DIV (Pθg ||Pr) =

⎧⎪⎨
⎪⎩
JSD(Pθg ||Pr), if V = Vc

Wc(Pθg ||Pr), if V = Vw

Df (Pθg ||Pr), if V = Vf

where JSD, Wc and Df denotes the Jenson-Shannon Di-

vergence, Wasserstein Distance (associated with a transport

cost c) and f−divergence respectively. To theoretically

study the properties of DGλ, we assume that for a fixed

generator, an optimal discriminator (Dw) that maximizes

V exists.

1.2. GANs Need Not Converge to Nash Equilibrium

In this section, we provide further empirical evidence for

the claim that GANs can produce realistic data even at non-
Nash critical points. Section 3.2 of the main paper pre-

sented results for an SNGAN trained over the CIFAR-10

dataset. Figure 1 demonstrates similar results for SNGAN

over the MNIST and CELEB-A datasets. We observe that

the converged GAN configurations do not exhibit the char-

acteristics of a Nash equilibrium, despite producing high

fidelity samples. A Nash equilibrium is optimal for both

the agents, thus no agent can deviate from it to unilat-

erally improve its payoff. As the generator (discrimina-

tor) aims to minimize (maximize) the objective function,

a Nash equilibrium would constitute a local minima (max-

ima) for the generator (discriminator). The hessian of the

objective function w.r.t the generator (discriminator) would

thus be positive (negative) definite. However, as depicted

in Figure 1, the hessian of the objective function w.r.t the

generator is indefinite as it has both positive as well as neg-

ative eigenvalues, indicating that the configuration is not a

local minima for the generator and thus not a Nash equi-

librium. This is also verified by the visualization (Figure

1 that the generator is able to deviate from the converged

configuration on unilaterally optimizing the objective func-

tion, attaining a lower loss, but deteriorating the quality of

the learned data distribution.

2. Theorems and Proofs
2.1. Classical Duality Gap

Proposition 1. The duality gap (DG) for a GAN configu-
ration will tend to zero only at a Nash equilibrium and is
positive otherwise.

Proof. A configuration (θ∗d, θ
∗
g) of the GAN game (Eq 1) is

called a Nash equilibrium if and only if ∀ θd, θg ,

V (Dθd , Gθ∗
g
) ≤ V (Dθ∗

d
, Gθ∗

g
) ≤ V (Dθ∗

d
, Gθg )

Equivalently, max
θ̃d∈ΘD

V (Dθ̃d
, Gθ∗

g
) = min

θ̃g∈ΘG

V (Dθ∗
d
, Gθ̃g

)

We have from the definition of duality gap (DG),

DG(θd, θg) = max
θ̃d∈ΘD

V (Dθ̃d
, Gθg )− min

θ̃g∈ΘG

V (Dθd , Gθ̃g
)
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(a) SNGAN trained on MNIST (b) SNGAN trained on CELEB-A

Figure 1. The high fidelity images outputted by a converged GAN deteriorates on optimizing only w.r.t the generator while attaining

a lower loss, indicating that the GAN has not converged to a Nash equilibrium; confirmed by the presence of positive and negative

eigenvalues in the Hessian.

Thus, when DG(θd, θg) = 0

=⇒ max
θ̃d∈ΘD

V (Dθ̃d
, Gθg ) = min

θ̃g∈ΘG

V (Dθd , Gθ̃g
)

=⇒ (θd, θg) is a Nash equilibrium.

Similarly, when (θd, θg) is a Nash equilibrium,

=⇒ max
θ̃d∈ΘD

V (Dθ̃d
, Gθg ) = min

θ̃g∈ΘG

V (Dθd , Gθ̃g
)

=⇒ DG(θd, θg) = 0

When (θd, θg) does not constitute a Nash equilibrium,

=⇒ max
θ̃d∈ΘD

V (Dθ̃d
, Gθg ) > min

θ̃g∈ΘG

V (Dθd , Gθ̃g
)

=⇒ DG(θd, θg) > 0

However, as discussed, GANs can converge to non-Nash

critical points while producing data samples of high fi-

delity. The behaviour of DG at such scenarios is not well

understood, limiting its applicability as a tool for monitor-

ing GAN training.

2.2. Proximal Duality Gap

Proposition 2. Consider a GAN game governed by the ob-
jective function V . Then, for a configuration (θd, θg) the
proximal objective V λ is related to V as :

V λ(θd, θg) ≤ VDw
(θg)

Proof. Since λ||Dθ̃d
−Dθd ||2 ≥ 0, we have

V (Dθ̃d
, Gθg )− λ||Dθd −Dθ̃d

||2 ≤ V (Dθ̃d
, Gθg )

=⇒ V λ(θd, θg) ≤ max
θ̃d

V (Dθ̃d
, Gθg )

= VDw
(θg)

Lemma 1. Given a generator θg , VDw is related to the
divergences between Pr and Pθg in the various GAN ob-
jectives as follows

VDw
(θg) =

⎧⎪⎨
⎪⎩
JSD(Pθg ||Pr)− log 2, if V = Vc

Wc(Pθg ||Pr), if V = Vw

Df (Pθg ||Pr), if V = Vf

Proof. We divide the proof into three parts corresponding

to each of the three GAN formulations.

Part 1. Classic GAN
Consider the classic GAN objective V = Vc. We have,

V =
1

2
Ex∼Pr

[logD(x)] +
1

2
Ex∼Pθg

[log(1−D(x))]

=
1

2

∫
Pr(x) logD(x)dx+

1

2

∫
Pθg (x) log(1−D(x))dx

We have VDw
= max

D
V . The worst case discriminator Dw

can be obtained by differentiating V w.r.t D for every x and

equating to zero. This gives:

Dw(x) =
Pr(x)

Pθg (x) + Pr(x)

Substituting Dw back into V gives,

VDw =
1

2

∫
Pr(x) log

(
Pr

Pr + Pθg

)
dx

+
1

2

∫
Pθg (x) log

(
Pθg

Pr + Pθg

)
dx

= JSD(Pθg ||Pr)− log 2

Part 2. Wasserstein GAN
Consider the Wasserstein GAN objective V = Vw. We

have,

V = Ex∼Pr
[D(x)]− Ex∼Pθg

[Dc(x)]
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where, Dc(x) is related to D(x) as

Dc(x) = sup
x′

{ D(x′)− c(x, x′) }

≥ D(x)− c(x, x)

≥ D(x)

Substituting for Dc(x) into V , we have

V ≤ Ex∼Pr
[D(x)]− Ex∼Pθg

[D(x)]

Thus, if ∃ a c−concave function Dw such that Dw(x) =
Dc

w(x), then the bound is attainable and we have,

VDw
= max

D c−concave
V = sup

D c−concave
V

= Ex∼Pr
[Dw(x)]− Ex∼Pθg

[Dw(x)]

Consider a constant discriminator Dconstant(x) = k, which

by definition satisfies c−concavity. We have,

Dc
constant(x) = sup

x′
{ Dconstant(x

′)− c(x, x′) }

= sup
x′

{ k − c(x, x′) }

= k + sup
x′

{ −c(x, x′) }

= k = Dconstant(x)

Thus, for Dw = Dconstant the bound is attainable and we

have,

VDw
= max

D c−concave
V

= sup
D c−concave

Ex∼Pr
[D(x)]− Ex∼Pθg

[Dc(x)]

= Wc(Pθg ||Pr)

Part 3. F-GAN
Consider the F-GAN objective V = Vf . We have,

V = Ex∼Pr [D(x)]− Ex∼Pθg
[f∗(D(x))],

where f∗ is the Fenchel conjugate of a convex function f
defined by f∗(x) = max

t
{ xt − f(t) } . The maximum

implied by f∗ can be obtained by differentiating it w.r.t t
and equating to zero. This gives

x− f ′(t) = 0

=⇒ x = f ′(t)

On Substituting the value of x in f∗(x), we get that f∗

satisfies the property

f∗(f ′(t)) = tf ′(t)− f(t) (5)

We have VDw = max
D

V . The worst case discriminator Dw

can be obtained by differentiating V w.r.t D for every x and

equating to zero. This gives:

Dw(x) = f∗′−1

(
Pr(x)

Pθg (x)

)

Substituting Dw back into V we get,

VDw
=

∫
Pr(x)f

∗′−1

(
Pr(x)

Pθg (x)

)
dx

−
∫

Pθg (x)f
∗
(
f∗′−1

(
Pr(x)

Pθg (x)

))
dx

The Fenchel conjugate f∗ of a convex function f satisfies

f∗′−1 = f ′. Thus, substituting for f∗′−1 in VDw
, we get,

VDw =

∫
Pr(x)f

′
(

Pr(x)

Pθg (x)

)
dx

−
∫

Pθg (x)f
∗
(
f

′
(

Pr(x)

Pθg (x)

))
dx

=

∫
Pr(x)f

′
(

Pr(x)

Pθg (x)

)
dx

−
∫

Pθg (x)

(
Pr(x)

Pθg (x)
f

′
(

Pr(x)

Pθg (x)

))
dx

+

∫
Pθg (x)

(
f

(
Pr(x)

Pθg (x)

))
dx (using 5)

=

∫
Pθg (x)f

(
Pr(x)

Pθg (x)

)
dx

= Df (Pθg ||Pr)

Theorem 1. Consider a GAN game governed by an ob-
jective function V . Then the proximal duality gap (DGλ)
at a configuration (θd, θg) is related to the divergence be-
tween the real (Pr) and generated (Pθg ) data distributions
as follows.

DGλ(θd, θg) ≥ DIV (Pθg ||Pr)− κ

where,

DIV (Pθg ||Pr) =

⎧⎪⎨
⎪⎩
JSD(Pθg ||Pr), if V = Vc

Wc(Pθg ||Pr), if V = Vw

Df (Pθg ||Pr), if V = Vf

and κ (≥ 0) denotes the minimum divergence that the con-
sidered class of generator functions can achieve with the
real data distribution.

Proof. We divide the proof into three parts corresponding

to each of the the three GAN formulations. For each GAN
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formulation, we denote by κ the minimum divergence that

the considered class of generator functions can attain with

the real data distributions; minPθg
DIV (Pθg ||Pr) = κ.

Note that under the realizable setting, κ = 0 as ∃θg such

that Pθg = Pr.

Part 1. Classic GAN,

Consider the classic GAN objective V = Vc. We have,

VDw
(θg) = JSD(Pθg ||Pr)− log 2 (lemma 1)

Further, V λ(θd, θg) ≤ VDw
(θg) (proposition 2)

=⇒ V λ(θd, θg) ≤ JSD(Pθg ||Pr)− log 2
Thus, using a slight misuse of notation, we have

V λ
Gw

(θd) = min
θ′
g

V λ(θd, θ
′
g)

≤ min
P

θ
′
g

JSD(Pθ′
g
||Pr)− log 2

= κ− log 2

∴ DGλ(θd, θg) = VDw(θg)− V λ
Gw

(θd)

≥ JSD(Pθg ||Pr)− κ

Part 2. Wasserstein GAN,

Consider the Wasserstein GAN objective V = Vw. We

have, VDw
(θg) = Wc(Pθg ||Pr) (lemma 1)

Further, V λ(θd, θg) ≤ VDw
(θg) (proposition 2)

=⇒ V λ(θd, θg) ≤ Wc(Pθg ||Pr)
Thus, using a slight misuse of notation, we have

V λ
Gw

(θd) = min
θ′
g

V λ(θd, θ
′
g)

≤ min
P

θ
′
g

Wc(Pθ′
g
||Pr)

= κ

∴ DGλ(θd, θg) = VDw(θg)− V λ
Gw

(θd)

≥ Wc(Pθg ||Pr)− κ

Part 3. F-GAN,

Consider the F-GAN objective V = Vf . We have,

VDw
(θg) = Df (Pθg ||Pr) (lemma 1)

Further, V λ(θd, θg) ≤ VDw
(θg) (proposition 2)

=⇒ V λ(θd, θg) ≤ Df (Pθg ||Pr)
Thus, using a slight misuse of notation, we have

V λ
Gw

(θd) = min
θ′
g

V λ(θd, θ
′
g)

≤ min
P

θ
′
g

Df (Pθ′
g
||Pr)

= κ

∴ DGλ(θd, θg) = VDw(θg)− V λ
Gw

(θd)

≥ Df (Pθg ||Pr)− κ

Theorem 2. The proximal duality gap (DGλ) at a con-
figuration (θ∗d, θ

∗
g) for the GAN game defined by Vc, Vw,

or Vf is equal to zero for λ = 0, when the generator
learns the real data distribution .i.e, Pθ∗

g
= Pr =⇒

DGλ=0(θ∗d, θ
∗
g) = 0.

Proof. Let (θ∗d, θ
∗
g) be a GAN configuration such that

Pθ∗
g

= Pr. Since this is a realizable setting,

minPθg
DIV (Pθg ||Pr) = 0. We divide the proof into

three parts corresponding to each of the the three GAN for-

mulations.

Part 1. Classic GAN,

Consider the classic GAN objective V = Vc. We have,

VDw(θ
∗
g) = JSD(Pθ∗

g
||Pr)− log 2 (lemma 1)

= − log 2 (∵ Pθ∗
g
= Pr)

V λ=0
Gw

(θ∗d) = min
θ′
g

V λ=0(θ∗d, θ
′
g)

= min
P

θ
′
g

max
θ̃d

V (θ̃d, θ
′
g)

= min
P

θ
′
g

VDw
(θ

′
g)

= min
P

θ
′
g

JSD(Pθ′
g
||Pr)− log 2

= − log 2

∴ DGλ=0(θ∗d, θ
∗
g) = VDw(θ

∗
g)− V λ=0

Gw
(θ∗d)

= 0

Part 2. Wasserstein GAN,

Consider the Wasserstein GAN objective V = Vw. We

have,

VDw
(θ∗g) = Wc(Pθ∗

g
||Pr) (lemma 1)

= 0 (∵ Pθ∗
g
= Pr)

V λ=0
Gw

(θ∗d) = min
θ′
g

V λ=0(θ∗d, θ
′
g)

= min
P

θ
′
g

max
θ̃d

V (θ̃d, θ
′
g)

= min
P

θ
′
g

VDw(θ
′
g)

= min
P

θ
′
g

Wc(Pθ′
g
||Pr)

= 0

∴ DGλ=0(θ∗d, θ
∗
g) = VDw

(θ∗g)− V λ=0
Gw

(θ∗d)

= 0

Part 3. F-GAN,
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Consider the F-GAN objective V = Vf . We have,

VDw(θ
∗
g) = Df (Pθ∗

g
||Pr) (lemma 1)

= 0 (∵ Pθ∗
g
= Pr)

V λ=0
Gw

(θ∗d) = min
θ′
g

V λ=0(θ∗d, θ
′
g)

= min
P

θ
′
g

max
θ̃d

V (θ̃d, θ
′
g)

= min
P

θ
′
g

VDw
(θ

′
g)

= min
P

θ
′
g

Df (Pθ′
g
||Pr)

= 0

∴ DGλ=0(θ∗d, θ
∗
g) = VDw(θ

∗
g)− V λ=0

Gw
(θ∗d)

= 0

Corollary. For the GAN formulations defined by Vc, Vw

or Vf , the generator learns the real data distribution at a
configuration (θ∗d, θ

∗
g) if and only if (θ∗d, θ

∗
g) constitutes a

Stackelberg equilibrium.

Proof. Consider a configuration (θ∗d, θ
∗
g) for the GAN game

defined by Vc, Vw or Vf . We have,

Part 1. When Pθ∗
g
= Pr,

Theorem 2 =⇒ DGλ=0(θ∗d, θ
∗
g) = 0

=⇒ (θ∗d, θ
∗
g) ∈ Stackelberg Equilibria

Part 2. When (θ∗d, θ
∗
g) ∈ Stackelberg Equilibria,

From the definition of DGλ and Stackelberg Equilibrium,

DGλ=0(θ∗d, θ
∗
g) = 0

=⇒ DIV (Pθ∗
g
||Pr) ≤ 0 (Theorem 1)

=⇒ DIV (Pθ∗
g
||Pr) = 0 (∵ DIV ≥ 0)

=⇒ Pθ∗
g
= Pr

Theorem 3. Consider a GAN configuration (θd, θg). Then,
∀λ′ ≥ λ0,

DGλ=λ
′
(θd, θg) = 0 =⇒ DGλ=λ0(θd, θg) = 0

Proof. We know from the definition of DGλ that

DGλ(θd, θg) = 0 is a necessary and sufficient condi-

tion for (θd, θg) to be a λ−proximal equilibrium i.e. ,

DGλ(θd, θg) = 0 implies that ∀ θ
′
d, θ

′
g ,

V (Dθ
′
d
, Gθg ) ≤ V (Dθd , Gθg )

≤ max
θ̃d∈ΘD

V (Dθ̃d
, Gθ′

g
)− λ||Dθ̃d

−Dθd ||2

and vice-versa.

Now, ∀λ′ ≥ λ0, the following holds

max
θ̃d∈ΘD

V (Dθ̃d
, Gθ′

g
)− λ

′ ||Dθ̃d
−Dθd ||2

≤ max
θ̃d∈ΘD

V (Dθ̃d
, Gθ′

g
)− λ0||Dθ̃d

−Dθd ||2

Thus, (θd, θg) is a λ
′−proximal equilibrium =⇒ (θd, θg)

is also a λ0−proximal equilibrium.

∴ DGλ=λ
′
(θd, θg) = 0 =⇒ DGλ=λ0(θd, θg) = 0

Theorem 4. Consider a GAN game governed by an ob-
jective function V . For λ > 0, let V λ denote the proxi-
mal objective defined by V λ(θd, θg) = maxθ̃d

V (θ̃d, θg)−
λ||Dθ̃d

− Dθd ||2 . Then, ∀ ε > 0, ∃ δ > 0 such that if
||Dθd−Dθ̃d

|| < δ, then DGλ(θd, θg)−DIV (Pθg ||Pr) < ε
where,

DIV (Pθg ||Pr) =

⎧⎪⎨
⎪⎩
JSD(Pθg ||Pr), if V = Vc

Wc(Pθg ||Pr), if V = Vw

Df (Pθg ||Pr), if V = Vf

Proof. We show that for all ε > 0 and λ > 0, δ =

√
ε

λ
satisfies the claim. We provide the proof for F-GAN. The

proof for the other GAN formulations follow on the same

lines.

Consider a configuration (θd, θg) for the GAN game de-

fined by the F-GAN objective V = Vf . We have,

VDw(θg) = Df (Pθg ||Pr) (lemma 1)
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Given that ||Dθd −Dθ̃d
|| < δ, we have

DGλ(θd, θg)−DIV (Pθg ||Pr)

= VDw(θg)− V λ
Gw

(θd)−Df (Pθg ||Pr)

= Df (Pθg ||Pr)− V λ
Gw

(θd)

−Df (Pθg ||Pr)

= −V λ
Gw

(θd)

= −min
θ′
g

V λ(θd, θ
′
g)

= −min
θ′
g

{max
θ̃d

V (θ̃d, θ
′
g)

− λ||Dθ̃d
−Dθd ||2}

< −min
θ′
g

{max
θ̃d

V (θ̃d, θ
′
g)− λδ2}

= −min
θ′
g

{VDw
(θ

′
g)}+ λδ2

= −min
P

θ
′
g

{Df (Pθ′
g
||Pr)}+ λδ2

= λδ2

= λ

(√
ε

λ

)2

= ε

3. DGλ Estimation

Algorithm 1 Proximal Duality Gap DGλ(θtd, θ
t
g)

Input: GAN configuration - (θtd, θtg), data points xi

function prox opt(θd, θg) :

θ̃d ←− θd
for j = 0 to T do

V λ ←− V (θ̃d, θg) − λ
n

∑n
i=1 ||∇xDθ̃d

(xi) −
∇xDθd(xi)||22
θ̃d ←− θ̃d + η∇θ̃d

V λ

end
return θ̃d, V

λ

θwd ←− θtd ; θwg ←− θtg
for i = 0 to N ITER do

θwd ←− θwd + η∇θw
d
V (θwd , θ

t
g)

θ∗d, V
λ ←−prox opt(θtd, θ

w
g )

θwg ←− θwg − η∇θw
g
V (θ∗d, θ

w
g )

end
VDw ←− V (θtg, θ

w
d )

θ∗d, V
λ
Gw

←− prox opt(θtd, θ
w
g )

return DGλ(θtd, θ
t
g) = VDw − V λ

Gw

Algorithm 1 summarizes the estimation process for prox-

imal duality gap. Given a configuration (θd, θg) of the

GAN, we estimate VDw and V λ
Gw

by optimizing the ob-

jective function w.r.t the individual agents using gradient

descent. We have the proximal objective defined by,

V λ(Dθd , Gθg ) = max
θ̃d∈ΘD

V (Dθ̃d
, Gθg )− λ||Dθ̃d

−Dθd ||2

Following (Farnia Ozdaglar, 2020) we use the Sobolev

norm in V λ, given by

||D|| =
√
Ex∼Pr

[
||∇xD(x)||22

]

The estimation process for DGλ is similar to that of DG,

except that the worst case generator for a given discrimina-

tor is computed w.r.t the proximal objective (V λ). As de-

picted in Algorithm 1, the function prox opt uses gradient

ascent to estimate the proximal objective V λ. Since λ re-

stricts the neighbourhood within which the discriminator is

optimal in V λ, the search space for the optimal discrimina-

tor increases as λ decreases. Correspondingly, estimating

V λ demands a larger number of gradient steps and becomes

computationally infeasible as λ → 0.

Figure 2. Computational Complexity of DGλ over DG

We thus experimentally studied the computational over-

head in estimating DGλ over DG. Figure 2 compares

the average time taken per epoch to estimate DG and

DGλ across varying gradient steps (T ) to approximate

V λ. We observe that while DGλ has comparable com-

putational complexity as DG for smaller values of T , it

increases rapidly for larger values of T . We observed that

for λ = 0.1, ≈ 20 steps were sufficient for V λ to converge

(in line with the observations of (Farnia Ozdaglar, 2020) ),

incurring computational expense (Figure 2) comparable to

that demanded by DG.
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Pearson Correlation Coefficient (r)

rDG,IS rDGλ,IS rDG,FID rDGλ,FID

MNIST -0.104 -0.516 0.207 0.942
CIFAR-10 -0.368 -0.463 0.293 0.661
CELEB-A -0.535 -0.846 0.638 0.929

Table 1. Comparing the correlation of DG and DGλ with IS and

FID computed during the training of SNGAN over the 3 datasets.

4. Experiments and Results
4.1. Monitoring GAN Training Using DGλ

In this section, we present further empirical observations

and evidence to demonstrate the proficiency of proximal

duality gap. Section 5.1 of the main paper presented the

adeptness of DGλ over DG to monitor GAN convergence,

suggesting that the GANs have attained a proximal equilib-

rium and not a Nash equilibrium. We thus studied the be-

haviour of the converged GAN while estimating DG and

DGλ. We visualized the variation in the generated data

distribution across epochs during the estimation of VGw

(for DG) and V λ
Gw

(for DGλ). The behaviours are demon-

strated in Figure 3 for SNGAN and Figure 4 for WGAN

across the three datasets - (a) MNIST, (b) CIFAR-10 and

(c) CELEB-A. The high fidelity of generated data samples

depicted in each subfigure suggest that the GANs have con-

verged. However, on optimizing the objective function (V )

unilaterally w.r.t the generator, it deviates (top row on the

right) and deteriorates the quality of the learned data dis-

tribution, validating that the GAN has not attained a Nash

equilibrium. However, the generator is unable to deviate

(bottom row on the right) from the converged configura-

tion w.r.t the proximal objective (V λ) as the generated data

distribution does not vary, indicating that the GANs have

attained a proximal equilibrium. This explains why DGλ

is able to better characterize convergence over DG for each

GAN.

Table 1 presents the correlation of DG and DGλ with the

popular quality evaluation measures IS and FID, across

the training process of an SNGAN over each of the three

datasets. We observe that DGλ has a higher correlation

over DG with each of the measures. Thus, further validat-

ing the claim that DGλ is adept to not only monitor con-

vergence of the GAN game to an equilibrium, but also the

goodness of the learned data distribution.

4.2. Implementation and Hyperparameter Details

We used the 4-layer DCGAN architecture for both the gen-

erator and the discriminator networks in all the experi-

ments. We used an Adam optimizer to train and evaluate

all the models. To compute DGλ, we used λ = 0.1 and

20 optimization steps for approximating the proximal ob-

jective. To enforce the Lipschitz constraint in WGAN, we

used weight clipping in the range [−0.01, 0.01]. We used

a batch size of 512, 512, 128 for MNIST, CIFAR-10 and

CELEB-A datasets respectively, where the input images

were resized to be of shape 32×32. The latent space dimen-

sion for the generator was set to 100. To ensure that we ob-

tain an unbiased estimate for DGλ and DG, we split each

dataset into 3 disjoint sets - SA, SB and SC . We trained the

GAN using SA, we used SB to find the worst case counter

parts Dw and Gw via gradient descent, and SC to evaluate

the objective function at the obtained worst case configura-

tions. For each dataset, we kept 5000 samples each in SB ,

SC and the rest in SA. To estimate the worst case configu-

rations, we optimized each agent unilarerally for 10 epochs

over SB . The learning rates for the discriminator (LRD)

and generator (LRG), the value in multiples of which the

DCGAN architecture steps up the convolutional features

(Step Channels) and the values of (β1, β2) used in the

Adam optimizer for each of the datasets are summarized in

Table 3 for WGAN and Table 2 for SNGAN.

SNGAN

LRD LRG
Step

Channels
β1 β2

MNIST 1e− 4 2e− 4 16 0.00 0.999
CIFAR-10 1e− 4 2e− 4 64 0.00 0.999
CELEB-A 1e− 4 2e− 4 64 0.00 0.999

Table 2. Hyperparameter values for SNGAN experiments.

WGAN

LRD LRG
Step

Channels
β1 β2

MNIST 4e− 4 1e− 4 16 0.50 0.999
CIFAR-10 4e− 4 1e− 4 64 0.50 0.999
CELEB-A 4e− 4 1e− 4 64 0.50 0.999

Table 3. Hyperparameter values for WGAN experiments.



Supplementary Material: On Characterizing GAN Convergence Through Proximal Duality Gap

(a) MNIST

(b) CIFAR-10

(c) CELEB-A

Figure 3. Visualizing the behaviour the generator while estimating DG and DGλ for a converged Wasserstein GAN (WGAN) over

the datasets- (a) MNIST (b) CIFAR-10 (c) CELEB-A. The GAN has converged, validated by the high fidelity of generated data sam-

ples(left grid). However, the generator deviates on optimizing V , but remains stationary on optimizing V λ, indicating that the converged

configuration is a proximal equilibrium and not a Nash equilibrium.



Supplementary Material: On Characterizing GAN Convergence Through Proximal Duality Gap

(a) MNIST

(b) CIFAR-10

(c) CELEB-A

Figure 4. Visualizing the behaviour the generator while estimating DG and DGλ for a converged Spectral Norrmalized GAN (SNGAN)

over the datasets- (a) MNIST (b) CIFAR-10 (c) CELEB-A. The GAN has converged, validated by the high fidelity of generated data

samples(left grid). However, the generator deviates on optimizing V , but remains stationary on optimizing V λ, indicating that the

converged configuration is a proximal equilibrium and not a Nash equilibrium.


