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Abstract
In this paper, we study the hard and soft support
vector regression techniques applied to a set of n
linear measurements of the form yi = βT? xi + ni
where β? is an unknown vector, {xi}ni=1 are the
feature vectors and {ni}ni=1 model the noise. Par-
ticularly, under some plausible assumptions on the
statistical distribution of the data, we character-
ize the feasibility condition for the hard support
vector regression in the regime of high dimen-
sions and, when feasible, derive an asymptotic
approximation for its risk. Similarly, we study
the test risk for the soft support vector regression
as a function of its parameters. Our results are
then used to optimally tune the parameters in-
tervening in the design of hard and soft support
vector regression algorithms. Based on our anal-
ysis, we illustrate that adding more samples may
be harmful to the test performance of support vec-
tor regression, while it is always beneficial when
the parameters are optimally selected. Such a re-
sult reminds a similar phenomenon observed in
modern learning architectures according to which
optimally tuned architectures present a decreasing
test performance curve with respect to the number
of samples.

1. Introduction
Motivation. Recent works have demonstrated that the test
performance of modern learning architectures exhibits both
model-wise and sample-wise double descent phenomena
that defy conventional statistical intuition. Model-wise
descent, reported in recent works (Belkin et al., 2019a;c;
Geiger et al., 2019), suggests that, for very large architec-
tures, performance improves with the number of parameters,
thus contradicting the bias-variance trade-off. On the other
hand, sample-wise descent, discussed recently in the works

1Computer, Electrical, and Mathematical Sciences & Engineer-
ing Division, King Abdullah University of Science and Technology
(KAUST), Thuwal, Saudi Arabia. Correspondence to: Houssem
Sifaou <houssem.sifaou@kaust.edu.sa>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

of Nakkiran et al. (Nakkiran et al., 2020a;b) indicates that
more data may harm the performance. One potential solu-
tion to avoid such a behavior consists in optimally tuning
the involved parameters. In doing so, the test performance
in most scenarios decreases with the number of samples.

In this paper, we investigate the sample-wise double descent
phenomenon for basic linear models. More precisely, we
assume independent data samples (xi, yi), i = 1, · · · , n
distributed as:

yi = βT? xi + σni,

where xi ∈ Rp is the feature vector assumed to have zero
mean and covariance Ip, yi represent the scalar response
variables while σni stands for zero-mean noise with vari-
ance σ2. To estimate β?, we consider support vector regres-
sion techniques: hard-support vector regression (H-SVR),
which estimates the regression vector β with minimum `2
norm that satisfies the constraints yi = βTxi up to a max-
imum error ε, and soft-support regression (S-SVR) which
uses a regularization constant C that aims to create a trade-
off between the minimization of the training error and the
minimization of the model complexity. SVR has been exte-
sively used in several applications that vary from biomedical
analysis (Hamdi et al., 2018) to financial time series (Ju
et al., 2014; Yang et al., 2009; Qu & Zhang) and weather
forecasting (Guajardo et al., 2006).

We study the performance of H-SVR and S-SVR when
the number of features p and the sample size n grow si-
multaneously large such that np → δ with δ > 0 and the
norm of ‖β?‖ converges to β. One major outcome of the
present work is to recover interesting behaviors observed
in large-scale machine learning architectures. Particularly,
we show numerically that the double descent behavior ap-
pears only when the H-SVR or S-SVR parameters are not
properly tuned. Such a behavior reminds the recent findings
in (Nakkiran et al., 2020b) that suggest that unregularized
models often suffer from the sample-wise double descent
phenomenon, while optimally tuned models usually present
a monotonic risk with respect to the number of samples.

Contributions. This paper investigates the test risk behav-
ior as a function of the sample size for H-SVR and S-SVR
techniques. Contrary to least squares regression, which in-
volves explicit form expressions for the solution, H-SVR
and S-SVR require solving convex-optimization problems,
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which do not have closed-form solutions. To analyze the test
risk, we rely on the Gaussian min-max theorem (CGMT)
framework (Thrampoulidis et al., 2018) and more specifi-
cally on the extension of this framework recently developed
in (Deng et al., 2020), which has been proven to be suitable
to analyze functionals of solutions of convex optimizations
problems.

Concretely, our results for the H-SVR and S-SVR can be
summarized as follows:

1. We derive for a fixed error tolerance ε, a sharp phase
transition-threshold δ? beyond which the H-SVR be-
comes infeasible. Interestingly, we illustrate that the
transition threshold depends only on ε and the noise
variance and not on the SNR defined as SNR := β2

σ2 .
Moreover, we show that δ? is always greater than 1,
which should be compared with the condition δ < 1
required for the least square estimator to exist. As a
side note, we prove that contrary to hard-margin sup-
port vector classifiers, H-SVR can always be feasible
through a proper tuning of the tolerance error ε. This
allows us to study the test risk of the H-SVR as a func-
tion of δ when δ ∈ (0,∞) and ε carefully tuned to
satisfy the feasibility condition.

2. For fixed error tolerance ε, we numerically illustrate
that for moderate to large SNR the test risk of the H-
SVR is a non-monotonic curve presenting a unique
minimum that becomes the closest to δ? as the SNR
increases. For low SNR values, the test risk is an
increasing function of δ? and is always worse than
the null risk associated with the null estimator. It is
worth mentioning that behavior of the same kind was
reported for the min-norm least square estimator in
(Hastie et al., 2019). Additionally, we illustrate that
when the parameter ε is optimally tuned, the test risk
becomes a decreasing function of δ and equivalently
of the number of data samples.

3. Similarly, we derive the expression for the asymptotic
test risk as a function of ε, δ, and the regularization con-
stant C. Without optimal tuning of the regularization
constant C and factor ε, the test curve as a function of
the sample test size presents a double descent, which
disappears when optimal settings of these constants is
considered.

4. We study the robustness of the S-SVR and H-SVR to
impulsive noise. We illustrate that contrary to H-SVR,
S-SVR, when optimally tuned, is resilient to impulsive
noises. Particularly, we show that for mild impulsive
noise conditions, S-SVR presents a slightly lower risk
than optimally tuned ridge regression estimators but
largely outperforms it under moderate to severe impul-
sive noise conditions.

Related works. The present work is part of the continued
efforts to understand the double descent phenomena in large-
scale machine learning architectures. An important body
of research works focused on establishing the behavior of
double descent of the test risk as a function of the model
size in a variety of machine learning algorithms (Belkin
et al., 2019a; Bös & Opper, 1997; Spigler et al., 2019). Very
recently, the work in (Nakkiran et al., 2020a) discovered that
double descent occurs not just as a function of the model
size but also as a function of the sample size (Nakkiran
et al., 2020a). A major consequence of such a behavior
is that performance may be degraded as we increase the
number of samples.

To further understand the generalization error, several works
considered to analyze it as a function of the model size for
mathematically tractable settings in regression (Hastie et al.,
2019; Belkin et al., 2019b; Muthukumar et al., 2020; Mitra,
2019; Candes & Sur, 2018) and more recently in classi-
fication (Deng et al., 2020; Kini & Thrampoulidis, 2020;
Montanari et al., 2020), with the goal of investigating under
which conditions, the double descent occurs. In this paper,
similarly to (Nakkiran et al., 2020b), we instead focus on
the effect of the sample size on the test performance, but
with the H-SVR and S-SVR as case examples. Moreover,
on the technical level, our analysis provides sharp charac-
terizations of the performance using the recently developed
extension of the CGMT framework (Deng et al., 2020).

2. Problem formulation
Consider the problem of estimating the scalar response y of
a vector x in Rp from a set of n data samples {(xi, yi)}ni=1

following the linear model:

yi = βT? xi + σni (1)

where β? is an unknown vector, {σni}ni=1 represent noise
samples with zero-mean and variance σ2. We further as-
sume that xi is Gaussian with zero mean and covariance
Ip. To estimate β?, we consider support vector regression
methods, namely the hard support vector regression denoted
by H-SVR and the soft support vector regression referred to
as S-SVR. The H-SVR looks for a function y = βTx such
that all data points (xi,β

Txi) deviates at most ε from their
targets yi. Formally, this regression problem can be written
as:

ŵH := arg min
w

1

2
‖w‖2

s.t. |yi −wTxi| ≤ ε
(2)

where ‖.‖ denotes the `2-norm of a vector. It is worth
mentioning that when ε = 0 and n ≤ p, the H-SVR boils
down to the least square estimator. In this case, it perfectly
interpolates the training data, satisfying yi = xTi ŵH , i =
1, · · · , n. In general, depending on the value of ε, there
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may not be a solution that satisfies the constraints. As in
support vector machines for classification, one solution to
deal with such cases is to add slack variables that while
relaxing the constraints, penalize, in the objective function,
large deviations from them. Applying this approach gives
the S-SVR method which involves solving the following
optimization problem:

ŵS := arg min
w

1

2
‖w‖2 +

C

p

n∑
i=1

(ξi + ξ̃i)

s.t. yi −wTxi ≤ ε+ ξi, i = 1, · · · , n
wTxi − yi ≤ ε+ ξ̃i

ξi, ξ̃i ≥ 0.

(3)

The aim of the present work is to characterize analytically
the performance of the H-SVR and the S-SVR. The assump-
tion underlying the analysis is to consider that the number
of samples and that of features grow with the same pace,
and will be made more specific in the sequel.

Prediction risk. The metric of interest in this paper is the
prediction risk. For a given estimator β̂, the prediction risk
is defined as:

R(β̂) := Ex,y|xT β̂ − xTβ?|2 = ‖β̂ − β?‖2,

where x and y are test points following the model (1) but
are independent of the training set. ExpressingR(β̂) as:

R(β̂) = ‖β?‖2 + ‖β̂‖2 − 2‖β?‖‖β̂‖
βT? β̂

‖β?‖‖β̂‖
,

we can easily see that the risk depends on β̂ through its
norm ‖β̂‖ and the cosine similarity between β? and β̂:

cos
(
β?, β̂

)
:=

βT? β̂

‖β?‖.‖β̂‖
.

3. Main results
In this paper, we consider studying the performance of the
hard and soft support vector regression problems under
the asymptotic regime in which n and p grow large at the
same pace. More specifically, the following assumption is
considered.

Assumption 1. Our study is based on the following set of
assumptions:

• n and p grow to infinity with n
p → δ.

• The noise variance σ2 is a fixed positive constant.

• ‖β?‖ → β where β is a certain positive scalar.

• Data model: The training {xi}ni=1 are independent
and identically distributed following standard normal
distribution. Moreover, {ni} are independent and
drawn from a zero-mean unit-variance symmetric dis-
tribution pN .

3.1. Hard SVR

As mentioned earlier, the H-SVR problem is not always
feasible. We provide in Theorem 1 a sharp characterization
of the feasibility region of the H-SVR in the asymptotic
regime defined in Assumption 1.

Theorem 1 (Feasibility of the H-SVR). Let δ? be defined
as:

δ? =
1

inf
t∈R

E
(
|G+ tN | − t ε

σ

)2

+

, (4)

where (x)+ , max(x, 0) and the expectation is taken over
the distribution of G and N where G ∼ N (0, 1) and N ∼
pN . Consider the asymptotic regime and data model in
Assumption 1. Then, the following statements hold true:

δ > δ? ⇒ P [The H-SVR is feasible for suff. large n] = 0 (5)
δ < δ? ⇒ P [The H-SVR is feasible for suff. large n] = 1 (6)

The proofs can be found in the supplementary material.

Remark 1. (Feasibility of the H-SVR depends on the
noise variance but not on the SNR.) The above result es-
tablishes that the existence of the H-SVR undergoes a sharp
transition phenomenon. Particularly, in the limit of large
sample size n and number of features p such that np → δ,
the H-SVR is almost surely unfeasible when δ > δ? and
always feasible when δ < δ?. The obtained expression is
reminiscent of other previously established result for the
existence of the hard-margin SVM for classification estab-
lished in a series of recent works (Kammoun & Alouini,
2020b) and (Deng et al., 2020). However, contrary to the
expressions obtained in these works, the separability bound-
ary curve captured by δ? does not depend on the Euclidean
norm of β?, or equivalently on the SNR defined as ‖β?‖

2

σ2

but only on the noise variance. The reason behind this is
that feasibility is essentially related to how much the data
samples deviate from the hyperplane defined as βT? x = y.
We note that as σ approaches 0 and ε 6= 0, δ? →∞, which
implies that the H-SVR is always feasible in this case. This
is because in the noiseless case, all data samples (xi, yi)
belong to the hyperplane yi = βT? xi and thus β? is in the
feasibility set of the H-SVR regardless of the value of ε and
also on β. On the other hand, as σ increases, δ? decreases,
which suggests that the H-SVR becomes less feasible since
it is more difficult to find a hyperplane that contains all data
samples with a reasonable error tolerance ε.
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Remark 2. (The H-SVR can be feasible when the least
square estimator is not) One can easily check that if ε = 0,
then δ? = 1. This result makes sense since as long as
δ < 1, the linear system βTxi = yi is under determined
and as such a solution β exists. However, when δ? > 1, the
linear system becomes over-determined, and as such it is
impossible to find a solution to this linear system. Moreover,
since δ? is an increasing function of ε, we conclude that
δ? > 1 for all ε > 0. This particularly shows that the H-
SVR provides a larger feasibility region than the least square
estimator, for which δ should be less than 1 to exist. We can
even push this result further and claim that every δ is feasible
once ε is appropriately tuned. To see this, it suffices to note
that ε 7→ δ? is an increasing function establishing a one-to-
one map from (0,∞) to (1,∞). Hence, for any δ ∈ (1,∞)
there exists ε?(δ) such that for all ε > ε?(δ), the H-SVR is
almost surely feasible.

For the sake of illustration, Figure 1 displays δ? as a func-
tion of ε for several values of σ. As can be seen, δ? is an
increasing function growing to infinity with ε. The value
of ε plays a fundamental role to remediate the effect of the
noise and ensure the feasibility of the H-SVR. One can note
as expected that δ? for ε = 0.1 and σ = 0.1 is the same as
the one obtained when ε = 0.2 and σ = 0.2. This finding
can be easily concluded from (4). Moreover, in agreement
with our previous discussion, we can easily see that δ? de-
creases significantly as the noise variance increases. Such a
scenario can be fixed by adapting the value of ε.

5 · 10−2 0.1 0.15 0.2

1

2

3

4

δ?(ε=0.1,σ=0.1) δ?(ε=0.2,σ=0.2)

• •

ε

δ? σ = 0.4

σ = 0.2

σ = 0.1

Figure 1. Theoretical predictions of δ? as a function of ε for dif-
ferent noise variance values. The figure shows that every δ can be
forced to be in the feasibility region by appropriately choosing ε.

Having characterized the feasibility region of the H-SVR,
we are now ready to provide sharp asymptotics of its per-
formance in terms of the prediction risk and the cosine
similarity.

Theorem 2 (Asymptotic prediction risk of H-SVR). Define

function D : R2 → R as:

D(γ̃1, γ̃2) =
√
δ

√
E
(
|
√
γ̃2

1 + γ̃2
2G+N | − ε

σ

)2

+

− γ̃1

where the expectation is taken over the distribution of the
independent random variables G and N drawn respectively
from the standard normal distribution N (0, 1) and pN . Let
γ̃?1 and γ̃?2 be the unique solutions to the following optimiza-
tion problem:

(γ̃?1 , γ̃
?
2 ) = arg min

γ̃1,γ̃2
D(γ̃1,γ̃2)≤0

1

2

(
γ̃2 −

β

σ

)2

+
1

2
γ̃2

1 . (7)

Let ŵH be the solution to the H-SVR. Then, under Assump-
tion 1 and assuming δ < δ?, the following convergences
hold true:

R(ŵH)−RH
a.s.−→ 0

where RH = σ2((γ̃?1 )2 + (γ̃?2 )2) and

ŵT
Hβ?

‖ŵH‖‖β?‖
a.s.−→

β
σ − γ̃

?
2√

(γ̃?1 )2 + (γ̃?2 −
β
σ )2

.

Remark 3. (Behavior of the H-SVR as δ → 0). As δ
tending to zero, one can check after careful investigation
of the asymptotic expressions that γ̃?2 →

β
σ and γ̃?1 → 0.

In this case, the asymptotic risk is thus given by β2. To
see this, it suffices to note that D(δ

1
4 , βσ ) converges from

below to zero as δ ↓ 0. By continuity of D, we may find η
sufficiently small such that, for all (γ̃1, γ̃2) ∈ C(η) where

C(η) =

{
(γ̃1, γ̃2) | γ̃1 ∈ (0, η), γ̃2 ∈ (

β

σ
− η, β

σ
+ η)

}
,

we have D(γ̃1, γ̃2) ≤ 0. Moreover, it is easy to see that
the objective in (7) can be bounded by η2 when (γ̃1, γ̃2) ∈
C(η). Evaluation of this objective when |γ̃2 − β

σ | ≥
√

2η

or when |γ̃1| ≥
√

2η yields values greater than η2. Hence,
necessarily, (γ̃1, γ̃2) ∈ C(

√
2η), which proves the desired.

Finally, observing that the risk of the null estimator β̂ = 0 is
also β2, we conclude that the H-SVR is worse than the null
estimator when a small number of samples is employed.

Remark 4. (Behavior of the H-SVR as δ → δ?). As
δ → δ?, the set {(γ̃1, γ̃2) | D(γ̃1, γ̃2) ≤ 0} becomes the
unit set {(γ̃◦1 , 0)} where γ̃◦1 is the smallest solution to the
equation D(γ̃1, 0) = 0. The asymptotic risk thus becomes
equal to σ2(γ̃◦1 )2 and is as such independent of the SNR β2

σ2 .
As a result, when δ approaches δ?, it is the noise variance
and the value of ε that determines the performance of the H-
SVR and not the SNR. This is in opposition to the behavior
in the operation region δ → 0, for which the risk tends to
β2.
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3.2. Soft SVR

In this section, the soft SVR problem is considered and the
convergence of the corresponding prediction risk is estab-
lished.
Theorem 3 ( Asymptotic prediction risk of S-SVR). Under
Assumption 1, we have

R(ŵS)
a.s.−→ σ2(γ̃∗21 + γ̃∗22 )

where γ̃∗1 and γ̃∗2 are the solutions of the following scalar
optimization problem

φ = min
γ̃1,γ̃2

sup
χ>0

D(γ̃1, γ̃2, χ)

with

D(γ̃1, γ̃2, χ) =
1

2
γ̃2
1 +

1

2

(
γ̃2 −

β

σ

)2

− γ̃1χ

2σ

+
δ

σ
E
{
C

[
X − Cγ̃1

2χ

]
1{

Xχ>γ̃1C
} +

χ

2γ̃1
X2

1{
Xχ≤γ̃1C

}}
where X =

(∣∣∣√γ̃2
1 + γ̃2

2G+N
∣∣∣− ε/σ)

+
and the expec-

tation is with respect to the distributions of G and N with
G ∼ N (0, 1) and N ∼ pN .
Remark 5. Theorem 3 can be used to optimally tune the
parameters (ε, C) so that they minimize the asymptotic test
risk. For that, one is required to estimate the noise variance
σ2 and the signal power β2. These can be easily estimated
through the following approach. Let y = [y1, · · · , yn]T

be the vector of the responses and X = [x1, · · · ,xn] the
matrix stacking all training samples. Then,

y = XTβ? + σn,

where n = [n1, · · · , nn]T . From the strong law of large
numbers,

1

n
yTy

a.s.−→ σ2 + β2. (8)

On the other hand, assuming δ > 1,

1

n
yT (In −XT (XXT )−1X)y

a.s.−→ σ2(1− 1

δ
). (9)

Combining (8) and (9), consistent estimators for the noise
variance σ2 and for β2 are given by:

σ̂2 =
1
ny

T (In −XT (XXT )−1X)y

1− 1
δ

, (10)

β̂2 =
1

n
yTy −

1
ny

T (In −XT (XXT )−1X)y

1− 1
δ

. (11)

In case δ < 1, the problem of estimating the noise variance
becomes more challenging, and there are, to the best of our
knowledge, no general unbiased estimators with the same
statistical guarantees as in the case δ > 1. To address this
issue, some other techniques may be used (Cherkassky &
Ma, 2004) but they are not guaranteed to lead to consistent
estimators.

Remark 6. Behavior of the S-SVR when δ → 0. The test
risk of the S-SVR is much more involved than that of the
H-SVR. Nevertheless, it can be easily seen that when δ goes
to zero,

lim
δ→0

sup
χ≥0

D(γ̃1, γ̃2, χ)
(a)
= inf

δ≥0
sup
χ≥0

D(γ̃1, γ̃2, χ) (12)

(b)
= sup

χ≥0
inf
δ≥0

D(γ̃1, γ̃2, χ) (13)

= sup
χ≥0

lim
δ→0

D(γ̃1, γ̃2, χ) (14)

=
1

2
γ̃2

1 +
1

2
(γ̃2 −

β

σ
)2 (15)

where (a) follows from the fact that the objective function
is an increasing function in δ and (b) from the fact that the
objective function is convex in δ and concave in χ. The
asymptotic limit of D in (15) has a unique minimum given
by γ̃2 = β

σ and γ̃1 = 0. Plugging these values into that of
the test risk, we conclude that when δ goes to zero, the test
risk of the S-SVR converges to that of the null estimator.

4. Numerical illustration
4.1. H-SVR

4.1.1. TEST RISK AS A FUNCTION OF THE NUMBER OF
SAMPLES

In a first experiment, we investigate the behavior of the test
risk of H-SVR as a function of the number of samples for
different values of the signal power β2 = ‖β?‖2. Partic-
ularly, for each β ∈ {0.5, 1, 2}, we fix the noise variance
σ2 and ε and plot the test risk and cosine similarity over
the range [0, δ?] over which the H-SVR is feasible. Fig. 2
represents the theoretical results along with their empirical
averages obtained for p = 200 and n = bδpc. As can be
seen, this figure’s results validate the accuracy of the theo-
retical predictions: a perfect match is noted over the whole
range of δ and for all signal power values. We also corrob-
orate our predictions in Remark 3 and Remark 4: the risk
tends to β2 which is the null estimator’s risk when δ → 0,
while it tends to the same limit irrespective of β2 as δ → δ?.
Away from these limiting cases, we note that for moderate
to high signal powers, the test risk presents a non-monotonic
behavior with respect to δ and as such with respect to the
number of samples. The minimal risk corresponds to a δ that
becomes the nearest to δ? as the signal power β2 increases.
However, for low signal powers, the test risk is an increas-
ing function of the number of samples and is always larger
than β2, which is the null estimator’s risk. Such behavior is
similar to that of the min-norm least square estimator, which
becomes worse than the null estimator when the SNR is less
than 1 (Hastie et al., 2019).
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Figure 2. Performance of H-SVR as a function of δ when σ =
1, ε = 1 for different values of β. The continuous line curves
correspond to the asymptotic performance while the points denote
finite-sample performance when p = 200 and n = bδpc. The null
risks (corresponding to ŵH = 0) are also reported by the dotted
lines for the different values of β.

4.1.2. IMPACT OF CHOICE OF ε ON THE TEST
PERFORMANCE

Fig. 3 displays the test risk with respect to ε for fixed signal
power and noise variance and oversampling ratios δ = 1 and
δ = 1.4, respectively. As can be noted, the test performance
is sensitive to the choice of ε. An arbitrary choice of ε may
lead to a significant loss in test performance. Indeed, a small
ε tolerates less deviation from the plane y = ŵT

Hx, which
becomes inappropriate when the noise variance increases.
On the other hand, a larger ε tolerates more deviation, and
as such, tends to give less credit on the information from
the training samples. We can also note that the optimal
ε increases when more training samples are used. This
can be explained by the fact that when using more training
samples, it becomes harder to fit them into the insensitivity
tube. Moreover, as can be seen from this figure, a right
choice for the value ε is essential in practice, as arbitrary
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Figure 3. Performance of H-SVR vs ε when β = 1 for different
values of the noise variance σ2 and for different values of δ. The
continuous line curves correspond to the theoretical predictions
while the points denote finite-sample performance when p = 200
and and n = bδpc.

choices may lead to severe risk performance degradation.
Several previous works addressed this question (Cherkassky
& Ma, 2004; 2002). However, they do not rely on theoretical
analysis but instead on cross-validation approaches. Finally,
with reference to Remark 2, we plot in Fig. 4 the risk of
H-SVR with respect to δ when at each δ, the optimal ε that
minimizes the optimal risk is used. The obtained results
show that the test risk becomes, in this case, a decreasing
function of δ. This is in agreement with the fact that in
optimally regularized learning architectures, there is always
a gain from using more training samples.

4.2. S-SVR

4.2.1. IMPACT OF THE PARAMETERS ε AND C

In Fig. 5 and Fig. 6, we investigate the effect of the hyper-
parameters C and ε on the performance of soft SVR. As
shown in these figures, arbitrary choices for the pair (ε, C)
may lead to a significant degradation in the test risk per-
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Figure 4. Performance of H-SVR as a function of δ when σ = 1
and β = 1 for different values of ε. All the curves correspond to
the asymptotic performance predictions.

formance compared to the optimal performance associated
with optimal selection of (ε, C). Thus, our results again
emphasize the importance of the appropriate selection of
these parameters and suggest the practical relevance of theo-
retical aided approaches to select these parameters that may
complement existing cross-validation techniques.

4.2.2. SAMPLE-WISE DESCENT PHENOMENON

In Fig. 7, we plot the test risk with respect to δ for the
S-SVR for different choices of C and fixed ε. As can be
seen, for δ tending to zero, the S-SVR test risk converges
to that of the null risk, which was also predicted by our
analysis in Remark 6. Moreover, depending on the value of
C, the test risk may manifest a cusp at δ ∼ δ? that becomes
more pronounced as C increases. This can be explained
by the fact that as C increases, the behavior of S-SVR
approaches that of H-SVR, for which the problem becomes
unfeasible when δ > δ?. We also note that the choice of
the parameter C plays a fundamental role in the test risk
performance. Optimal values of C always guarantee that the
test risk performance decreases with more training samples
being used, while arbitrary choices can lead to the test risk
increasing for more training samples. This emphasizes the
importance of the appropriate selection of the parameter C
to avoid the double descent phenomenon.

4.3. Comparison with ridge regression estimators
under impulsive noises:

In this experiment, we investigate S-SVR and H-SVR’s re-
silience when optimally designed (optimal ε for H-SVR
and optimal C and ε for S-SVR) to impulsive noises and
compare them to the ridge regression with optimal regular-
ization. Particularly, we consider the case in which the noise
is sampled from the distributional model:

n =
√
τN (0, 1)
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Figure 5. Prediction risk of S-SVR vs ε and C when δ = 2, β = 1
and σ = 1. The continuous line curves correspond to the theoreti-
cal predictions while the points denote finite-sample performance
when p = 200 and and n = bδpc.

where τ follows an inverse Gamma distribution with shape
d
2 and scale 2

d , that is τ ∼ d
χ2
d

with χ2
d being the chi-square

distribution with d degrees of freedom.

Fig. 8 represents the test risk performance of the aforemen-
tioned estimators for d = 3 and d = 10. As can be seen,
H-SVR is very sensitive to impulsive noises with a per-
formance approaching that of the null estimator for highly
impulsive noises. This behavior can be explained by the fact
that in highly impulsive noises (small d), H-SVR needs a
very large ε to guarantee that outliers satisfy the feasibility
conditions. However, with a large ε, the constraints in (2)
becomes irrelevant for the remaining well-behaved observa-
tions. This favors the H-SVR to select the null estimator as it
would minimize the objective in (2) while satisfying the con-
straints. On the other hand, the S-SVR overcomes such be-
havior since it does not have to satisfy the constraints of (2).
By selecting the parameter C to the value that minimizes
the test risk, it will adaptively control the effect of outliers
by relaxing the most unlikely constraints in (2). Moreover,
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Figure 6. Prediction risk vs (C,ε) for δ = 2, β = 1 and σ = 1.

it can be seen that, although S-SVR is slightly less effi-
cient than the ridge regression estimator in mild impulsive
noises, it presents a much lower risk under highly impulsive
noises. While the robustness of regularized support vector
machine methods for both regression and classification is a
well-known fact reported in many previous works (Xu et al.,
2009; Hable & Christmann, 2011), our result contributes to
quantitatively assess such robustness by measuring the test
risk under impulsive noises.

5. Conclusion
In this paper, we studied the asymptotic test risk of hard
and soft support vector regression techniques with isotropic
Gaussian features and under symmetric noise distributions
in the regime of high dimensions. We used these results to
illustrate the impact of the intervening parameters on the
test risk behavior. Particularly, we demonstrate that arbitrary
choices of the parameters of the hard SVR and the soft SVR
may lead to the test risk presenting a non-monotonic behav-
ior as a function of the number of samples, which illustrates
the fact that adding more samples may be harmful to the per-
formance. On the contrary, we show that optimally-tuned
hard SVR and soft SVR present a decreasing test risk curve,
which shows the importance of carefully selecting their pa-
rameters to minimize the test risk and guarantee the positive
impact of more data on the test risk performance. Our find-
ings are consistent with similar results obtained for linear
regression and neural networks (Nakkiran et al., 2020b).
However, as compared to linear regression, we demonstrate
that soft support vector regression with optimal regulariza-
tion is more robust to the presence of outliers, corroborating
similar previous findings in earlier works in (Xu et al., 2009;
Hable & Christmann, 2011). Several extensions of our work
are worth investigating. One important research direction
is to understand the effect of correlated features on the test
risk of hard and support regression techniques. Some re-
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Figure 7. Prediction risk of S-SVR vs. δ for different values of C
when ε = 0.6 and σ = 1. Illustration of the sample-wise double
decent and how optimal regularization mitigates it.

cent works have investigated the role of correlation and
regularization on the test risk for linear regression models
(Lolas, 2020; Kobak et al., 2020). A significant advantage
of such an analysis is that it can illustrate the importance of
investing efforts in theoretically-aided approaches to assist
in setting the regularization parameters. Another important
research direction is investigating the use of kernel support
vector regression methods and understanding their underly-
ing mechanisms to handle involved non-linear data models.
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6. CGMT framework
The proofs of our results are based on the extension of the CGMT framework, recently proposed in (Deng et al., 2020), that
allows for handling optimization problems in which the optimization sets may not be compact or are not necessarily feasible.
For the reader convenience, we provide a review of the main results (Deng et al., 2020) that will be extensively used in our
proofs.

In order to summarize the essential ideas, we consider the following two Gaussian processes:

Xw,u := uTGw + ψ(w,u) (16)

Yw,u := ‖w‖2gTu + ‖u‖2hTw + ψ(w,u) (17)

where G ∈ Rn×d, g ∈ Rn, h ∈ Rd have standard normal i.i.d. entries and ψ : Rd × Rn → R is a continuous function.
Let Sw ⊂ Rd and Su ⊂ Rn be two convex sets but not necessarily compact. We consider the following random min-max
optimization problems which refer to as the primary optimization (PO) problem and the auxiliary optimization problem
(AO):

(PO) Φ(G) = min
w∈Sw

max
u∈Su

Xw,u (18)

(AO) φ(g,h) = min
w∈Sw

max
u∈Su

Yw,u (19)

The direct analysis of the (PO) is in general difficult. The power of the CGMT is that it transfers the asymptotic behavior of
the PO to that of the AO. Particularly, if Sw and Su are compact sets, the use of Gordon’s inequality (Gordon, 1988; 1985)
implies that:

P (Φ(G) < c) ≤ 2P (φ(g,h) < c) (20)

The only conditions required by the above inequality is that the sets are compact and ψ is continuous. Particularly, Gordon’s
inequality holds even if the optimization sets are not convex and ψ is not convex-concave. As a by product of (20), it follows
that if c is a high-probability lower bound of the AO than it is also a lower bound of the PO. If the set Sw and Su are
additionally convex and ψ is convex-concave then, for any ν ∈ R and t > 0, it holds

P (|Φ(G)− ν| > t) ≤ 2P(|φ(g,h)− ν| > t)

In other words, if the AO cost concentrates around ν? then the optimal cost of the PO concentrates also around the same
value ν?. Moreover, it has been shown in (Thrampoulidis et al., 2018) that under strict convexity conditions of the asymptotic
AO, the concentration of the optimal solution of the AO translates into the concentration of the optimal solution of the
PO around the same value. More precisely, denote by wφ(g,h) the optimal solution of the AO. If one can prove that
the minimizers of the AO satisfy ‖wφ(g,h)‖ a.s.−→ α? where α? is the unique solution of a certain limiting optimization
problem whose cost is asymptotically equivalent to the AO. Then, the solution of the PO, denoted by wΦ(G) also satisfies
‖wΦ(G)‖ a.s.−→ α?.

In (Deng et al., 2020), the authors developed a principled machinery that extends the results of the CGMT to problems in
which the optimization sets are not compact and may not be necessarily feasible. Before reviewing the results of (Deng
et al., 2020), we shall introduce some important notations. For fixed R and Γ, we consider the following “(R,Γ)-bounded”
version of the PO:

ΦR,Γ(G) = min
w∈Sw
‖w‖2≤R

max
u∈Su
‖u‖2≤Γ

Xw,u

with which we associate the following (R,Γ) bounded version of the AO:

φR,Γ(g,h) = min
w∈Sw
‖w‖2≤R

max
u∈Su
‖u‖2≤Γ

Yw,u (21)

Since Γ 7→ max u∈Su
‖u‖2≤Γ

Xw,u is concave in Γ, we can establish using Sion’s min-max theorem (Sion, 1958) that

Φ(G) = inf
R≥0

sup
Γ≥0

ΦR,Γ
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Similarly, we define φR(g,h) as follows:
φR(g, h) := sup

Γ≥0
φR,Γ(g,h) (22)

However, since Yw,u is not convex-concave in (w,u), we only have:

sup
Γ≥0

φR,Γ(g,h) ≤ min
w∈Sw
‖w‖2≤R

max
u∈Su

Yw,u

The extension of the CGMT allows us to connect properties of the unbounded PO to those of the sequence of AO problems
φR(g,h). Theorem 4 illustrates how the study of the cost of the sequence of AO problems can help determine the feasibility
of the original PO problem, whereas Theorem 5 shows how the asymptotic behavior of the optimal cost of the original
problem boils down to analyzing that of the sequence of AO problems.

Theorem 4 (Feasibility (Deng et al., 2020)). Recall the definitions of Φ(G), φR,Γ(g,h) and φR(g,h) in (19), (21) and
(22), respectively. Assume that (w,u) 7→ Xw,u in (16) is convex-concave and that the constraint sets Sw,Su are convex
(but not necessarily bounded). The following two statements hold true.

(i) Assume that for any fixed R,Γ ≥ 0 there exists a positive constant C (independent of R and Γ) and a continuous
increasing function f : R+ → R tending to infinity such that, for n sufficiently large (independent of R and Γ):

φR,Γ(g,h) ≥ C f(Γ). (23)

Then, with probability 1, for n sufficiently large, Φ(G) =∞.

(ii) Assume that there exists k0 ∈ N and a positive constant C such that:

P [{φk0(g,h) ≥ C} , i.o.] = 0. (24)

Then, P [Φ(G) =∞, i.o] = 0.

Theorem 5. (Deng et al., 2020) Assume the same notation as in Theorem 4. Assume that there exists φ and k0 ∈ N such
that the following statements hold true:

For any ε > 0 : P
[
∪∞k=k0

{
φk(g,h) ≤ φ− ε

}
, i.o.

]
= 0, (25a)

For any ε > 0 : P
[{
φk0(g,h) ≥ φ+ ε

}
, i.o.

]
= 0, (25b)

(25c)

Then,
Φ(G)

a.s.−→ φ. (26)

Further, let S be an open subset of Sw and Sc = Sw\S. Denote by φ̃R,Γ(g,h) the optimal cost of (21) when the
minimization over w is now further constrained over w ∈ Sc. Define φ̃R(g,h) in a similar way to (22). Assume the
following statement hold true,

There exists ζ > 0 : P
[
∪∞k=k0

{
φ̃k(g,h) ≤ φ+ ζ

}
, i.o.

]
= 0. (27)

Then, letting wΦ denote a minimizer of the PO in (18), it also holds that

P [wΦ ∈ S, for sufficiently large n] = 1. (28)

7. Proof of Theorem 1 and Theorem 2
In this section, we analyze the statistical behavior of H-SVR.
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7.1. Preliminaries

Identification of the PO: The Lagrangian function associated with H-SVR is given by:

L(w,λ,α) :=
1

2
‖w‖2 +

n∑
i=1

λi(β
T
? xi + σni −wTxi − ε) +

n∑
i=1

αi(w
Txi − βT? xi − σni − ε)

where λ = [λ1, · · · , λn] and α = [α1, · · · , αn] are the Lagrange multipliers. From the first order optimality conditions, we
have:

∂L
∂w

= 0 =⇒ w =

n∑
i=1

(λi − αi)xi (29)

Leveraging the above relations, the optimization problem becomes equivalent to solving:

max
λ≥0,α≥0

−1

2
(λ−α)TXTX(λ−α) + σnT (λ−α) + βT?X(λ−α)− ε1T (λ + α)

where X = [x1, · · · ,xn]. Performing the change of variables u =
√
p(λ−α) and v =

√
p(λ + α), the above problem

simplifies to:

max
u,v
|u|≤v
v≥0

− 1

2p
uTXTXu +

1
√
p
σnTu +

1
√
p
βT?Xu− 1

√
p
ε1Tv (30)

From (29), the solution of the H-SVR is related to an optimal solution û of (30) as:

ŵH =
1
√
p
Xû (31)

Obviously, for a given u the optimum over v of the objective cost in (30) is given by v = |u|. Replacing v by its optimal
value, we obtain

max
u
− 1

2p
uTXTXu +

1
√
p
σnTu +

1
√
p
βT?Xu− 1

√
p
ε1T |u| (32)

To write the above problem in the form required by the CGMT, we shall use the following relation:

− 1

2p
uTXTXu +

1
√
p
βT?Xu = min

w̃

1
√
p
w̃TXu +

1

2
‖w̃‖2 − βT? w̃ +

1

2
‖β?‖2, (33)

where in the right-hand side term, the optimal ˆ̃wH can be easily verified to be unique and given by:

ˆ̃wH = − 1
√
p
Xû + β? (34)

Plugging (33) into (30), we identify the following problem which takes the form of a primary optimization problem as
required by the CGTM framework:

Φ(n) = max
u

min
w̃

1
√
p
uTXw̃ +

1

2
‖w̃‖2 − βT? w̃ + σ

1
√
p
nTu− 1

√
p
ε1T |u|+ 1

2
‖β?‖2 (35)

From (31) and (34) and due to the uniqueness of ˆ̃wH in (33), the H-SVR solution satisfies:

ˆ̃wH = −ŵH + β? (36)

Let P⊥ = Ip − β?β
T
?

βT? β?
. Then, we can decompose uTXT w̃ as:

uTXT w̃ = uTXTP⊥w̃ +
1

‖β?‖2
uTXTβ?β

T
? w̃
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Plugging this decomposition into (35), we obtain:

Φ(n) = max
u

min
w̃

1
√
p
uTXTP⊥w̃ +

1
√
p

1

‖β?‖2
uTXTβ?β

T
? w̃ +

1

2
‖β? − w̃‖2 +

1
√
p
σnTu− 1

√
p
ε1T |u|

Let z = 1
‖β?‖

XTβ?. Clearly, z is a standard Gaussian random vector and is independent of XTP⊥. Replacing 1
‖β?‖

XTβ?

by z, Φ(n) writes as:

Φ(n) = min
w̃

max
u

1
√
p
uTXTP⊥w̃ +

1
√
p

1

‖β?‖
uT z βT? w̃ +

1

2
‖β? − w̃‖2 +

1
√
p
σnTu− 1

√
p
ε1T |u|

Identification of the AO sequences: Following the notations of section 6 in the Appendix, we associate with the PO a
sequence of auxiliary problems indexed by r and θ, where each one is associated with a “double bounded” version of the
PO. Particularly, for fixed r and θ, we define every element of the AO sequence as:

φ
(n)
r,θ := min

w̃
‖w̃‖≤r

max
u

‖u‖≤θ

1
√
p
‖P⊥w̃‖2gTu+

1
√
p
‖u‖hTP⊥w̃+

1
√
p

1

‖β?‖
uT z βT? w̃+

1

2
‖β?−w̃‖2+

1
√
p
σnTu− 1

√
p
ε1T |u|

Simplification of the AO problems: Having identified the AO sequence, we proceed now with some elementary manipula-
tions to reduce each AO problem to a scalar optimization problem. For that and considering the fact that w̃ intervenes in the
objective through its norm, its projection along β? and the space orthogonal to it, it is sensible to decompose it as:

w̃ = γ1
P⊥w̃

‖P⊥w̃‖
+ γ2

β?
‖β?‖

Using this decomposition, the AO problem simplifies to:

φ
(n)
r,θ = min

γ2
1+γ2

2≤r2
max

0≤m≤θ
max
‖u‖2=m

1

2
γ2

1 +
1

2
γ2

2 + γ1
1
√
p
gTu−mγ1

1
√
p
‖P⊥h‖+ γ2

1
√
p
uT z +

1

2
‖β?‖2 − γ2‖β?‖ (37)

+
1
√
p
σnTu− 1

√
p
ε1T |u| (38)

Hence,

φ
(n)
r,θ = min

γ2
1+γ2

2≤r2
max

0≤m≤θ
max
‖u‖2=m

1

2
γ2

1 +
1

2
γ2

2 +
1
√
p
uT (γ1g + γ2z + σn)− ε

√
p
‖u‖1 −mγ1

1
√
p
‖P⊥h‖2

+
1

2
‖β?‖22 − γ2‖β?‖ (39)

Using Lemma 1, we obtain:

φ
(n)
r,θ = min

γ2
1+γ2

2≤r2
max

0≤m≤θ

1

2
γ2

1 +
1

2
γ2

2 +m

√√√√1

p

n∑
i=1

(
|γ1gi + γ2zi + σni| − ε

)2

+
− γ1

1
√
p
‖P⊥h‖2


+

1

2
‖β?‖22 − γ2‖β?‖2

= min
γ2
1+γ2

2≤r2

1

2
γ2

1 +
1

2
γ2

2 + θ

√√√√1

p

n∑
i=1

(
|γ1gi + γ2zi + σni| − ε

)2

+
− γ1

1
√
p
‖P⊥h‖2


+

+
1

2
‖β?‖22 − γ2‖β?‖2

(40)

At this point, it is worth pointing out that the new formulation of the AO sequence problems is reduced to optimization
problems that involves only few scalar variables. It relies on a deterministic analysis that does not involve any asymptotic
approximation.
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Asymptotic behavior of the AOs Let us consider the following sequence of functions:

Dn(γ1, γ2) :=

∥∥∥∥( ∣∣∣∣ γ1√
p
g +

γ2√
p
z + σn

∣∣∣∣− ε)
+

∥∥∥∥
2

− γ1√
p
‖P⊥h‖2

defined for γ1 and γ2 such that γ2
1 +γ2

2 ≤ r2. It is easy to note that (γ1, γ2) 7→ Dn(γ1, γ2) is jointly convex in its arguments
(γ1, γ2) and by (Thrampoulidis et al., 2018, Lemma 10) converges point-wise to

(γ1, γ2) 7→ D(γ1, γ2)

with

D(γ1, γ2) :=
√
δ

√
E
(
|
√
γ2

1 + γ2
2G+ σN | − ε

)2

+
− γ1

where G ∼ N (0, 1). Since convergence of convex functions is uniform over compacts, then letting C be an arbitrary
compact in R2, and any η > 0, for n sufficiently large, it holds that:

D(γ1, γ2)− η ≤ Dn(γ1, γ2) ≤ D(γ1, γ2) + η, ∀ (γ1, γ2) ∈ C (41)

7.2. Proof of Theorem 1

Letting δ? = 1

inf
t∈R

E (|G+ tσN | − tε)2
+

, we will prove the following two statements:

δ > δ? ⇒ P [The hard-margin SVR is feasible for sufficiently large n] = 0 (42)
δ < δ? ⇒ P [The hard-margin SVR is feasible for sufficiently large n] = 1. (43)

In the sequel, we will sequentially establish (42) and (43).

Proof of (42). To prove the desired result, we will apply Theorem 4. More precisely, in view of (23) in Theorem 4, it
suffices to prove that under the condition δ > δ?, for any fixed r and θ, there exists constant C > 0 that is independent of r
and θ such that for sufficiently large n (taken independently of r and θ):

φ
(n)
r,θ ≥ Cθ (44)

To prove (44), we start by noting that:

φ
(n)
r,θ = min

γ2
1+γ2

2≤r2

1

2
(γ2 − ‖β?‖)2 +

1

2
γ2

1 + θ
(
Dn(γ1, γ2)

)
+

(45)

Hence,
φ

(n)
r,θ ≥ θ

(
min
γ1,γ2

Dn(γ1, γ2)
)

+
(46)

Function (γ1, γ2) 7→ Dn(γ1, γ2) is jointly convex in its arguments (γ1, γ2) and converges pointwise to (γ1, γ2) 7→
D(γ1, γ2). Using Lemma 3, for γ1 fixed, γ2 7→ Dn(γ1, γ2) is convex. It converges pointwise to γ2 7→ D(γ1, γ2). As
limγ2→±∞D(γ1, γ2) =∞, we may use (Thrampoulidis et al., 2018, Lemma 10) to obtain,

min
γ2∈R

Dn(γ1, γ2)
a.s.−→ min

γ2∈R
D(γ1, γ2)

Moreover, it is easy to see that γ2 7→ D(γ1, γ2) is an even function. As it is convex, from Lemma 2, the minimum is taken
at γ2 = 0 and hence minγ2 D(γ1, γ2) = D(γ1, 0). Similarly, γ1 7→ min

γ2
Dn(γ1, γ2) is convex and converges pointwise to

γ1 7→ D(γ1, 0). Moreover, for fixed γ1, it is easy to see that

D(γ1, 0) = |γ1|

(
√
δ

√
E
(
|G+

σ

γ1
N | − 1

|γ1|
ε
)2

+
− γ1

|γ1|

)
(47)

≥ |γ1|
(√

δ

√
inf
t∈R

E (|G+ tσN | − tε)2
+ − 1

)
(48)
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Since by assumption δ > δ?,
inf
t∈R

√
δE (|G+ tσN | − tε)2

+ > 1

Hence, limγ1→±∞minγ2 D(γ1, γ2) = limγ1→∞D(γ1, 0) =∞. Using again (Thrampoulidis et al., 2018, Lemma 10), we
obtain:

min
γ1,γ2

Dn(γ1, γ2)
a.s.−→ min

γ1
D(γ1, 0)

It follows from (46) that for any η > 0, the following holds true once n is taken sufficiently large independently of r and θ,

φ
(n)
r,θ ≥ θ

(
min
γ1

D(γ1, 0)− η
)

+

Assume that
min
γ1

D(γ1, 0) > 2C. (49)

where C is some strictly positive constant. Then we can choose η sufficiently small, for instance smaller than C, to
obtain (44). To conclude, it suffices thus to establish (49). To this end, first notice that for all γ1 such that |γ1| ≤ η̃ :=

1
2

√
δE
[
(σ|N | − ε)2

+

]
, the following holds true:

min
γ1
|γ1|≤η̃

D(γ1, 0) ≥ min
γ1
|γ1|≤η̃

√
δE (|γ1G+ σN | − ε)2

+ − η̃ (50)

≥
√
δE (|σN | − ε)2

+ − η̃ (51)

≥ 1

2

√
δE (|σN | − ε)2

+ = η̃ > 0. (52)

where the last inequality follows by Lemma 2. On the other hand,

min
γ1
|γ1|≥η̃

D(γ1, 0) ≥ min
γ1
|γ1|≥η̃

|γ1|
(√

δE
(
|G+

σ

γ1
N | − 1

|γ1|
ε

)2

+

− 1
)

(53)

≥ η̃
(√

δ inf
t∈R

E (|G+ tσN | − tε)2
+ − 1

)
= η̃

(√
δ

δ?
− 1

)
> 0. (54)

Putting (52) and (54) together, we obtain:

min
γ1

D(γ1, 0) ≥ min

(
η̃, η̃

(√
δ

δ?
− 1

))

Letting C := 1
2 min

(
η̃, η̃

(√
δ
δ?
− 1
))

yields (49).

Proof of (43) The aim here is to show that if δ < δ?, then the PO and thus the H-SVR is feasible with probability 1 for
sufficiently large n. For that, we will apply the second item of Theorem 4. To begin with, we shall start by showing that
there exists κ0 > 0 such that for all κ ≤ κ0 the following set is non-empty:

I :=
{
γ1 | D(γ1, 0) ≤ −κ

}
6= ∅ (55)

and open. Let t? be such that t? ∈ arg inft∈R E (|G+ tσN | − tε)2
+. Obviously t? is finite. To see this, it suffices to note

that:

E (|G+ tσN | − tε)2
+ ≥ E

[
(|G+ tσN | − tε)2

+ 1{σN≥2ε}1{G>0}

]
(56)

≥ t2ε21{σN≥2ε}1{G>0} (57)
−→
t→±∞

∞ (58)
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By assumption
√
δ
√
E (|G+ tσN | − tε)2

+ < 1. Hence D( 1
|t?| , 0) < 0. By continuity of γ1 7→ D(γ1, 0) we prove that I is

non-empty and open. With this at hand, we let Cκ be given by:

Cκ := sup
γ1∈I

|γ1| (59)

Recall that from the uniform convergence of γ 7→ Dn(γ, 0) to γ 7→ D(γ, 0) over compacts, we may argue that for any
γ1 ∈ [−Cκ, Cκ] and for n sufficiently large:

Dn(γ1, 0) ≤ D(γ1, 0) + κ

Hence,
{γ1, Dn(γ1, 0) ≤ 0} ⊂

{
D(γ1, 0) ≤ −κ

}
and as such: {

{γ1, Dn(γ1, 0) ≤ 0} ∩ [−Cκ, Cκ]
}
⊂
{{

D(γ1, 0) ≤ −κ
}
∩ [−Cκ, Cκ]

}
For k ∈ R, define φ(n)

k :

φ
(n)
k = sup

θ≥0
φ

(n)
r,θ

Then, using the min-max inequality, we have:

φ
(n)
k ≤ min

γ1,γ2
sup
θ≥0

1

2
(γ2 − ‖β?‖)2 +

1

2
γ2

1 + θ (Dn(γ1, γ2))+ (60)

≤ min
γ1∈I
|γ1|≤Cκ

sup
θ≥0

1

2
‖β?‖2 +

1

2
γ2

1 + θ (Dn(γ1, 0))+ (61)

≤ 1

2

(
C2
κ + ‖β‖2

)
(62)

This shows that there exists a constant C such that almost surely:

φ
(n)
k ≤ C.

By Theorem 4-ii), we conclude that if δ < δ?, the hard-margin SVR is almost surely feasible.

7.3. Proof of Theorem 2

The proof of Theorem 2 follows from applying the result of Theorem 5 in the Appendix. Let φ be defined as:

φ = min
D(γ1,γ2)≤0

1

2
γ2

1 +
1

2
(γ2 − β)2. (63)

and denote by γ?1 and γ?2 its corresponding minimizers 1. We need to prove that the following statements hold true:

For any ε > 0 : P
[
∪∞k=k0

{
φ

(n)
k ≤ φ− ε

}
, i.o.

]
= 0. (64a)

For any ε > 0 : P
[{
φ

(n)
k0
≥ φ− ε

}
, i.o.

]
= 0. (64b)

where k0 is some integer sufficiently large, and φ(n)
k is defined as:

φ
(n)
k = sup

θ≥0
φ

(n)
k,θ

1The existence and uniqueness of γ?1 and γ?2 follows from the fact that the objective is strictly convex and coercive.
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We shall first simplify the expression of φ(n)
k . It follows from (45) that:

φ
(n)
k = sup

θ≥0
min
γ1,γ2

γ2
1+γ2

2≤k
2

1

2
(γ2 − ‖β?‖)2 +

1

2
γ2

1 + θ (Dn(γ1, γ2))+ (65)

= min
γ1,γ2

γ2
1+γ2

2≤k
2

sup
θ≥0

1

2
(γ2 − ‖β?‖)2 +

1

2
γ2

1 + θ (Dn(γ1, γ2))+ (66)

= min
γ1,γ2

γ2
1+γ2

2≤k
2

Dn(γ1,γ2)≤0

1

2
(γ2 − ‖β?‖)2 +

1

2
γ2

1 (67)

The second equality (66) is because (γ1, γ2, θ) 7→ θDn(γ1, γ2) is convex in (γ1, γ2) and concave in θ while (67) follows
since, as previously proven, under the condition δ < δ?, the set{

(γ1, γ2) | (γ2
1 + γ2

2) ≤ k2 and Dn(γ1, γ2) ≤ 0
}

is not empty.

The function (γ1, γ2) 7→ Dn(γ1, γ2) is convex and converges pointwise to (γ1, γ2) 7→ D(γ1, γ2, 0). Hence, it converges
uniformly over compacts. For κ > 0, any r ∈ N∗ and sufficiently large n, the following holds true:

D(γ1, γ2)− κ ≤ Dn(γ1, γ2) ≤ D(γ1, γ2) + κ, ∀ (γ1, γ2) such that γ2
1 + γ2

2 ≤ r2

and thus:{
{(γ1, γ2)|D(γ1, γ2) ≤ −κ and γ2

1 + γ2
2 ≤ r2}

}
⊂
{
{(γ1, γ2)| Dn(γ1, γ2) ≤ 0} and γ2

1 + γ2
2 ≤ r2

}
(68)

Before handling the proof of (64a) and (64b), we need first to establish that for integer k sufficiently large φ(n)
k does not

change with k, which will require often the use of (68). To start, for κ > 0, we consider the set:

Dκ =
{

(γ1, γ2) | D(γ1, γ2) ≤ −κ
}

We let (γκ1 , γ
κ
2 ) be defined as:

(γκ1 , γ
κ
2 ) = arg min

γ1,γ2
D(γ1,γ2)≤−κ

1

2
(γ2 − β)2 +

1

2
γ2

1

and define k0 as k0 := max
(
d
√

2
(√

(γκ2 − β)2 + (γκ1 )2 + β
)
e+ 1, 2

√
(γκ1 )2 + (γκ2 )2

)
. Note that γκ1 and γκ2 are also

given by:

(γκ1 , γ
κ
2 ) = arg min

γ1,γ2
D(γ1,γ2)≤−κ
γ2
1+γ2

2≤k
2
0

1

2
(γ2 − β)2 +

1

2
γ2

1

We will thus prove that for all k ≥ k0, with probability 1 for sufficiently large n,

φ
(n)
k = φ

(n)
k0
. (69)

To begin with, we invoke the uniform convergence of (γ1, γ2) 7→ 1
2 (γ2 − ‖β?‖)2 + 1

2γ
2
1 to (γ1, γ2) 7→ 1

2 (γ2 − β)2 + 1
2γ

2
1 ,

to claim that for any η > 0, and (γ1, γ2) ∈
{

(γ1, γ2) | γ2
1 + γ2

2 ≤ k2
0

}
1

2
(γ2 − ‖β?‖)2 +

1

2
γ2

1 ≤
1

2
(γ2 − β)2 +

1

2
γ2

1 + η

and hence,

φ
(n)
k0
≤ min

γ1,γ2
Dn(γ1,γ2)

1

2
(γ2 − β)2 +

1

2
γ2

1 + η
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Next, we use (68) to establish that

φ
(n)
k0
≤ 1

2
(γκ2 − β)2 +

1

2
(γκ1 )2 + η. (70)

Clearly, φ(n)
k ≤ φ(n)

k0
. Let γ̃1 and γ̃2 be the minimizers of φ(n)

k . Then,

φ
(n)
k < φnk0 =⇒ (γ̃1, γ̃2) /∈

{
(γ1, γ2) | γ2

1 + γ2
2 ≤ k2

0

}
To prove (69), we proceed by contradiction and assume that

φ
(n)
k < φnk0 . (71)

Then, it is easy to see that in this case, we must have:

γ̃2
1 + γ̃2

2 ≥ k2
0

Therefore, either γ̃2
1 ≥ 1

2k
2
0 or γ̃2

2 ≥ 1
2k

2
0 .

First case: γ̃2
1 ≥ 1

2k
2
0 . In this case:

φ
(n)
k =

1

2
(γ̃2 − ‖β?‖)2 +

1

2
γ̃2

1 ≥
1

4
k2

0 ≥
1

2
(γκ2 − β)2 +

1

2
(γκ1 )2 +

1

4
≥ φ(n)

k0

where the last inequality follows from (70) This shows that φ(n)
k ≥ φ(n)

k0
which contradicts (71).

Second case: γ̃2
2 ≥ 1

2k
2
0 Using the relation (x− y)2 ≥ (|x| − |y|)2, we obtain

φ
(n)
k ≥ 1

2
(

√
1

2
k0 − ‖β?‖)2 ≥ 1

2

(√
(γκ2 − β)2 + (γκ1 )2 + β − ‖β?‖+

1√
2

)2

≥ φ(n)
k0

where we used the fact |β − ‖β?‖| can be assumed sufficiently small (let say smaller than 1
2
√

2
) for n sufficiently large. This

again contradicts (71) which proves that φ(n)
k = φ

(n)
k0

for k ≥ k0 and n sufficiently large but independent of k. With the
proof of (69) at hand, we are now ready to show (64a) and (64b).

Proof of (64a) The proof relies on using the uniform convergence of (γ1, γ2) 7→ minb̃Dn(γ1, γ2, b̃) to (γ1, γ2) 7→
D(γ1, γ2, 0) along with Lemma 4. More specifically, recalling (41), it holds that:{

{(γ1, γ2)|Dn(γ1, γ2) ≤ 0 and γ2
1 + γ2

2 ≤ r2}
}
⊂
{{

(γ1, γ2)| D(γ1, γ2) ≤ κ
}

and γ2
1 + γ2

2 ≤ r2
}

(72)

Hence,

φ
(n)
k0

= min
γ2
1+γ2

2≤k
2
0

Dn(γ1,γ2)≤0

1

2
(γ2 − ‖β?‖2) +

1

2
γ2

1 (73)

≥ min
γ2
1+γ2

2≤k
2
0

D(γ1,γ2)≤κ

1

2
(γ2 − ‖β?‖)2 +

1

2
γ2

1 (74)

Since (γ1, γ2) 7→ 1
2 (γ2 − ‖β?‖2) + 1

2γ
2
1 converges uniformly to (γ1, γ2) 7→ 1

2 (γ2 − β)2 + 1
2γ

2
1 over compacts, for any

η > 0, there exists n sufficiently large such that:

φ
(n)
k0
≥

 min
γ2
1+γ2

2≤k
2
0

D(γ1,γ2)≤κ

1

2
(γ2 − β)2 +

1

2
γ2

1

− η ≥
 min

γ2
1+γ2

2≤k
2
0

D(γ1,γ2)≤κ

1

2
(γ2 − β)2 +

1

2
γ2

1

− 2η (75)

where the last inequality follows by applying Lemma 4.
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Proof of (64b) Fix any η > 0. It follows from (68) that

φ
(n)
k0
≤

 min
γ2
1+γ2

2≤k
2
0

D(γ1,γ2,0)≤−κ

1

2
(γ2 − β)2 +

1

2
γ2

1

+ η (76)

Similarly, we conclude by invoking Lemma 4 and using the η-definition of the infimum.

With (64a) and (64b) at hand, we now use Theorem 5 to conclude that:

Φ(n) = ‖ŵH‖ → φ =
1

2
(γ?2 − β)2 +

1

2
(γ?1 )2 (77)

However, this convergence result is not sufficient to establish that of ‖ŵH − β?‖2 and the cosine similarity. Hopefully, we
can easily prove these results by working with the solution ˆ̃wH of (35) which, as per (36), writes as ˆ̃wH = −ŵH + β?.
The norm of ˆ̃wH represents the risk while the cosine similarity can be retrieved by using the relation

ˆ̃wT
HβT?
‖β?‖

=
ŵT
Hβ?
‖β?‖

− ‖β?‖

In the sequel, we will focus on the convergence of the quantity
ˆ̃wTHβT?
‖β?‖

, from which the cosine similarity easily follows. The
convergence of the risk can be done in a similar way and is omitted for brevity.

For that, we need to consider as suggested by Theorem 5 a perturbed version of the sequence of the AO problem in which w̃
is further constrained on the set Sξ:

Sξ =

{
w̃ ∈ Rp |

∣∣∣∣w̃Tβ?
‖β?‖

− γ?2
∣∣∣∣ > ξ

}
where ξ is any positive scalar. Particularly, we define for a given r and θ, φ̃r,θ as:

φ̃
(n)
r,θ = min

w̃
‖w̃‖≤r
w̃/∈Sξ

max
u

‖u‖≤θ

1
√
p
‖P⊥w̃‖2gTu+

1
√
p
‖u‖hTP⊥w̃+

1
√
p

1

‖β?‖
uT z βT? w̃+

1

2
‖β?−w̃‖2 +

1
√
p
σnTu− 1

√
p
ε1T |u|

Also, we define for r ≥ 0, φ̃r as:
φ̃(n)
r = sup

θ≥0
φ̃r,θ

Following the same calculations that led to (40), we can simplify φ̃(n)
r,θ as:

φ̃
(n)
r,θ = min

γ2
1+γ2

2≤r
2

|γ2−γ?2 |≥ξ

1

2
γ2

1 +
1

2
γ2

2 +
1

2
‖β?‖22 − γ2‖β?‖2 + θ (Dn(γ1, γ2))+

Since the objective is convex in (γ1, γ2), using (Deng et al., 2020, Remark 3), φ̃(n)
r can be simplified as:

φ̃(n)
r = min

γ2
1+γ2

2≤r
2

|γ2−γ?2 |≥ξ

sup
θ≥0

1

2
γ2

1 +
1

2
γ2

2 +
1

2
‖β?‖22−γ2‖β?‖2+θ (Dn(γ1, γ2))+ = min

γ2
1+γ2

2≤r
2

|γ2−γ?2 |≥ξ
Dn(γ1,γ2)≤0

1

2
γ2

1 +
1

2
γ2

2 +
1

2
‖β?‖22−γ2‖β?‖2

By reference to Theorem 5, it suffices to prove that there exists ζ > 0 such that for sufficiently large n (independent of r) it
holds that:

φ̃(n)
r ≥ φ+ ζ (78)

or equivalently,

∀r, φ̃(n)
r ≥ φ+ ζ (79)
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For that we proceed in two steps. In the first, step, we prove that for any ζ̃ > 0:

φ̃(n)
r ≥ φ̃− ζ̃ (80)

where
φ̃ := min

γ1,γ2
|γ2−γ?2 |≥ξ
D(γ1,γ2)≤0

1

2
γ2

1 +
1

2
γ2

2 +
1

2
β2 − γ2β2

The proof of (80) relies on the uniform convergence of Dn to D and is identical to what is done in (52). Details are thus
omitted for brevity. In the second step, we show that there exists ζ > 0 such that:

φ̃ ≥ φ+ 2ζ. (81)

To see this, it suffices to note that φ̃− φ > 0. Indeed, clearly φ̃ ≥ φ, however, since (γ?1 , γ
?
2 ) are the unique minimizers of φ,

we must have φ̃− φ > 0. Hence, (81) holds for ζ = φ̃−φ
2 . Starting from (80) and using ζ̃ smaller than ζ, we obtain (78).

Based on Theorem 5, we may conclude that the optimizer ˆ̃wH of (35) satisfies:

ˆ̃wT
Hβ?
‖β?‖

a.s.−→ γ?2 (82)

Hence,
ŵT
Hβ?
‖β?‖

a.s.−→ −γ?2 + β?

Using (77), we thus obtain:
ŵT
Hβ?

‖β?‖‖ŵH‖
a.s.−→ −γ?2 + β?√

1
2 (γ?2 − β)2 + 1

2 (γ?1 )2

Similarly, by defining the perturbed AO problem in which w̃ is further constrained on the set

w ∈
{
w̃ ∈ Rp |

∣∣∣∣‖w̃‖ −√(γ?1 )2 + (γ?2 )2

∣∣∣∣ > ξ

}
and following the same approach, we can prove the convergence of the risk to (γ?1 )2 + (γ?2 )2. The results of Theorem 2 are
then obtained by performing the change of variable γ̃1 = γ1

σ and γ̃2 := γ2
σ .

8. Performance of S-SVR: Proof of Theorem 3
This section is devoted to the analysis of the statistical behavior of the S-SVR. To begin with, we shall note that the S-SVR
can also be written as:

min
w

1

2
‖w‖2 +

C

p

n∑
i=1

ξi

s.t. yi −wTxi ≤ ε+ ξi, i = 1, · · · , n
wTxi − yi ≤ ε+ ξi,

ξi ≥ 0,

(83)

where in (83) we replaced ξ̃i by ξi. The reason why (3) and (83) are equivalent is as follows: First it is easy to see
that (83) is identical to (3) when ξi and ξ̃i are constrained to be equal. Hence, for any (w, {ξi}ni=1) feasible for (83),
(w, {ξi}ni=1, {ξi}ni=1) is also feasible for (3). Next, let (w, {ξi}ni=1, {ξ̃i}ni=1) be feasible for (3). Then, for all i = 1, · · · , n,

yi −wTxi ≤ ε+ ξi and wTxi − yi ≤ ε+ ξ̃i =⇒ |wTxi − yi| ≤ ε+ max(ξi, ξ̃i)

=⇒ wTxi − yi ≤ ε+ max(ξi, ξ̃i) and yi −wTxi ≤ ε+ max(ξi, ξ̃i)

From this it follows that if (w, {ξi}ni=1, {ξ̃i}ni=1) is feasible for (3), then (w, {max(ξi, ξ̃i}ni=1)) is feasible for (83). The
optimal costs for (3) and (83) are as such identical and thus are their respective solutions due to the strict convexity of their
objectives. In the sequel, for the sake of simplicity, we will study (83) instead of (3).
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Identifiying the PO. The Lagrangian associated with problem (83) can be written as:

L(w, ξ,λ,α) =
1

2
‖w‖2 +

C

p

n∑
i=1

ξi +

n∑
i=1

λi(β
T
? xi −wTxi + σni − ε− ξi) +

n∑
i=1

αi(w
Txi − βT? xi − σni − ε− ξi)

where ξ = [ξ1, · · · , ξn] and λ = [λ1, · · · , λn] and α = [α1, · · · , αn] are the Lagrangian coefficients. Letting w̃ = β −w,
we have

L(w̃, ξ,λ,α) =
1

2
‖β? − w̃‖2 +

C

p

n∑
i=1

ξi +

n∑
i=1

λi(w̃
Txi + σni − ε− ξi) +

n∑
i=1

αi(−w̃Txi − σni − ε− ξi)

Writing X = [x1, · · · ,xn] leads to the following optimization problem:

min
w̃,ξ≥0

max
λ≥0,α≥0

1

2
‖β? − w̃‖2 +

n∑
i=1

(
C

p
− λi − αi

)
ξi + w̃TX(λ−α) + σnT (λ−α)− ε1T (λ + α) (84)

Let ξ? be the optimum in ξ of the above problem. It follows from the first order condition that for all ξ ≥ 0, the following
inequality must hold (

C

p
− λi − αi

)
(ξi − ξ?i ) ≥ 0, i = 1, · · · , n (85)

For (85) to be satisfied, we must have C
p − λi − αi ≥ 0 and

(
C
p − λi − αi

)
ξ?i = 0. Using this, the problem in (84)

simplifies as:

min
w̃

max
λ≥0,α≥0
λ+α≤Cp

1

2
‖β? − w̃‖2 + w̃TX(λ−α) + σnT (λ−α)− ε1T (λ + α)

Considering u =
√
p(λ−α) and v =

√
p(λ + α). With these notations, the optimization problem can be written as

min
w̃

max
v≥0
|u|≤v
v≤ C√

p

1

2
‖β? − w̃‖2 +

1
√
p
w̃TXu +

σ
√
p
nTu− 1

√
p
ε1Tv (86)

Clearly, and for the same arguments as in the proof of the H-SVR, the optimization over v leads to v? = |u|. Replacing v
by its optimum value, (86) simplifies to,

Φ̃ := min
w̃

max
u

|u|≤ C√
p

1

2
‖β? − w̃‖2 +

1
√
p
w̃TXu +

σ
√
p
nTu− 1

√
p
ε1T |u| (87)

Contrary to the H-SVR, the S-SVR is always feasible. As such, the optimal cost is finite and thus should be attained by a
solution with finite norm. As far as the proof is concerned, checking that at optimum, the solution has a bounded norm
allows us to work with the original CGMT framework in (Thrampoulidis et al., 2018). Whenever this possible, proceeding
in this way should be preferred for the sake of simplicity. We thus start by proving that the norm of the optimum solution
w̃? is bounded. Indeed, it follows from the first order optimality conditions that:

w? = β? −
1
√
p
Xu

and hence,

‖w̃?‖ ≤ ‖β?‖+
1

2
‖ 1
√
p
X‖ ‖u‖

Clearly, the constraint |u| ≤ C√
p implies that ‖u‖ is bounded. Moreover, it is known from standard results of random

matrix theory that ‖ 1√
pX‖ is almost surely bounded (Bai & Silverstein, 2009) and hence w̃ can be assumed without loss of



A Precise Performance Analysis of Support Vector Regression

generaily to satisfy ‖w̃‖ ≤ Cw where Cw is a finite constant. With this, the optimization problem can be written in the form
of a primary optimization problem as required by the CGMT framework in (Thrampoulidis et al., 2018):

Φ
(n)
S = min

w̃
‖w̃‖≤Cw

max
u

|u|≤ C√
p

1
√
p
w̃TXu +

σ
√
p
nTu− 1

√
p
ε1T |u|+ 1

2
‖β? − w̃‖2. (88)

To connect (87) to (88), we rely on (Thrampoulidis et al., 2018, Lemma 5), which ensures that if there exists γ?1 and γ?2 such
that for sufficiently large Cw, the optimizer w̃Cw satisfies:

‖w̃Cw‖
a.s.−→ (γ?1)2 + (γ?2)2,

w̃T
Cw

β?
‖β?‖

a.s.−→ γ?2 (89)

then any minimizer w̃ of (87) satisfies:

‖w̃‖ a.s.−→ (γ?1)2 + (γ?2)2,
w̃Tβ?
‖β?‖

a.s.−→ γ?2 (90)

From now onward, we thus focus on analyzing Φ
(n)
S . Using the same trick as in the proof for the H-SVR, we may project w̃

onto β? and the space orthogonal to it, thereby yielding:

Φ
(n)
S = min

w̃
‖w̃‖≤Cw

max
u

|u|≤ C√
p

1
√
p
w̃TP⊥Xu +

1
√
p‖β?‖2

wTβ?β
T
?Xu +

σ
√
p
nTu− 1

√
p
ε1T |u|+ 1

2
‖β? − w̃‖2. (91)

where we recall that P⊥ = Ip − β?β
T
?

βT? β?
. Let z = 1

‖β?‖
XTβ?. Then, z is independent of P⊥X and Φ

(n)
S writes as:

Φ
(n)
S = min

w̃
‖w̃‖≤Cw

max
u

|u|≤ C√
p

1
√
p
w̃TP⊥Xu +

1
√
p‖β?‖

w̃Tβ?z
Tu +

σ
√
p
nTu− 1

√
p
ε1T |u|+ 1

2
‖β? − w̃‖2. (92)

Identification and simplification of the AO. With the primary problem in (92), we associate the following AO problem
given by:

φ
(n)
S = min

w̃
‖w̃‖≤Cw

max
u

|u|≤ C√
p

1
√
p
‖P⊥w̃‖gTu−

1
√
p
‖u‖hTP⊥w̃+

1
√
p‖β?‖

w̃Tβ?z
Tu+

σ
√
p
nTu− 1

√
p
ε1T |u|+ 1

2
‖β?−w̃‖2

(93)
In a similar way as in the H-SVR, we decompose w̃ as:

w̃ = γ1
P⊥w̃

‖P⊥w̃‖
+ γ2

β?
‖β?‖

Hence,
φ

(n)
S = min

γ1,γ2
γ2
1+γ2

2≤C
2
w

max
u

|u|≤ C√
p

An(γ1, γ2,u) (94)

where

An(γ1, γ2,u) =
γ1√
p
gTu− γ1√

p
‖u‖‖P⊥h‖+

γ2√
p
zTu +

σ
√
p
nTu− ε

√
p
‖u‖1 +

1

2
(γ2

1 + γ2
2) +

1

2
‖β?‖2 − γ1‖β?‖

It can be easily seen that
inf
γ1,γ2

γ2
1+γ2

2≤C
2
w

sup
|u|≤ C√

p

∣∣∣An(γ1, γ2,u)− Ãn(γ1, γ2,u)
∣∣∣ a.s.−→ 0.

where

Ãn(γ1, γ2,u) :=
γ1√
p
gTu− γ1‖u‖+

γ2√
p
zTu +

σ
√
p
nTu− ε

√
p
‖u‖1 +

1

2
(γ2

1 + γ2
2) +

1

2
β2 − γ1β
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As a result φ(n)
S − φ̃(n)

S
a.s.−→ 0, where

φ̃
(n)
S = min

γ1,γ2
γ2
1+γ2

2≤C
2
w

max
u

|u|≤ C√
p

Ãn(γ1, γ2,u)

Based on this, we will work from now on with φ̃(n)
S . For that, we rely on Lemma 5 to perform the optimization with respect

to u and simplify φ̃(n)
S as:

φ̃
(n)
S = min

γ1,γ2
γ2
1+γ2

2≤C
2
w

sup
χ≥0

1

2
(γ2

1 + γ2
2) +

1

2
β2 − γ1β + R̂n(γ1, γ2, χ) (95)

where

R̂n(γ1, γ2, χ) :=


1
p

n∑
i=1

C(bi −
Cγ1

2χ
)1{biχ>γ1C} +

1

p

n∑
i=1

b2iχ

2γ1
1{biχ≤γ1C} −

γ1χ

2
, if γ1 6= 0

C
p

∑n
i=1 bi if γ1 = 0.

with b = (|γ1g + γ2z + σn| − ε)+.

Asymptotic behavior of the AOs costs. Denote the objective function of (95) by D̂n(γ1, γ2, χ). Fix γ1, γ2, χ, then:

D̂n(γ1, γ2, χ)
a.s.−→ D(γ1, γ2, χ) :=

1

2
γ2

2 +
1

2
(γ1 − β)2 +R(γ1, γ2, χ) (96)

where R(γ1, γ2, χ) = limn→∞ R̂n(γ1, γ2, χ) and is given by:

R(γ1, γ2, χ) :=


δE
{
C

[(∣∣∣√γ2
1 + γ2

2G+ σN
∣∣∣− ε)

+
− Cγ1

2χ

]
1{(|
√
γ2
1+γ2

2G+σN |−ε)+χ≥γ1C}

+ χ
2γ1

(∣∣∣√γ2
1 + γ2

2G+ σN
∣∣∣− ε)2

+
1{

(∣∣∣√γ2
1+γ2

2G+σN
∣∣∣−ε)

+
χ≤γ1C}

}
− γ1χ

2 , if γ1 6= 0

R̃(γ1, γ2) := CδE [(|γ2G+ σN | − ε)+] , if γ1 = 0.

Fix γ1 6= 0 and γ2 ∈ R. Function (γ1, γ2) 7→ supχ≥0 D̂n(γ1, γ2, χ) is convex in its arguments. Moreover, one can check
that for γ1 6= 0:

lim
χ→∞

D(γ1, γ2, χ) = −∞

Hence, we may use (Thrampoulidis et al., 2018, Lemma 10) to obtain:

sup
χ≥0

D̂n(γ1, γ2, χ)
a.s.−→ sup

χ≥0
D(γ1, γ2, χ), γ1 6= 0, γ2 ∈ R (97)

When γ1 = 0, clearly,
sup
χ≥0

D̂n(0, γ2, χ)
a.s.−→ sup

χ≥0
D(0, γ2, χ)

Function (γ1, γ2) 7→ supχ≥0 D̂n(γ1, γ2, χ) is convex in its arguments and converges pointwise to (γ1, γ2) 7→
supχ≥0D(γ1, γ2, χ). It thus converges uniformly over compacts in R2. Hence,

min
γ1,γ2

γ2
1+γ2

2≤C
2
w

sup
χ≥0

D̂n(γ1, γ2, χ)
a.s.−→ min

γ1,γ2
γ2
1+γ2

2≤C
2
w

sup
χ≥0

D(γ1, γ2, χ)

Now, one can easily check that

lim
‖γ1γ2‖→∞

sup
χ≥0

D(γ1, γ2, χ) ≥ lim
‖γ1γ2‖→∞

1

2
(γ2

1 + γ2
2)− γ1β =∞

Hence,
min
γ1,γ2

γ2
1+γ2

2≤C
2
w

sup
χ≥0

D(γ1, γ2, χ) = min
γ1,γ2

sup
χ≥0

D(γ1, γ2, χ)
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and as such:
min
γ1,γ2

γ2
1+γ2

2≤C
2
w

sup
χ≥0

D̂n(γ1, γ2, χ)
a.s.−→ min

γ1,γ2
sup
χ≥0

D(γ1, γ2, χ)

Concluding. Applying the CGMT framework, we conclude that:

Φ
(n)
S

a.s.−→ min
γ1,γ2

sup
χ≥0

D(γ1, γ2, χ)

Since (γ1, γ2) 7→ supχ≥0D(γ1, γ2, χ) is jointly strictly convex in its arguments and is coercive, it admits a unique minimizer
(γ?1 , γ

?
2 ). Considering a suitable perturbation of the AO problem and applying the same arguments as in H-SVR, we may

conclude (89) and (90). Similarly to the H-SVR, to retrieve the results of Theorem 3, we use the change of variable γ̃1 = γ1
σ

and γ̃2 = γ2
σ .

9. Technical Lemmas
Lemma 1. Let m be a strictly positive scalar and a be a vector in Rn. Then:

max
u∈Rn
‖u‖2=m

uTa− ε‖u‖1 = m

√√√√ n∑
i=1

(|ai| − ε)+)2 (98)

Proof. To begin with, we note that if for some i, the optimal solution is non-zero then it should have the same sign as ai.
Hence, (98) is equivalent to the following optimization problem:

max
u∈Rn
‖u‖2=m

n∑
i=1

|ui|(|ai| − ε) (99)

If for some i, |ai| ≤ ε then we need to set ui = 0. Hence, Problem (99) amounts to solving:

max
u∈Rn
‖u‖2=m

n∑
i=1

|ui|(|ai| − ε)+

Using Cauchy-Schwartz inequality, the objective of the above optimization problem can be upper-bounded as

n∑
i=1

|ui|(|ai| − ε)+ ≤ ‖u‖2

√√√√ n∑
i=1

(|ai| − ε)2
+

where equality holds when u = m (|a|−ε)+√
‖(|a|−ε)+‖

. The optimal cost of (98) is thus given by m
√∑n

i=1(|ai| − ε)+)2.

Lemma 2. Let f : R 7→ R be a convex and even function. Then for all x ∈ R,

f(0) ≤ f(x)

or in other words f is minimized at zero.

Proof. Let x ∈ R. Then, by convexity of f ,

f(0) = f(
1

2
x− 1

2
x) ≤ 1

2
f(x) +

1

2
f(−x)

As f(x) = f(−x), we thus have:
f(0) ≤ f(x).
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Lemma 3. (Boyd & Vandenberghe, 2003) Let X and Y be two convex sets. Let f : X×Y → R be a jointly convex function
in X × Y . Assume that ∀y ∈ Y , infx∈X f(x, y) > −∞. Then, g : y → infx∈X f(x, y) is convex in Y .

Lemma 4. (Kammoun & Alouini, 2020a) Let d ∈ N?. Let Sx be a compact non-empty set in Rd. Let f and c be two
continuous functions over Sx such that the set {c(x) ≤ 0} is non-empty. Then:

min
x∈Sx
c(x)≤0

f(x) = sup
δ≥0

min
x∈Sx
c(x)≤δ

f(x) = inf
δ>0

min
x∈Sx

c(x)≤−δ

f(x)

Lemma 5. Let a ∈ Rn×1. Let β, ε, and τ be positive scalars. Then,

• if β = 0,

max
|u|≤τ

(a− εsign(u))Tu− β‖u‖ = max
|u|≤τ

(a− εsign(u))Tu =

n∑
i=1

τ max(|ai| − ε, 0), (100)

• if β 6= 0,

max
|u|≤τ

(a− εsign(u))Tu− β‖u‖ = sup
χ>0

n∑
i=1

b2iχ

2β
1{ biχβ ≤τ}

+

n∑
i=1

(
biτ −

β

2χ
τ2

)
1{ biχβ >τ} − β

χ

2
(101)

where bi = (|ai| − ε)+. Moreover, function χ 7→
∑n
i=1

b2iχ
2β 1{ biχβ ≤τ}

+
∑n
i=1

(
biτ − β

2χτ
2
)
1{ biχβ >tau} − β

χ
2 is

concave on (0,+∞).

Proof. If β = 0, one can note that if for some i the optimal solution is non zero then it should have the same sign as ai.
Hence, the optimization problem becomes:

min
0≤|ui|≤τ
i=1,··· ,n

n∑
i=1

|ui|(|ai| − ε) =

n∑
i=1

τ(|ai| − ε)+

To treat the case β 6= 0, we start by rewriting ‖u‖ as

‖u‖ = inf
χ>0

χ

2
+
‖u|‖2

2χ
,

thus yielding:

max
|u|≤τ

(a− εsign(u))Tu− β‖u‖ = max
|u|≤τ

sup
χ>0

(a− εsign(u))Tu− β
[
χ

2
+
‖u‖2

2χ

]
In a similar way as in the case of β = 0, we note that if for some i the optimum ui is non zero then it necessarily have the
same sign as ai. Moreover, if for some i, |ai| ≤ ε then necessarily ui = 0. With these, the above problem writes thus as:

sup
χ>0

max
|u|≤τ

n∑
i=1

(|ai| − ε)+|ui| −
β

2χ
u2
i − β

χ

2
.

Let v = |u|, and define for i = 1, · · · , n bi = (|ai| − ε)+. Now, noting that bi ≥ 0 and that the function x→ bix− β
2χx

2

is increasing on (−∞, biχβ ) and decreasing on ( biχβ ,∞) with its maximum achieved at x? = biχ
β , one can easily see that

max
0≤x≤τ

bix−
β

2χ
x2 =

{
biτ − β

2χτ
2 if biχ

β > τ
b2iχ
2β if biχ

β ≤ τ.
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Hence,

sup
χ>0

max
|u|≤τ

n∑
i=1

(ai − εsign(ui))ui −
β

2χ
u2
i − β

χ

2

= sup
χ>0

n∑
i=1

b2iχ

2β
1{ biχβ ≤τ}

+

n∑
i=1

(
biτ −

β

2χ
τ2

)
1{ biχβ >τ} − β

χ

2

Now, we proceed with the proof of the concavity of the function

ψ : χ→
n∑
i=1

b2iχ

2β
1{ biχβ ≤τ}

+

n∑
i=1

(
biτ −

β

2χ
τ2

)
1{ biχβ >τ} − β

χ

2
.

For that, it suffices to note that

ψ(χ) = max
|ui|≤τ

n∑
i=1

aiui − ε|ui| −
β

2χ
u2
i −

βχ

2

Function (ui, χ) 7→ βu2
i

2χ is jointly convex on [−τ, τ ]×R+, then (ui, χ) 7→ aiui − ε|ui| − β
2χu

2
i −

βχ
2 is jointly concave on

[−τ, τ ]× R+. Applying Lemma 3, we show that function ψ is concave.


