
Collaborative Bayesian Optimization with Fair Regret

A. Pseudocode for Collaborative BO Algorithm

Algorithm 1 Collaborative BO algorithm
Require: Objective function f , input domain X , number of parties n, time budget T , initial time exploration budget T0,

prior mean mx and covariance kxx′
1: for t = 1, . . . , T do
2: if t < T0 then
3: Select batch Xt randomly.
4: else
5: Select batch Xt , arg maxXt∈Xn

∑n
i=1 wiφi((λ

i
t + µxi

t|D1:t−1
)i∈[n]) +

√
αtI(fX ;yt | D1:t−1).

6: end if
7: Query batch Xt to obtain yt , (f(xit) + ε)i∈[n].
8: Perform Gaussian process belief update with (Xt,yt).
9: end for

The code of the algorithm is in https://github.com/YehongZ/CollaborativeBO.

B. Proofs
B.1. Proof of Proposition 1

Instead of proving Proposition 1 directly, we prove a more general version for any positive, non-decreasing series of weights.

Lemma 1 (Monotonicity). Let w1 > w2 > · · · > wn > 0 and W (u) =
∑n
k=1 wkφk(u) where φk returns the k-th

smallest element of u. For any two utility vectors a and b, if there exists i ∈ [n] such that ∀k ∈ [n] \ {i} ak = bk and
bi > ai, then W (b) > W (a).

Proof. Let a∗ and b∗ be the vectors obtained after, respectively, sorting elements of a and b in ascending order and the
position of ai and bi in a∗ and b∗ be ia and ib, respectively, i.e., aia∗ = ai and bib∗ = bi.

Given ∀k ∈ [n] \ {i} , ak = bk and bi > ai, we must have ia ≤ ib. Furthermore, (i) for k ∈ [0, ia) and k ∈ (ib, n], ak∗ = bk∗
and (ii) if ib > ia, then for k ∈ [ia, ib), ak+1

∗ = bk∗ .

W (b)−W (a)

=

n∑
k=1

wkb
k
∗ −

n∑
k=1

wka
k
∗

= wibb
ib
∗ +

ib−1∑
k=ia

wkb
k
∗ −

ib∑
k=ia+1

wka
k
∗ − wiaaia∗

= wibb
ib
∗ − wiaaia∗ +

ib∑
k=ia+1

(wk−1 − wk)ak∗

≥ wibbib∗ − wiaaia∗ + aia∗

ib∑
k=ia+1

(wk−1 − wk)

= wibb
ib
∗ − wiaaia∗ + aia∗ (wia − wib)

= wib(bib∗ − aia∗ )

= wib(bi − ai)
> 0 .

The first equality is from the definition of W . The second equality is because of (i) and separating out bib∗ and aia∗ . The third
equality is due to (ii). The first inequality uses the sorted property of a∗: for any k > ia, ak∗ ≥ aia∗ and wk−1 − wk > 0.
The fourth equality is because of the telescoping series. The last inequality uses the assumption bi > ai.

https://github.com/YehongZ/CollaborativeBO


Collaborative Bayesian Optimization with Fair Regret

Lemma 2 (Pigou-Dalton Principle). Let w1 > w2 > · · · > wn > 0 and W (u) =
∑n
k=1 wkφk(u) where φk returns the

k-th smallest element of u. For any two utility vectors a and b, there exist i, j ∈ [n] s.t. if (a) ∀k ∈ [n] \ {i, j} ak = bk, (b)
ai + aj = bi + bj , and (c) |ai − aj | > |bi − bj |, then W (b) > W (a).

Proof. Let a∗ and b∗ be the vectors obtained after, respectively, sorting a and b and let la be the index of min(ai, aj) in a∗
and ha be the index of max(ai, aj) in a∗. lb and hb are similarly defined based on b∗.

We must have la ≤ lb < hb ≤ ha. For the sake of contradiction, consider la > lb. Because of (a) and the fact that la index a
minimum, it would mean min(ai, aj) > min(bi, bj). By (b), we would also have max(ai, aj) < max(bi, bj). Hence, we
would have |ai − aj | < |bi − bj | which contradicts (c).

The generalized Gini utility of a and b can be decomposed as

W (a) =

la−1∑
k=1

wka
k
∗ +wlaa

la
∗ +

ha−1∑
k=la+1

wka
k
∗ +whaa

ha
∗ +

n∑
k=ha+1

wka
k
∗

W (b) =

la−1∑
k=1

wkb
k
∗ +

lb−1∑
k=la

wkb
k
∗ + wlbb

lb
∗ +

hb−1∑
k=lb+1

wkb
k
∗ + whb

bhb
∗ +

ha∑
k=hb+1

wkb
k
∗ +

n∑
k=ha+1

wkb
k
∗ .

Then,

W (b)−W (a)

=

lb−1∑
k=la

wkb
k
∗ + wlbb

lb
∗ + whb

bhb
∗ +

ha∑
k=hb+1

wkb
k
∗ −

(
wlaa

la
∗ +

lb∑
k=la+1

wka
k
∗ +

ha−1∑
k=hb

wka
k
∗ + wha

aha
∗

)

=

lb−1∑
k=la

wkb
k
∗ + wlbb

lb
∗ + whb

bhb
∗ +

ha∑
k=hb+1

wkb
k
∗ −

(
wlaa

la
∗ +

lb∑
k=la+1

wkb
k−1
∗ +

ha−1∑
k=hb

wkb
k+1
∗ + wha

aha
∗

)

=

lb−1∑
k=la

(wk − wk+1)bk∗ + (wlbb
lb
∗ − wlaala∗ ) + (whb

bhb
∗ − wha

aha
∗ ) +

ha∑
k=hb+1

(wk − wk−1)bk∗

≥
lb−1∑
k=la

(wk − wk+1)ala∗ + (wlbb
lb
∗ − wlaala∗ ) + (whb

bhb
∗ − whaa

ha
∗ ) +

ha∑
k=hb+1

(wk − wk−1)aha
∗

= (wla − wlb)ala∗ + (wlbb
lb
∗ − wlaala∗ ) + (whb

bhb
∗ − whaa

ha
∗ ) + (wha − whb

)aha
∗

= −wlbala∗ + wlbb
lb
∗ + whb

bhb
∗ − whb

aha
∗

= −wlbala∗ + wlb(ala∗ + aha
∗ − bhb

∗ ) + whb
bhb
∗ − whb

aha
∗

= (wlb − whb
)(aha
∗ − bhb

∗ )

> 0

The first equality is because of (a). As la ≤ lb < hb ≤ ha, we have ak∗ = bk∗ for k ∈ [1, la−1]∪ [ha+1, n]∪ [lb+1, hb−1].
Thus,

la−1∑
k=1

wka
k
∗ =

la−1∑
k=1

wkb
k
∗ ,

n∑
k=ha+1

wka
k
∗ =

n∑
k=ha+1

wkb
k
∗ , and

hb−1∑
k=lb+1

wka
k
∗ =

hb−1∑
k=lb+1

wkb
k
∗ .

The second equality is because for k ∈ (la, lb], ak∗ = bk−1∗ (ranking decrease) and k ∈ [hb, ha), ak∗ = bk+1
∗ (ranking

increase). The next equality is from regrouping similar terms.

The first inequality is because wk − wk+1 > 0 and bk∗ = ak+1
∗ ≥ ala∗ for k = la, . . . , lb − 1, and (wk − wk−1) is negative

and bk∗ = ak−1∗ ≤ aha
∗ for k = hb + 1, . . . , ha.
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The fourth equality is due to the telescoping series and can be simplified to give the fifth equality. For the sixth equality, we
use property (b) that ala∗ + aha

∗ = bhb
∗ + blb∗ .

The last inequality is because lb < hb and aha
∗ > bhb

∗ , i.e., max(ai, aj) > max(bi, bj).

B.2. Detailed Analysis of (5)

Given any fixed input matrix Xt, we claim that the first term in (5) is maximized when the party with k-th lowest λit is
assigned to evaluate x with the k-th highest µx|D1:t−1

due to the PDP property of the function W (see Appendix B.1). In
this section, we will provide a rigorous proof. We start with the following lemma.

Lemma 3. Let λ , (λ1, . . . , λn) and h , (h1, . . . , hi, . . . , hj , . . . , hn) be two vectors with λ1 < λ2 < . . . < λn.
b = λ+ h and a = λ+ h′ where h′ , (h1, . . . , hj , . . . , hi, . . . , hn) is achieved by swapping the i-th and j-th elements of
h with i < j. If hi > hj , then W (a) < W (b).

Proof. As W satisfies the PDP property (see Proposition 1), if a and b satisfy the PDP’s preconditions (a-c), it will imply
that W (a) < W (b). Here, we prove that a and b satisfy preconditions (a-c).

It is obvious that the preconditions (a-b) are satisfied since (a) ∀k ∈ [n] \ {i, j} ak = λk + hk = bk; and (b) ai + aj =
λi + hi + λj + hj = bi + bj .

Also, we have |bi − bj | = |λi − λj + hi − hj | < |λi − λj |+ |hi − hj | = |λj − λi + hi − hj | = |ai − aj |. The inequality
is due to λi − λj < 0 and hi − hj > 0 . Therefore, the precondition (c) of PDP is satisfied.

Next, we will use Lemma 3 to support our claim regarding how the first term in (5) is maximized.

Let λ , (λ1, . . . , λn) and h , (h1, . . . , hn) be two sorted vectors with λ1 < λ2 < . . . < λn and h1 > h2 > . . . > hn.
We set λk to be the k-th lowest λit and hk to be the k-th highest µx|D1:t−1

. This corresponds to the “fairest” assignment
where the party with the k-th lowest λit (λk) is assigned to evaluate x with the k-th highest posterior mean µx|D1:t−1

(hk).

Let h′ be the vector obtained by permuting the elements of h. h′ corresponds to an alternative assignment where the party
with the k-th lowest λit is assigned to evaluate x whose posterior mean is the k-th element of h′. Additionally, let the
function reindexh′(i) returns the index of hi in h′.

We will show that the vector h′ can be achieved by swapping elements in h such that every swap satisfy Lemma 3. This
implies that swapping the assignments of inputs to parties from the “fairest” assignment will decrease the first term of (5).
We show this by considering a sequence of intermediate vectors: h = h(1) → h(2) → . . .→ h(p) = h′ constructed using
the following steps.

(i) Let I = {i ∈ [n] | i = reindexh′(i)} be an index set that contains indices where h′ matches h.

(ii) From h(1) → h(2): Let h(2) be initialized to h(1).

We identify the largest element in h(1), located at index i1, with reindexh′(hi1) 6= i1 (i.e., i1 /∈ I). As h(1) is sorted in
descending order, i1 < reindexh′(i1).

We iterate through k = i1 + 1, . . . , reindexh′(i1), if hi1 > hk and k /∈ I , swap hi1 with hk in h(2). Since hi1 > hk,
every swapping step satisfies the conditions of Lemma 3, and thus we have W (h(1) + λ) > W (h(2) + λ).

Moreover, the index of hi1 in h(2) will be the same as its index in h′ after the above swapping steps. We then add
new indices to I , including reindexh′(i1), such that it contains all indices where h′ matches h(2). For any i /∈ I , the
elements hi are still in descending order.

(iii) We can obtain more intermediate vectors by repeating step (ii) above until h′ is achieved. Note that for any i /∈ I , the
elements hi are still in descending order. Thus, we have iq < reindexh′(iq) where iq is set to the location/index of the
largest element in h(q) with reindexh′(h

iq ) 6= iq for q = 1, . . . , p− 1.

All the swapping steps are guaranteed to satisfy the conditions in Lemma 3. Hence, W (h + λ) = W (h(1) + λ) >
W (h(2) + λ) > . . . > W (h(p) + λ) = W (h′ + λ).
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B.3. Proof of Theorem 1

In the following proof, we only consider the case where the domain is discrete as one can generalize the results to a
continuous, compact domain via suitable discretizations (Srinivas et al., 2010).

Lemma 4. Let δ ∈ (0, 1) be given and βt = 2 log (|X |t2π2/(6δ)). Then,

Pr
(
∀x ∈ X ∀t ∈ N

∣∣f(x)− µx|D1:t−1

∣∣ ≤ β1/2
t Σ

1/2
x|D1:t−1

)
≥ 1− δ .

Lemma 1 above corresponds to Lemma 5.1 in (Srinivas et al., 2010).

Lemma 5. Let δ ∈ (0, 1) and for all i ∈ [n], wi ∈ (0,∞) be given. Let C0 , 2/ log (1 + σ−2) and C1 , 2C0

βt = 2 log (|X |t2π2/(6δ)). Let C be a constant with C ≥ I[fx; (yi
′

t )>i′∈[i] | D1:t−1] for all i ∈ [n − 1], x ∈ X , and

t = 1, . . . , T , and αt , C1(
∑n
i=1 w

2
i ) exp (2C) log (|X |t2π2/(6δ)) = C0(

∑n
i=1 w

2
i ) exp (2C)βt. Then,

Pr

(
∀Xt , (xit)i∈[n] ∈ Xn ∀t ∈ N

n∑
i=1

wi

∣∣∣f(xit)− µxi
t|D1:t−1

∣∣∣ ≤√αtI[fX ;yt | D1:t−1]

)
≥ 1− δ . (6)

Proof. For all Xt ∈ Xn and t ∈ N,

n∑
i=1

wiβ
1/2
t Σ

1/2

xi
t|D1:t−1

≤

√√√√( n∑
i=1

w2
i

)(
n∑
i=1

βtΣxi
t|D1:t−1

)
≤
√
αtI[fX ;yt | D1:t−1]

where the first inequality is due to the Cauchy-Schwarz inequality and the second is due to an intermediate step in Lemma 5
in (Daxberger & Low, 2017) which shows that

∑n
i=1 βtΣxi

t|D1:t−1
≤ C0 exp (2C)βtI[fX ;yt | D1:t−1]. Then, (6) follows

from that
Pr
(
∀Xt ∈ Xn ∀t ∈ N

∑n
i=1 wi

∣∣∣f(xit)− µxi
t|D1:t−1

∣∣∣ ≤√αtI[fX ;yt | D1:t−1]
)

≥ Pr
(
∀Xt ∈ Xn ∀t ∈ N

∑n
i=1 wi

∣∣∣f(xit)− µxi
t|D1:t−1

∣∣∣ ≤∑n
i=1 wiβ

1/2
t Σ

1/2

xi
t|D1:t−1

)
≥ Pr

(
∀x ∈ X ∀t ∈ N

∣∣f(x)− µx|D1:t−1

∣∣ ≤ β1/2
t Σ

1/2
x|D1:t−1

)
≥ 1− δ

where the first two inequalities are due to the property that for logical propositions A and B, [A⇒ B]⇒ [Pr(A) ≤ Pr(B)]
and the last inequality is due to Lemma 4.

Remark 6. According to (Daxberger & Low, 2017), one can obtain a constant C independent of the batch size n by
initializing the algorithm according to Section 4 of (Desautels et al., 2014).

Remark 7. Here, {wi}i∈[n] can be any set of weights and ordering. The ordering need not match the G2SF weights although
G2SF weights are used in Lemma 6.

Lemma 6. Let δ ∈ (0, 1) and for all i ∈ [n], wi ∈ (0,∞) be given. If

n∑
i=1

wi

∣∣∣f(xit)− µxi
t|D1:t−1

∣∣∣ ≤√αtI[fX ;yt | D1:t−1] (7)

for all Xt ∈ Xn and Xt is selected using the acquisition function in (5) then

s′t ,W ((f(x∗) + λit)i∈[n])−W ((f(xit) + λit)i∈[n]) ≤ 2
√
αtI[fX ;yt | D1:t−1] .

Proof. Let X∗ be Xt with xit = x∗ for all i ∈ [n] and φi(a) denote the i-th element of φ(a). Let u∗ be the vector
obtained from sorting a vector u in ascending order, rank(·) be the function take in a vector u and return another vector
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whose i-th element is the position of ui in u∗, and [·] denote the indexing operator. Let φf,i(a) denote the i-th element of
φf (a) , a[rank((f(xit) + λit)i∈[n])] which reordering the elements in a based on the rank of (f(xit) + λit). Then,

s′t ,W ((f(x∗) + λit)i∈[n])−W ((f(xit) + λit)i∈[n])

=

n∑
i=1

wiφi
(
(λit)i∈[n]

)
+

n∑
i=1

wif(x∗)−
n∑
i=1

wiφi
(
(f(xit) + λit)i∈[n]

)
≤

n∑
i=1

wiφi
(
(λit)i∈[n]

)
+

n∑
i=1

wiµx∗|D1:t−1
+
√
αtI[fX ;yX∗ | D1:t−1]−

n∑
i=1

wiφi
(
(f(xit) + λit)i∈[n]

)
=

n∑
i=1

wiφi
(
(λit + µx∗|D1:t−1

)i∈[n]
)

+
√
αtI[fX ;yX∗ | D1:t−1]−

n∑
i=1

wiφi
(
(f(xit) + λit)i∈[n]

)
≤

n∑
i=1

wiφi

(
(λit + µxi

t|D1:t−1
)i∈[n]

)
+
√
αtI[fX ;yt | D1:t−1]−

n∑
i=1

wiφi
(
(f(xit) + λit)i∈[n]

)
≤

n∑
i=1

wiφf,i

(
(λit + µxi

t|D1:t−1
)i∈[n]

)
+
√
αtI[fX ;yt | D1:t−1]−

n∑
i=1

wiφi
(
(f(xit) + λit)i∈[n]

)
=
√
αtI[fX ;yt | D1:t−1] +

n∑
i=1

wiφf,i

((
µxi

t|D1:t−1
− f(xit)

)
i∈[n]

)
≤ 2
√
αtI[fX ;yt | D1:t−1] .

The equalities are due to the regrouping of terms. The first inequality is from applying (7) with xit = x∗ for all i ∈ [n]

and the triangle inequality:
∣∣∣∑n

i=1 wi

(
f(xit)− µxi

t|D1:t−1

)∣∣∣ ≤∑n
i=1 wi

∣∣∣f(xit)− µxi
t|D1:t−1

∣∣∣. The second inequality is

due to the acquisition function: Xt , arg maxXt∈Xn

∑n
i=1 wiφi((λ

i
t + µxi

t|D1:t−1
)i∈[n]) +

√
αtI(fX ;yt | D1:t−1) . The

third inequality is due to Lemma 1 of (Weymark, 1981). The ordered weighted average utility would not be larger than the
weighted average utility under any alternative ordering. The last inequality follows from (7).

Proof of Theorem 1 on S′T
Let γT , maxX1:T

I[fX ;y1:t] .

S′T ,
T∑
t=1

s′t ≤
T∑
t=1

2
√
αtI[fX ;yt | D1:t−1]

≤ 2

√√√√T

T∑
t=1

αtI[fX ;yt | D1:t−1]

≤ 2

√√√√TαT

T∑
t=1

I[fX ;yt | D1:t−1]

= 2
√
TαT I[fX ;y1:t]

≤ 2
√
TαT γT .

The first inequality is due to Lemma 6. The second inequality is due to the Cauchy-Schwarz inequality. The third inequality
is because αt is increasing in t. The last equality follows from the chain rule of mutual information.

Convergence to Optimality

By substituting xit = x∗ for all i ∈ [n], we have s′t = 0 and can show instantaneity (E2). As x∗ is a maximizer of the
objective function f , for any party i, if xit 6= x∗, we must have uit ≤ f(x∗). Then by the monotonicity property (E1)
(i.e., proven in Appendix B.1), s′t must increase (or stay the same), hence s′t lowest possible value is 0 and s′t = 0 implies
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Figure 4. Visualization of the traffic demand distribution.

xit = x∗ for all i ∈ [n]. Since S′T ≤
√
TαT γT , limn→∞mint s

′
t ≤ limn→∞ S′T /T = 0, i.e. we can find an iteration t

where s′t = 0 and xit = x∗ for all i (each party has converged to the maximum).

Remark 8. The acquisition function (1) proposed by Daxberger & Low (2017) can also be used to bound S′T but the bound
may be looser than that in Theorem 1. To be specific, we can replace the inequality (7) in Lemma 6 with:

n∑
i=1

wi

∣∣∣f(xit)− µxi
t|D1:t−1

∣∣∣ ≤ (max
i∈[n]

wi

)
×

n∑
i=1

∣∣∣f(xit)− µxi
t|D1:t−1

∣∣∣ ≤√α′tI[fX ;yt | D1:t−1]

where α′t , C1n(maxi∈[n] wi)
2 exp (2C) log (|X |t2π2/(6δ)) = C0n(maxi∈[n] wi)

2 exp (2C)βt. The ordering of parties
would not matter. Then, we can have s′t ≤ 2

√
α′tI[fX ;yt | D1:t−1] and S′T ≤ 2

√
Tα′T γT following the same steps above.

Note that α′T > αT as n(maxi∈[n] wi)
2 >

∑n
i=1 w

2
i .

C. More Experimental Details
C.1. Experimental Setups

For all experiments, we optimize and fix the squared exponential kernel hyperparameters, including the lengthscale for every
dimension, in advance. Moreover, we test the performance of our algorithm using multiple c1 and c2 and choose c1 and c2
such that the CR is minimized, but the algorithm can still find a good estimate of x∗, i.e., overexploration is avoided. More
details about each experiment are given below.

Hartmann-6d function. We negate the Hartmann-6d function and add Gaussian noise with σ = 0.1 to the output of f . We
set c1 = 0.08 and c2 = 5.

Hyperparameter tuning of LR with mobile sensor dataset. We set c1 = 0.01 and c2 = 10.

Hyperparameter tuning of CNN with FEMNIST. We set c1 = 0.001 and c2 = 1.

Mobility demand hotspot discovery on traffic dataset. A visualization of the demand distribution is in Fig. 4. As the
demand might vary widely, we use log(demand + 1) instead. The log-demand is always at least 0.

We consider n = 8 parties and set T0 = 6. Each party will then start at its highest non-zero demand region among these 6
explored regions. The mediator will recommend a region that is connected to its current region. If these locations are all
visited (or have been evaluated to have 0 demand by others), the mediator will recommend a region that is two steps away
from the current region, and so forth. We set c1 = 0.1 and c2 = 1.

C.2. Inefficiency: Rt/n against BO Iteration t

Fig. 5 and Fig. 6 show the t-step CR Rt/n vs. iteration t for fixed c1 and varying c1, respectively. It can be observed that for
small ρ (e.g., ρ = 0.2, 0.4), Rt/n is larger and increases at a faster rate. This is due to the increased exploration as discussed
in Sec. 4.1. We can also observe that Rt/n in Figs. 6a-b is lower than that in Figs. 5a-b as we have mitigated the effect of
increased exploration relative to exploitation from setting ρ < 1 by adjusting c1. This has been explained in Sec. 5.

For the traffic experiments, Rt/n is high and similar across ρ’s due to the constraint that each party can only be assigned a
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Figure 5. Cumulative regret Rt/n vs. iteration t with fixed c1 and different ρ’s in (5) for various objective functions.
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Figure 6. Cumulative regret Rt/n vs. iteration t with varying c1 and different ρ’s in (5) for various objective functions.

connected input region. The inefficiency can be reduced if a non-myopic approach is used or the constraint is relaxed.

C.3. More Observations about Fairness

We plot Ut/n− gt vs. Ut/n for fixed c1 and varying c1, respectively, in Figs. 7a-d and 7e-h.11 As ρ decreases, Ut/n− gt
generally decreases in all the graphs of Fig. 7. This trend holds for various choices of fixed c1 and even for varying c1 which
has a lower Rt/n. For Hartmann-6d and the hyperparameter tuning experiments, we note that the trend is weaker when
ρ < 0.5. This might be because of more exploration/noise. However, for the traffic experiment, the difference between
Ut/n− gt for different ρ is only significant when ρ ≤ 0.4. This may be due to the difficulty in ensuring fairness subjected
to the constraint that each party can only be assigned to evaluate connected input regions.
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Figure 7. Unfairness Ut/n− gt vs. Ut/n with (a-d) fixed c1 and (e-h) varying c1 but different ρ’s in (5) for various objective functions.

11We plot against Ut/n instead of t to ensure that larger unfairness Ut/n− gt is not due to larger Ut/n. Note that in all experiments,
each party’s t-CU is non-decreasing with increasing t as f(x) is always non-negative.



Collaborative Bayesian Optimization with Fair Regret

0 20 40 60
Iteration, t

10
−1

10
0

W
or

st
 m

in
 r t

ρ
1
0.8
0.6

0.4
0.2

0 20 40
Iteration, t

0.1

W
or

st
 m

in
 r t

ρ
1
0.8
0.6

0.4
0.2

0 20 40
Iteration, t

0.1

1

W
or

st
 m

in
 r t

ρ
1
0.8
0.6

0.4
0.2

0 20 40 60
Iteration, t

2

3

4

W
or

st
 m

in
 r t

ρ
1
0.8
0.6

0.4
0.2

(a) Hartmann-6d (b) Hyp Tuning, LR (c) Hyp Tuning, CNN (d) Traffic
Figure 8. Worst simple regret across parties with fixed c1 and different ρ’s in (5) for various objective functions.
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Figure 9. Worst simple regret across parties with varying c1 and different ρ in (5) for various objective functions.

C.4. Inefficiency: Simple Regret

In this section, we show that our algorithm with different ρ’s would allow each party to find an input x such that f(x) is
close to f(x∗). We define the simple regret (SR) of a party i as mint′=1,...,t(f(x∗)− f(xit′)). In Figs. 8 and 9, we plot the
worst (i.e., maximum) SR across parties, averaged across 10 BO runs. We observe that the worst SR is larger when ρ is
smaller. This is expected, as with a smaller ρ, the relative total weight on the exploitation term in (5) is smaller. Thus, the
mediator is less likely to assign any party to sample near the likely maximizer in the earlier iterations.

C.5. Individual Rationality

It is individually rational for a party to participate in a BO collaboration if it can obtain a better estimate of x∗ for the same
CR or alternatively, lower CR for the same estimate of x∗ than performing conventional GP-UCB (Srinivas et al., 2010)) on
its own. Note that we should not compare the CR alone since (a) a low CR can be achieved by choosing a small αt but it
would lead to a poor estimate of x∗ and (b) such a comparison is more sensitive to the hyperparameters chosen. The CR or
SR of GP-UCB varies largely between runs.

Let r = 1, . . . , 10 denote the BO runs. We compare the performance of our collaborative BO algorithm (for different ρ’s)
against that of GP-UCB (i) in the worst case and plot maxr∈[10] maxi∈[n] mint′∈[t] r

i
t′ (maximum individual t-step SR)

against maxr∈[10] maxi∈[n]
∑
t′∈[t] r

i
t′ (maximum individual t-step CR) for various step t; and (ii) in the median case and

plot medianr∈[10] mediani∈[n] mint′∈[t] r
i
t′ (median individual t-step SR) against medianr∈[10] mediani∈[n]

∑
t′∈[t] r

i
t′

(median individual t-step CR) for various step t.

Fig. 10 shows the results of (i). It can be observed that our collaborative BO algorithm with ρ close to 1 allow all parties,
including the worst-off party, to achieve a smaller maximum SR for the same maximum CR than GP-UCB and other settings
of ρ. However, due to randomness, GP-UCB might sometimes lead to lower SR than our collaborative BO algorithm.12

Next, we consider non-worst-case scenarios and show the results of (ii) in Fig. 11. We chose the median over the mean as it
would not be distorted by outliers, e.g., a run where a party has a very large regret. Again, we observe that our algorithm
achieves a lower median SR for the same median CR than GP-UCB.

12Another possible reason is that
√
αtI(fX ;yt | D1:t−1) in (5) encourages diversity among inputs selected for all parties and might

prevent parties from all evaluating close to x∗ in one BO iteration.
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Figure 10. Maximum SR vs. maximum CR with varying c1 and different ρ for various objective functions.
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Figure 11. Median SR vs. median CR with varying c1 and different ρ for various objective functions.

C.6. Ignoring the Values of λit
In Sec. 4, we suggest that considering the value of λit in (5) is essential to achieve fairness in the cumulative sense. In this
section, we will analyze the importance of the values of (λit)i∈[n] in (5) by comparing our collaborative BO algorithm with
an alternative algorithm, BO with instantaneously fair utility (BO-IFU), with the following acquisition function:

Xt , arg max
Xt∈Xn

n∑
i=1

wiφλ((µxi
t|D1:t−1

)i∈[n]) +
√
αtI(fX ;yt | D1:t−1)

where φλ(a) = a[rank((λit)i=1...n)]. BO-IFU would assign the selected input with k-th largest posterior mean to the party
with the k-th lowest λit. We also enforce this condition when ρ = 1. However, as λit for all i ∈ [n] do not appear directly in
the objective, it no longer matters if the (λit)

>
i∈[n] values are (0.1, 0.2, 0.3) or (1, 2, 3).

Fig. 12 shows the fairness result of the tested algorithms for the Hartmann-6d function with fixed c1. It can be observed that
a smaller ρ would cause BO-IFU to achieve much larger Ut/n− gt. Even though a smaller ρ makes BO-IFU to select Xt

with more similar/fair µxi
t|D1:t−1

values, this fairness in the individual instantaneous utility at each BO iteration does not
translate to fairness in the individual t-step cumulative utility. BO-IFU is the fairest when its ρ is close to 1. However, this
fairest solution still leads to more unfairness in the cumulative sense than our algorithm for ρ < 1.
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Figure 12. Averaged (Ut/n− gt) vs. ρ for our algorithm and BO-IFU tested on the Hartmann-6d function with fixed c1.

C.7. Analysis of λit across Parties

Recall that the individual (t− 1)-CU can be measured by its realized/observed variant λit ,
∑t−1
t′=1 y

i
t′ . In this section, we

analyze the behavior of λit using one BO run of the Hartmann-6d function. Other objective functions and runs would give
similar results.
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Fig. 13 shows the difference between λit and mini∈[n] λ
i
t of each party for our algorithm and BO-IFU. A larger difference

λit−mini∈[n] λ
i
t (y-value) implies more unfairness. We observe that the line/party with the largest (or zero) λit−mini∈[n] λ

i
t

(y-axis) alternates across t. This shows that the 3 parties take turn to have the largest and lowest individual (t − 1)-CU.
Generally, the y-values of BO-IFU (Fig. 13a) are larger than those of our algorithm (Figs. 13b-c). Also, for BO-IFU, the
line/party with the largest (or zero) λit −mini∈[n] λ

i
t alternates less frequently, i.e., a party may unfairly have a larger (or

lower) utility than others over many iterations. Once again, we can observe that using a smaller ρ in our collaborative BO
algorithm will reduce the differences in individual (t− 1)-CU between parties by comparing the y-values in Fig. 13c and
Fig. 13b. Note that the first 10 iterations have larger y-values as they are a result of random exploration (T0 = 10).
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Figure 13. The difference in λi
t across parties for (a) BO-IFU and (b-c) our collaborative BO algorithm with different ρ’s for the

Hartmann-6d function with σ = 0.1.

C.8. Experimental Results with More Parties

As it is harder to jointly optimize the acquisition function over large n, existing batch BO works only considered up to
n = 50. In future work, we will consider using the Markov approximation of DB-GP-UCB for better scalability in n.

We have extended our CNN hyperparameter tuning experiment to n = 50 parties and plot the results in Fig. 14. As n = 50
is large and the weights wi = ρi−1 decrease exponentially, we only consider setting ρ in (5) to values ≥ 0.9. Fig. 14 shows
similar trends for RT /n, ST and (Ut/n− gt) with decreasing ρ as described in Sec. 5. The fairness advantage of smaller ρ
is more visible when ρ = 0.9 in gt.
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Figure 14. Graphs of (a-b) full CR RT /n and normalized fair CR ST averaged over 10 BO runs and (c-d) averaged Ut/n− gt, incurred
by the tested algorithms using different ρ’s in (5) for hyperparameter tuning of CNN with n = 50 parties. We set c1 = 0.01.


