
Dynamic Planning and Learning under Recovering Rewards

David Simchi-Levi 1 Zeyu Zheng 2 Feng Zhu 1

Abstract
Motivated by emerging applications such as live-
streaming e-commerce, promotions and recom-
mendations, we introduce a general class of multi-
armed bandit problems that have the following
two features: (i) the decision maker can pull and
collect rewards from at most K out of N differ-
ent arms in each time period; (ii) the expected
reward of an arm immediately drops after it is
pulled, and then non-parametrically recovers as
the idle time increases. With the objective of max-
imizing expected cumulative rewards over T time
periods, we propose, construct and prove perfor-
mance guarantees for a class of “Purely Periodic
Policies”. For the offline problem when all model
parameters are known, our proposed policy ob-
tains an approximation ratio that is at the order
of 1 − O(1/

√
K), which is asymptotically op-

timal when K grows to infinity. For the online
problem when the model parameters are unknown
and need to be learned, we design an Upper Con-
fidence Bound (UCB) based policy that approx-
imately has Õ(N

√
T) regret against the offline

benchmark. Our framework and policy design
may have the potential to be adapted into other
offline planning and online learning applications
with non-stationary and recovering rewards.

1. Introduction
In this paper, we introduce and solve a general class of
multi-armed bandit (MAB) problems that have two unique
features, which extends the class of classical MAB prob-
lems. First, in each time period, the decision maker can
simultaneously pull and collect rewards from at most K
arms out of N arms. Second, the expected reward of an arm

1Institute for Data, Systems, and Society, Massachusetts In-
stitute of Technology, Massachusetts, USA 2Department of In-
dustrial Engineering and Operations Research, University of
California, Berkeley, USA. Correspondence to: David Simchi-
Levi <dslevi@mit.edu>, Zeyu Zheng <zyzheng@berkeley.edu>,
Feng Zhu <fengzhu@mit.edu>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

immediately drops after it is pulled, and then gradually re-
covers if the arm is not pulled in the subsequent time periods.
This class of problems are motivated by emerging applica-
tions such as live-streaming e-commerce, promotions and
recommendations, and have the potential to include other
applications with non-stationary and recovering rewards.
We use the contexts of live-streaming e-commerce to briefly
describe the problem background, before moving into the
discussion of contributions, related literature, and specific
problem settings.

Promotion in Live-streaming E-commerce: The rapidly
growing live-streaming e-commerce is estimated to hit $100
billion in annual global sales in the year of 2020; see Green-
wald (2020) and Kharif & Townsend (2020). A most com-
mon form of live-streaming e-commerce is session-based
promotions held by a key opinion leader (KOL) on plat-
forms such as Amazon Live and Taobao Live. In session-
based promotions, a KOL holds sessions on consecutive
days. The KOL chooses about K = 50 products to discuss
their features, promote and sell during the session, one after
another, often at deep discounts. The prepared inventory for
the promoted products can often sell out in seconds. Many
manufacturers pitch the KOL and create a large pool of prod-
ucts for the KOL to choose from, with an estimated ten to
one selection ratio (Greenwald, 2020; Kharif & Townsend,
2020). Therefore, the entire pool of products can be of
size N = 500. This emerging application of live-streaming
e-commerce gives rise to the need for dynamic planning
and learning with two unique features. First, in each time
period, the decision maker selects K = 50 products (arms)
to promote and sell (pull) out of a pool ofN = 500. Second,
if a product is promoted and on sale in some time period t
with expected reward R, the expected reward of promoting
and selling the same product again in time period t+ 1 will
drop and can be much smaller than R. On the other hand, as
the idle time (number of time periods that a product is not
promoted) increases, the expected reward of this product
can increase. Because of this, even for the most popular
product, a KOL will not promote and sell the product in
every single session, but alternatively, select the product in
every few other sessions.

Aside from the example of live-streaming e-commerce, there
are a number of other applications that exhibit such rewards
dropping and recovering phenomenon. For example, in the

Dynamic Planning and Learning under Recovering Rewards

recommendation domain, a customer may enjoy a particular
product or service, but may temporarily get bored immedi-
ately after consuming the product or service. In this case,
the reward of recommending the same product or service
to the customer will temporarily drop after the most recent
consumption, but may gradually recover as time passes by.
Different products or services can have different dropping
and recovering behavior, and it is of the decision maker’s
interest to strategically choose when and how often to rec-
ommend each product or service. For any given product, a
resting time between each time it is recommended can be
valuable, which intuitively offers a refreshing window for
the customer.

1.1. Our Contributions

We summarize our contributions as follows.

1. A General Recovering Model: To characterize the
dropping and recovering behavior of the rewards which
is represented by a recovering function, we build a non-
parametric bandit model with minimal assumptions on
the recovery functions: monotonicity and boundedness.
The recovery functions do not need to satisfy any other
structural properties such as concavity. Our model re-
laxes assumptions and generalizes settings in previous
work, thus allowing wider potential applications.

2. An Offline Planning Framework: Even if the recov-
ery functions are fully known, the planning problem of
optimally choosing K out of N arms in T time periods
is computationally difficult. We construct an upper
bound on the offline planning problem, which leads
us to focus on a simple and intuitive class of policies
called “Purely Periodic Policies”. Surprisingly, the
long-run offline approximation ratio (the ratio between
the expected cumulative reward of the constructed pol-
icy and the optimal) only depends on K and not on
other model parameters. This ratio, moreover, has
a uniform lower bound 1/4 and approaches 1 with a
O(1/

√
K) gap uniformly overK ≥ 1. The framework

of our policy design and analysis is novel, in the sense
that we utilize power of 2 to bypass the difficulty of
combinatorial planning, and address the trade-off be-
tween rounding error and scheduling error. Moreover,
our policy design framework does not rely on standard
assumptions and can potentially be adapted to various
other applications.

3. A Learning-while-Planning Algorithm: We address
the problem where we have no prior knowledge of
the recovery functions, and must learn through online
samples. Enlightened by the offline planning part, we
propose an efficient online policy to reach a balance
between planning and learning. The policy attains

γK(1 − ε) of the offline upper bound for arbitrary
ε ∈ (0, 1] with a Õ(

√
T) regret. The term ε appears

only due to computational aspects, related to an FPTAS
(Fully Polynomial-Time Approximation Scheme). Our
design of the online learning algorithm exploits the
sparse structure of the “Purely Periodic Policy” pro-
posed in our offline planning framework, relates it to a
generalization of the knapsack problem, and integrates
it with upper confidence bounds, which may bring new
insights to solve other online learning problems under
recovering rewards.

1.2. Related Literature

Multi-armed Bandits: The Multi-armed Bandit (MAB)
problem has aroused great interest in both academia and
industry in the last decade. Since the pioneer work of Auer
et al. (2002), researchers have developed many theoretically
guaranteed algorithms based on the “optimism under un-
certainty” principle. Readers could refer to Lattimore &
Szepesvári (2019) and Slivkins et al. (2019) for a compre-
hensive discussion about this field. An important MAB
variant is the combinatorial MAB problem, where in each
time the player can pull a subset of arms instead of only
one arm (see, e.g., Kveton et al. 2015). This better captures
real-world applications, and we also adopt the setting.

Another variant of MAB arousing interest in recent years
is non-stationary MAB, where the mean reward of each
arm can change with time. Two main non-stationary mod-
els are restless bandits (Whittle, 1988) and rested bandits
(Gittins, 1979). In restless bandits, the mean reward of an
arm changes irrespective of the policy being used, while in
rested bandits, the mean reward changes only when the arm
is pulled by the policy. These two problems have been inves-
tigated through many different perspective, such as variation
budget (Besbes et al., 2014), abrupt changes (Auer et al.,
2019), rotting bandits (Levine et al., 2017), and applications
in dynamic pricing (Keskin & Zeevi, 2017; Zhu & Zheng,
2020). We note that our setting is neither rested nor restless,
as our reward distribution of an arm changes according to
both the time period itself and whether the arm is selected
by the policy or not. Our problem exhibits a recovering be-
havior: the mean reward of an arm first drops after a pulling,
but will gradually recover as the idle time increases. Below
we review the bandits literature with recovering rewards,
which is most related to our work.

Bandits with Recovering Rewards: Recently there has
been an increasing number of work studying bandits under
different recovering environments. However, so far all the
work only consider pulling one arm at a time. The work
most relevant to ours is Kleinberg & Immorlica (2018).
The authors develop a PTAS to obtain a long-run (1 − ε)-
optimal scheduling for the offline problem of which the

Dynamic Planning and Learning under Recovering Rewards

time complexity is doubly exponential in 1/ε, and derive a
Õ
(√

T
εO(1/ε)

)
regret for the online problem by adapting the

offline result. Their analysis is heavily dependent on the
assumption that the recovery function is non-decreasing and
weakly concave on the whole Z+. We remove this somewhat
restrictive assumption by only assuming the monotonicity,
allowing more general behavior after a pull. In this case, the
property of the randomized policy discussed in Kleinberg
& Immorlica (2018) may no longer be valid. Further, we
consider a setting more general than Kleinberg & Immorlica
(2018): In each step we can pull K arms while Kleinberg &
Immorlica (2018) allows only pulling one arm. It’s unclear
whether the techniques in Kleinberg & Immorlica (2018)
can be adapted accordingly. Thus, we develop different
methods and new techniques that extend to arbitrary K
and get a 1 − O(1/

√
K) approximation. Our solution is

related with the periodic scheduling literature, which has
been studied in some previous works such as Rothvoss
(2009), Sgall et al. (2009) and Holte et al. (1989). We
will elaborate on this point more throughout the discussion
in Section 3.

A special case of our model is investigated in Basu et al.
(2019), where an arm cannot be pulled for a while after it is
pulled. The “sleeping time” of each arm is known a priori.
The authors compete their online learning algorithm with the
greedy policy which yields a long-run 1−1/e approximation
guarantee. However, in our more general setting, the greedy
policy may perform very bad compared to the true optimum.
Also, in our online learning problem, we have no prior
knowledge of the sleeping times. Cella & Cesa-Bianchi
(2020) generalizes the setting in Basu et al. (2019) using
non-parametric recovery. However, they assume that the
recovery rate is the same among all arms, and only consider
purely periodic policies where all selected arms are pulled
at the same frequency with no constant ratio guarantees. We
adopt a more generalized model and take a broader approach
by allowing different recovery rates and different pulling
frequencies for different arms, and yields a 1/4 worst-case
guarantee for the offline problem.

Another related work is Pike-Burke & Grunewalder (2019),
where the expected reward functions are sampled from a
Gaussian Process with known kernel. The authors compare
their algorithm to a Bayesian d-step lookahead benchmark,
which is the greedy algorithm optimizing the next d pulls
given the decision maker’s current situation. In comparison,
our benchmark is concerned with the total reward of the
whole time horizon T rather than a pre-fixed d. Some other
related work include Mintz et al. (2020) and Yancey &
Settles (2020). In Mintz et al. (2020), the recovery function
is characterized via a parametric form, while the authors
obtain a worst-case regret of Õ(T

2
3). Yancey & Settles

(2020) considers a specific application for scheduling of

reminder notifications. The authors demonstrate their policy
via numerical experiments. We note that our problem is
non-parametric in essence, and for the online problem we
have a theoretical guarantee of Õ(

√
T) regret compared to

our offline benchmark.

2. The Setup
In this section, we discuss the problem setting and the policy
framework. We first present the model and assumptions in
Section 2.1. We then point out that even when all the model
parameters are known, the performance of a widely applied
greedy policy can be bad. We then define the policy class of
“Purely Periodic Policies” (PPP) in Section 2.2, and list the
challenges to address.

2.1. The Model

There are N arms in total. In each time period t =
1, 2, 3, . . ., the action is to simultaneously pull a subset of no
more thanK ≤ N arms. The revenue collected in each time
period is the sum of the reward of each arm in the pulled
subset. For each arm i, consider a set of non-negative scalars
{Ri(d)}d=0,1,2,... as the recovery function with respect to
d. The reward of pulling arm i at time period t is a random
variable with mean Ri(t− t′), where t′ denotes the last time
period before t when arm i is pulled. We let Ri(0) = 0 for
completeness. The randomness in the reward of pulling an
arm i at time t is assumed to be independent of all other
sources of randomness in the system. The system runs from
time period 1. To clearly define the initialization of the
system at time period 1, one needs to specify when is the
last time period that each arm is pulled before time period 1.
There have been two common types of initialization. One is
that the last time that each arm is pulled is −∞; see Basu
et al. (2019). The other is that the last time that each arm is
pulled is time period 0, right before the start of the problem
at time period 1; see Kleinberg & Immorlica (2018). Both
types of initialization, as well as other types of initialization
that are a mixture of the aforementioned two, do not in gen-
eral affect the long-run results since their differences only
impact the first pull for each arm. We adopt the second type
of initialization. Next we describe and discuss assumptions
on the recovery function.

Assumption 1 (Monotonicity). For any i ∈ [N], the re-
covery function {Ri(d)}d≥0 is non-decreasing in d.

The non-decreasing property of the expected reward se-
quence {Ri(d)}d≥0 reflects the modeling feature that the
longer the time for which an arm has been idle (not pulled),
the larger the expected reward once the arm is pulled again.
In fact, the range of expected reward sequences implied
by Assumption 1 includes that implied by the assumptions
made in the literature — concave recharging bandits (Klein-

Dynamic Planning and Learning under Recovering Rewards

berg & Immorlica, 2018), sleeping/blocking bandits (Basu
et al., 2019), recovering bandits with identical recovery rate
(Cella & Cesa-Bianchi, 2020), to name a few.

Assumption 2 (Boundedness). The reward of pulling an
arm in each time period is independent, and is bounded by
a known constant Rmax uniformly over all i ∈ [N].

The assumption of bounded random rewards is common
in many applications such as promotion in live-streaming
e-commerce and recommendation. An alternate but slightly
restrictive assumption to Assumption 2 for the mean rewards
{Ri(d)}i∈[N],d≥0 is called “Finite-time Recovery”.

Assumption 2′ (Finite-time Recovery). For any i ∈ [N],
∃dmax

i ≥ 1 such that Ri(d) = Ri(d
max
i) for all d ≥ dmax

i .

Assumption 2′ means that the mean reward of each arm
recovers to a nominal level and stays there after a finite
number of time periods (see also, e.g., Basu et al. 2019;
Pike-Burke & Grunewalder 2019). We will see that this as-
sumption is added in Section 3 primarily for computational
concerns. All of our theoretical results and bounds do not
depend on {dmax

i } that can be large in practice.

Before proceeding to the policy class, we give an example
showing that the greedy policy, where we always select K
arms with the highest expected payout in each time step,
may have arbitrarily bad expected total reward in terms of
the ratio with the optimal. As a comparison, in the problem
settings of Kleinberg & Immorlica (2018) and Basu et al.
(2019), the greedy policy in an analogous form, despite of
being sub-optimal, has a guaranteed lower bound in terms
of the ratio between the expected total reward achieved by
the greedy policy and the optimal.

Example 1. Let N = 2 and K = 1. Let R1(d) = r and
R2(d) = 1d=1 +R · 1d>1, where R� 1 > r. Then under
the greedy policy, we will always pull arm 2, yielding a total
reward of T . However, if we pull arm 1 and 2 in turn, then
the total reward is lower bounded by R+r

2 (T − 1) � T
when R � 1. Therefore, the ratio between the expected
total reward achieved by the greedy policy and the optimal
can be arbitrarily small.

2.2. Purely Periodic Policy

Throughout the paper, our policy design stays in a class of
policies called purely periodic policies defined as follows.

Definition 1 (Purely Periodic Policy). A policy is called
“purely periodic”, if for each i ∈ [N], the policy assigns
ti ∈ Z and di ∈ Z+ ∪ {+∞} such that (i) ti ∈ (−di, 0],
and (ii) arm i is pulled at time ti + k · di (k ∈ Z+) until the
time horizon T is exhausted.

We note that for a purely periodic policy, when di = +∞,
ti ≤ 0 for some i, the policy never pulls arm i throughout

the whole time horizon. In the following, we use “PPP” as
the brief notation of “purely periodic policy”.

Definition 2 (K-PPP). LetK ∈ Z+. A policy is called a K-
PPP, if the policy is a purely periodic policy, and meanwhile
in each time period t ≥ 1, at most K arms are pulled at the
same time. Equivalently speaking,

sup
t≥1

{i ∈ [N] : di < +∞, t ≡ ti (mod di)} ≤ K.

We note that with an overall number of N arms, each PPP is
always an N -PPP. For the general case where K ≤ N , the
set of K-PPPs is a subset within the class of PPPs. There
are two challenges for constructing a K-PPP that delivers
superior performance. First, we need to determine the set of
frequencies {1/di}, or equivalently, the set of periods {di}.
Recall that the period for an arm can be set as infinity so
that the arm is never pulled. Second, we need to pair each
di with some ti, as defined in Definition 2. The {di}’s must
be selected carefully, or there may not exist such {ti} that
no more than K arms can be pulled at the same time. We
illustrate this point through the example below.

Example 2. Let N = 2 and K = 1. Then there exists no
1-PPP such that d1 = 2 and d2 = 3, since 2 and 3 are co-
prime numbers. No matter how we choose t1 and t2, there
must exist a time period such that both arms are scheduled to
be pulled together, violating the constraintK = 1. However,
if d1 = 2 and d2 = 4, then letting t1 = −1 and t2 = −2
yields a feasible 1-PPP.

3. The Offline Problem
In this section, we consider an offline version of the problem
defined in Section 2.1. Specifically, in the offline problem,
the sequence of expected rewards {Ri(d)}d≥0 is known a
priori. The objective is to identify a K-PPP to maximize the
expected total reward over T time periods. The randomness
in the system does not impact the policy design for the
offline problem, because all the model parameters are known
in the offline problems and there is no need to learn those
parameters under uncertainties. We note that solving the
offline problem with general policies is computationally
intractable. The problem setting in Basu et al. (2019) is
a special case of ours, and they discuss in Section 3 the
computational intractability of their problem setting. In the
supplementary material, we give a proof demonstrating that
finding the long-run optimal policy for the offline problem
within the class of K-PPP is NP-Hard.

3.1. Bounding the Objective: Why Purely Periodic?

The goal of this part is to give an upper bound on the optimal
objective value of the offline problem. Meanwhile, we will
give an interpretation on the advantages of PPP via the

Dynamic Planning and Learning under Recovering Rewards

analysis on the upper bound. We start our discussion from
the rewards recovery functions {Ri(d)}i∈[N],d≥0.

For given i, let {Rcc
i (d)}d≥0 be the upper concave envelope

of {Ri(d)}d≥0. That is, Rcc
i is the point-wise minimum

of all concave functions F : Z+ ∪ {0} → R that satisfy
F (d) ≥ Ri(d) for all non-negative integer d. We define
supporting points as the set of points {d ≥ 0 : Ri(d) =
Rcc
i (d)}. Then these supporting points can be characterized

inductively as follows. d(0)i = 0. For any k ≥ 1,

d
(k)
i = min

{
arg max

d>d
(k−1)
i

{
Ri(d)−Ri(d(k−1)i)

d− d(k−1)i

}}
.

When {Ri(d)} is bounded, for any k ≥ 1, we have

lim
d→+∞

Ri(d)−Ri(d(k−1)i)

d− d(k−1)i

= 0.

If

max
d>d

(k−1)
i

{
Ri(d)−Ri(d(k−1)i)

d− d(k−1)i

}
> 0,

then d(k)i < +∞. Otherwise, d(k)i = d
(k−1)
i + 1. In both

cases, {d(k)i }k≥0 is an infinite sequence for any given i ∈
[N]. When Assumption 2′ holds, the supporting points of
the concave envelope for arm i can be efficiently obtained
by only examining {Ri(d)}0≤d≤dmax

i
.

Let Fi,T (x) be the value of the following problem.

max
s

1

T

J∑
j=1

Ri(sj − sj−1) (1)

s.t. J ≤ x · T,
0 = s0 < s1 < · · · < sJ ≤ T.

Intuitively, Fi,T (x) is the optimal average reward of i
given that we pull arm i no more than x · T times. Let
Fi(x) = lim supT Fi,T (x) be the point-wise long-run op-
timal average reward of pulling arm i under x. We have
Lemma 1 that fully characterizes the nice shape of Fi(x).

Lemma 1. Fi(x) is a piece-wise linear concave function
on [0, 1] that satisfies:

• The changing points are in {1/d(k)i }k≥1.

• Fi(1/d
(k)
i) = Ri(d

(k)
i)/d

(k)
i for any k ≥ 1. Fi(x) =

Fi(1/d
(1)
i) for all x ∈ [1/d

(1)
i , 1].

Meanwhile, Fi(x) ≥ Fi,T (x),∀i ∈ [N], T ≥ 1, x ∈ [0, 1].

We are then ready to present the upper bound (2).

max
x∈[0,1]N

T

N∑
i=1

Fi(xi) (2)

s.t.
N∑
i=1

xi ≤ K.

Lemma 2. The optimal objective value of (2) is an upper
bound on that of the offline problem. Further, problem (2)
has an optimal solution {x∗i }, such that x∗i ≤ 1/d

(1)
i (∀i ∈

[N]), and for at least all i ∈ [N] but one, x∗i ∈ {0} ∪
{1/d(k)i }k≥1 holds.

We give some remarks on Lemma 1 and 2. The two lemmas
are generalizations of Lemma III.1 and III.2 in Kleinberg
& Immorlica (2018) as we do not assume any concavity of
recovery functions. The proofs of both lemmas only require
the existence of supporting points as well as the monotonic-
ity of the recovery functions. Moreover, we go beyond their
results by observing that almost each component of the opti-
mal solution is either 0 or 1/d. In the proof of Lemma 2, we
demonstrate that any feasible solution can be transformed
into one that satisfies the property stated in Lemma 2 in
O(N) time, while at the meantime the objective value is not
decreased. This crucial property can be interpreted as in the
optimal planning, we either pull arm i once every d times,
or we do not pull it at all, which is exactly the form of PPP
(see Definition 1). In the following discussion, we denote
the objective value of (2) as UB[N,K] · T .

Before ending this section, we give some remarks on the
computation of (2). Under Assumption 2′, an optimal solu-
tion of the concave program (2) can be efficiently computed
because (2) can be re-written as a linear program. Kleinberg
& Immorlica (2018) considered the case where K = 1 and
d
(k)
i = k (∀k ≥ 0), and suggests that (2) admits an FTPAS

even if Assumption 2′ is violated. It is thus interesting to
investigate whether (2) admits a polynomial-time algorithm
in general and we leave this to future work.

3.2. Constructing a K-PPP: Powerful Power of 2

In this section, we discuss how to take any x ∈ (0, 1]N

and outputs a K-PPP through two steps. Here x does no
need to satisfy the first constraint of (2), but the output
schedule is always guaranteed to satisfy the hard constraint
K. We emphasize that in contrast to previous work such as
Kleinberg & Immorlica (2018), the pattern of the supporting
points {d(k)i } in Section 3.1 is not controllable in our general
setting even for one single arm. R and Rcc only coincide on
these supporting points, and there can be substantial gaps
on non-supporting points. Also, different arms may have
very different supporting points, complicating the design of
pulling times. To circumvent the challenges, we develop the

Dynamic Planning and Learning under Recovering Rewards

rounding-scheduling framework in the following.

STEP 1: ROUNDING

We fix a set D[a] =
⋃a
j=1Dj , where a is a positive integer

to be specified later, and where

Dj = {(2j − 1)× 2`}`≥0.

We then round the solution {xi} to {1/di} such that di ∈
D[a]. More precisely, we let di be the element in D[a]
closest to 1/xi while no smaller than 1/xi, i.e.,

di = min{d ≥ 1/xi, d ∈ D[a]}.

We have the following lemma that lower bounds the average
reward after rounding.

Lemma 3. If 1/xi ∈ {d(k)i }k≥1, then

Ri(di)/di
Fi(xi)

≥ a

a+ 1
.

STEP 2: SCHEDULING

In this step, we construct a K-PPP based on {di} obtained
in Step 1. To achieve this, we first relax the hard constraint
K to some positive integer K[a] ≥ K, which means K[a]
arms are allowed to be pulled at the same time. This can be
fulfilled with the help of the following lemma.

Lemma 4. Fix a positive integer j. Let Ij = {i : di ∈
Dj} = {i1, i2, · · · , i|Ij |} and Kj =

∑
i∈Ij 1/di. Assume

di1 ≤ di2 ≤ · · · di|Ij | .

• If Kj > 1, then in O(|Ij |) time, we can find at most
dKje disjoint sets {Ijs}s such that

⋃
s Ijs = Ij and∑

i∈Ijs
1/di ≤ 1 (∀s).

• If Kj ≤ 1, then in O
(
|Ij | log di|Ij |

)
time, we can

specify a 1-PPP such that we pull each arm i ∈ Ij at
frequency 1/di.

Now we elaborate on how to use Lemma 4 to achieve our
goal. Fix any j ∈ [a], we split Ij into several groups by
using the first statement in Lemma 4, where in each group
the sum of frequencies is within 1. Then for each group,
we apply the second statement in Lemma 4 to construct a
1-PPP. Repeating over all j ∈ [a] leads to the construction.

We have two observations from the procedure above. First,
each arm i is included in exactly one group and is pulled
with frequency 1/di. Second, the number of arms pulled at
the same time can be bounded by the total number of groups

K[a], which is

K[a] ,
∑
j∈[a]


∑
i∈Ij

1/di


<
∑
j∈[a]

∑
i∈Ij

1/di +
∑
j∈[a]

1

≤
∑
i

xi + a.

Now that we have K[a] groups where for each group we
have constructed a feasible 1-PPP, and each arm appears
in exactly one group, we choose K of these groups that
obtain the largest long-run average reward. TheseK 1-PPPs
together constitute a K-PPP.

We would like to give some brief remarks before proceed-
ing. Our rounding method (Step 1) only requires that the
recovery functions are non-decreasing, and our scheduling
method (Step 2) does not require any additional assump-
tions. These may help generalize potential applications of
our technique when dealing with more complicated settings.

COMBINING TOGETHER

Suppose x∗ is an optimal solution of (2). We can always
assume that x∗ satisfies the property stated in Lemma 2.
Combining the two steps above, we can see that, if x∗i ∈
{1/d(k)i }k≥1 (∀i ∈ [N]), then

K[a] <
∑
i∈[N]

xi + a ≤ K + a,

and thus K[a] ≤ K + a− 1. By tuning a appropriately, the
long-run approximation ratio of our policy is lower bounded
by

max
a

{∑
i∈[N] Fi(1/di)∑
i∈[N] Fi(x

∗
i)
· K

K[a]

}

≥ max
a∈Z+

a

a+ 1
· K

K + a− 1
,

In the following, we consider dealing with the most general
case where not all components of the optimal solution are
of form 1/d. If there is an x∗i0 = 0, then we just ignore
arm i0, and this does not hurt the performance. If there is
an x∗i0 > 0 such that 1/x∗i0 /∈ {d(k)i }k≥1, we first round

x∗i0 to x̃∗i0 = min
{
y ≥ x∗i0 : 1/y ∈ {d(k)i0

}k≥1
}

and then
feed {x∗i }i 6=i0 ∪ {x̃∗i0} to Step 1. Note that we still have
x̃∗i0 ≤ 1/d

(1)
i0

, and Fi0(x̃∗i0) ≥ Fi0(x∗i0). Note again that
there exists at most one such i0. All the analysis in Step 1
and Step 2 are valid, except that the upper bound of K[a]
increases from K + a− 1 to K + a, which means we allow

Dynamic Planning and Learning under Recovering Rewards

pulling K + a arms at the same time in Step 2. This is
because we can only have the bound∑

i6=i0

x∗i + x̃∗i0 + a < K + 1 + a.

And the ratio becomes

max
a∈Z+

a

a+ 1
· K

K + a
.

Algorithm 1 describes the complete paradigm for the offline
problem. Theorem 1 provides the theoretical performance
of Algorithm 1, showing that its long-run approximation
ratio is lower bounded by γK .

Algorithm 1 Offline Purely Periodic Planning
Input: {Ri(d)}i∈[N],d≥1
a∗ = arg maxa

aK
(a+1)(K+a) .

Initialize the supporting points {d(k)i }i∈[N],k≥0.
Initialize {Fi(x)}i∈[N],x∈[0,1] using Lemma 1.
Solve (2) and obtain an optimal solution x∗ that satisfies
the property of Lemma 2. Exclude all i such that x∗i = 0.
if ∃i0 ∈ [N] s.t. 1/x∗i0 /∈ {d

(k)
i0
}k≥1 ∪ {+∞} then

x∗i0 ← min
{
y ≥ x∗i0 : 1/y ∈ {d(k)i0

}k≥1
}

.
end if
Let D[a∗] =

⋃a∗
j=1

{
(2j − 1)× 2`

}
`≥0.

for i = 1 to N do
di ← min{d ≥ 1/x∗i , d ∈ D[a∗]}.

end for
for j = 1 to a∗ do

Let Ij = {i : di ∈ Dj}.
Construct d

∑
i∈Ij 1/die 1-PPPs using Lemma 4.

end for
K[a∗]←

∑a∗

j=1d
∑
i∈Ij 1/die.

Select K of K[a∗] 1-PPPs that attain the largest long-run
average reward. These 1-PPPs then constitute a K-PPP.

Theorem 1. For any T ≥ 1, the total reward of the schedule
returned by Algorithm 1 is lower bounded by

γK · UB[N,K] · T −O(N),

where

γK = max
a∈Z+

a

a+ 1
· K

K + a
.

We give some remarks on Theorem 1. First, the long-run
approximation ratio γK is between our K-PPP policy and
UB[N,K]. Since UB[N,K] is always an upper bound on
the original problem, our offline approximation ratio is over
any policy. Second, γK satisfies 3 nice properties: (i) In-
dependence with N and T ; (ii) Uniformly lower bounded

by 1/4; (iii) Asymptotically approaches 1 with a gap of
O(1/

√
K). (iii) holds because the optimal a is either b

√
Kc

or d
√
Ke, and as a result, 1 − γK = O(1/

√
K). Finally,

the termO(N) appears because for each arm, we may incur
loss at the beginning or the end of the whole time horizon.

Before proceeding, we would like to discuss the relations be-
tween our results and the periodic scheduling literature. Our
work differs from previously studied periodic scheduling
problems in that there is no hard constraint between consec-
utive occurrences of a job; instead, through our analysis of
UB[N,K] and design of K-PPP, it turns out that a carefully
designed PPP is able to achieve near-optimal behavior. Our
rounding method is related with that in Sgall et al. (2009)
where jobs are also scheduled in a purely periodic way, but
has two main differences. First, the optimal solution to (2)
may have a component of non-supporting point, which is
not faced in typical periodic scheduling problems. This adds
some technical difficulties in our setting. Second, since we
allow pulling K arms, our technique allows rounding com-
ponents to numbers in differentDj . As a result, the ratio γK
tends to 1 as K grows. This is in contrast to selecting one
single Dj as in Sgall et al. (2009). Our scheduling frame-
work has some relation with that in Holte et al. (1989). The
class Dj in Lemma 4 actually belongs to CM in Section 3
of Holte et al. (1989). Nevertheless, there are two different
highlights in Lemma 4. First, the first bullet gives a more
general picture of efficiently dealing with the situation when
the sum of frequencies > 1 during the scheduling process,
which may happen even when K = 1. Second, in the proof
of the second bullet, we give a more computationally effi-
cient scheduling method for our case, while the value of m
in SimpleGreedy of [3] may appear quite large.

4. The Online Problem
In this section, we turn to address the online counterpart of
the offline planning problem. In the online problem, unlike
in Section 3, the recovery function {Ri(d)}i,d is not known
a priori and should be learned from the sequential samples
for any i. Our goal is to construct an online learning policy
that achieves small regret compared to the offline result in
Section 3. We discuss our results under only Assumption 1
and 2.

Broadly speaking, our policy design is built upon the “opti-
mism under uncertainty” principle that has been successfully
applied in many online learning problems. However, there
are several main difficulties we have to confront in this
recovering setting.

1. {Ri(d)} is in essense non-parametric, and a complete
sample of Ri(d) requires at least d + 1 time periods
since we have to wait for the delay and plan for d time
periods in the future. This planning issue is not faced

Dynamic Planning and Learning under Recovering Rewards

in classical stochastic bandit problems.

2. Due to sampling error, the upper confidence bounds
of the estimation of {Ri(d)}d≥1 may not be non-
decreasing, i.e., violating Assumption 1. This impedes
us from directly plugging the upper confidence bounds
into Fi(·).

3. To make things more complicated, we have no prior
knowledge of {d(k)i }i∈[N],k≥1, which is crucial for esti-
mating {Fi(·)}. In previous work such as Kleinberg &
Immorlica (2018) and Basu et al. (2019), {d(k)i }i∈[N]

are always known a priori. Under Assumption 1 and
2, {Ri(d)}d≥1 may appear to be an irregular shape,
causing trouble for recovering Fi(·).

To address the first difficulty, we divide the whole time hori-
zon into several phases of length φ. At the beginning of
each phase j, we run an offline oracle to plan for a schedule
in that phase. At the end of each phase, we update our esti-
mation of {Ri(d)}, construct its corresponding set of UCBs
{R̂i,j(d)}, and feed it to the offline oracle for planning the
next phase j + 1. We note that φ has to be carefully tuned
because there is a trade-off: If φ is too large, we might
explore too much on a sub-optimal schedule in some phase.
While if φ is too small, we cannot estimate Ri(d) for some
larger d, causing us to get stuck in a sub-optimal schedule.

The UCBs are constructed as follows. Given a phase j, for
each i ∈ [N] and d ≥ 1, we let ni,j−1(d) be the number of
samples we have collected for Ri(d) prior to phase j, and
R̄i,j−1(d) be the empirical mean of Ri(d) prior to phase
j. We let ni,0(d) = 0 and R̄i,0(d) = 0. Then the upper
confidence bound of Ri(d) is

R̂i,j(d) , min
{
R̄i,j−1(d)+

Rmax

√
2 log(KT)

max {ni,j−1(d), 1}
, Rmax

}
. (3)

To address the second and third difficulty, we need to re-
interpret what Section 3 implies us on constructing a proper
offline oracle. A crucial observation is as follows: The
approximation ratio γK for the offline problem is achieved
(even) if we (i) confine ourselves only to the class of PPP,
and meanwhile (ii) restrict the possible periods to a sparse
set D[a] with appropriate a. This observation leads to the
offline oracle we describe as follows.

Fix a phase j and a ∈ Z+. Define Dφ[a] = {d : d ≤
φ/2, d ∈ D[a]} as the set of periods that are included in
D[a] but at the meantime no larger than φ/2. This is im-
posed such that in each phase all selected periods can be
estimated at least once. Let {R̂i,j(d)}i∈[N],d∈Dφ[a] be some
(estimated) UCBs over {Ri(d)}i∈[N],d∈Dφ[a]. Let xi,j,d de-
note whether we pull arm iwith period d ∈ Dφ[a]. Consider

the following problem:

max
x

∑
i∈[N]

∑
d∈Dφ[a]

R̂i,j(d)xi,j,d/d (4)

s.t.
∑
i∈[N]

∑
d∈Dφ[a]

xi,j,d/d ≤ K + 1,

∑
d∈Dφ[a]

xi,j,d ≤ 1, ∀i ∈ [N],

xi,j,d ∈ {0, 1}, ∀i ∈ [N], d ∈ Dφ[a].

We give some explanations on (4). (4) can be regarded
as a generalization of the knapsack problem that combines
solving (2) in Section 3.1 with Step 1 in Section 3.2. We seek
to maximize the long-run average reward with a frequency
constraint, where K + 1 is a frequency parameter. In the
knapsack problem, each item has two choices: to be selected
or not. While in (4), an arm has different versions indexed
by d ∈ Dφ[a], and we can choose at most one of the versions
for each arm. Note that to implement (4), it’s sufficient to
collect samples for periods only in Dφ[a] rather than the
overall positive integers.

In the following, we analyze the properties of (4). Thanks to
Assumption 2, we have Lemma 5 that relates the objective
value of (4) to that of (2), given that the true rewards are
dominated by the corresponding upper confidence bounds.

Lemma 5. If R̂i,j(d) ≥ Ri(d) (∀i ∈ [N],∀d ∈ Dφ[a]),
then the objective value of (4) is lower bounded by

a

a+ 1
UB[N,K]− 2NRmax

φ
.

Next, we address the computation issue. (4) is an integer
programming, and is in general not polynomial-solvable.
Nevertheless, similar to the knapsack problem, (4) admits
an efficient FPTAS.

Lemma 6. We can obtain a (1− ε)-optimal solution of (4)

in O
(
N3a log2 φ

ε

)
time.

Once we obtain a (1 − ε)-optimal solution {xεi,j,d} of (4),
we let

1/dεi,j =
∑

d∈Dφ[a]

xεi,j,d/d

be the frequency of pulling arm i. The final stage is to
construct a K-PPP. Note that {dεi,j}i∈[N] itself does not
necessarily constitute a K-PPP. We feed {dεi,j}i∈[N] into
Step 2 described in Section 3.2 to obtain feasible periods
{di,j} and starting times {ti,j} which together constitute a
K-PPP in phase j.

The remaining issue is to tune a appropriately. Letting

Dynamic Planning and Learning under Recovering Rewards

a∗ = arg maxa
aK

(a+1)(K+a) yields∑
i∈[N]

R̂i,j(di,j)/di,j

≥
∑
i∈[N]

R̂i,j(d
ε
i,j)/d

ε
i,j ·

K

K + 1 + a∗ − 1

≥ a∗K(1− ε)
(a∗ + 1)(K + a∗)

UB[N,K]− 2NRmax

φ

= max
a

aK(1− ε)
(a+ 1)(K + a)

UB[N,K]− 2NRmax

φ
,

where the second inequality holds from Lemma 5. There-
fore, with suitable a, we can always guarantee that∑
i∈[N]

R̂i,j(di,j)/di,j ≥ γK(1− ε)UB[N,K]− 2NRmax

φ
.

(5)

Algorithm 2 describes the complete procedure for the online
learning problem. Theorem 2 states that compared to the
offline benchmark, the total reward obtained from Algorithm
2 incurs a Õ(

√
T) regret.

Algorithm 2 Online Purely Periodic Learning
Input: φ,Rmax, ε
a∗ ← arg maxa

aK
(a+1)(K+a) .

t← 0, j ← 1.
Dφ[a∗] = {d : d ≤ φ/2, d ∈ D[a∗]}.
repeat

Construct UCBs {R̂i,j(d)}i∈[N],d∈Dφ[a∗] as in (3).
Solve (4) with the UCBs and obtain a (1− ε)-optimal
solution {xεi,j,d}i∈[N],d∈Dφ[a∗] by Lemma 6.
Feed {

∑
d∈Dφ[a∗] x

ε
i,j,d/d}i∈[N] into Step 2 in Section

3.2 and obtain a K-PPP.
Run this K-PPP for min{φ, T − t} time periods.
t← t+ φ, j ← j + 1.

until t ≥ T

Theorem 2. Let φ = Θ
(√

T
log(K+1)

)
and ε = Θ

(
T−

1
2

)
,

then the expected overall reward achieved by Algorithm 2
can be lower bounded by

γK · UB[N,K] · T − Õ
(

max{N,N 1
2K

3
4 }
√
T
)
.

We leave the detailed logarithm terms in the regret bound
to the supplementary material. We would like to give two
remarks on Algorithm 2 and Theorem 2. First, the design of
(4) serves as a crucial role in the proof of Theorem 2. The
main insight of (4) is that it utilizes the offline design in Sec-
tion 3 and only requires exploring the periods on a sparse
set on Z+ for each arm. A naı̈ve UCB may not suffice.
Second, Algorithm 2 itself does not explicitly utilize the

monotonic property, but its theoretical guarantee is implied
by the offline result, which in turn relies on the monotonicity
assumption. One advantage is that the algorithm is adap-
tive, in the sense that any theoretical improvement on the
offline ratio guarantee of our framework can be directly
transformed into an online result.

5. Conclusion
In this work, we consider the problem of dynamic plan-
ning and learning under a general bandit model of non-
stationary recovering rewards. The non-stationarity stems
from both the time elapsed and the policy itself. Solving
the offline problem where all recovery functions are known
is computationally hard, so we focus on a simple class of
“Purely Periodic Policies”. We develop a new framework
for rounding and scheduling to obtain a policy with prov-
able performance guarantee. The long-run approximation
ratio is shown to be uniformly lower bounded by 1/4 and
asymptotically optimal with respect to the number of arms
allowed to be pulled. We then show how to solve the online
learning problem with Õ(

√
T) regret compared to the of-

fline benchmark. We design our algorithm through a novel
combination of our offline result, the knapsack problem,
and upper confidence bounds, bypassing the difficulties of
planning-while-learning under recovering rewards.

There is future work in line apart from improving the com-
putational efficiency of our offline algorithm without As-
sumption 2′. An interesting direction we are working on is
to examine whether the O(1/

√
K) gap is um-improvable

within the class of K-PPP. In the online problem, it’s worth
investigating whether we can obtain instance-dependent re-
gret bounds or improved worst-case regret bounds under
some additional assumptions, since assuming the recovery
functions as in a completely non-parametric form and dif-
fer between arms will incur large learning cost. Also, we
would also like to conduct experiments to see the practical
performance of our policies for various application needs.

References
Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time

analysis of the multiarmed bandit problem. Machine
learning, 47(2-3):235–256, 2002.

Auer, P., Gajane, P., and Ortner, R. Adaptively tracking the
best bandit arm with an unknown number of distribution
changes. In Conference on Learning Theory, pp. 138–158,
2019.

Basu, S., Sen, R., Sanghavi, S., and Shakkottai, S. Blocking
bandits. In Advances in Neural Information Processing
Systems, pp. 4784–4793, 2019.

Besbes, O., Gur, Y., and Zeevi, A. Stochastic multi-armed-

Dynamic Planning and Learning under Recovering Rewards

bandit problem with non-stationary rewards. In Advances
in neural information processing systems, pp. 199–207,
2014.

Cella, L. and Cesa-Bianchi, N. Stochastic bandits with
delay-dependent payoffs. In International Conference
on Artificial Intelligence and Statistics, pp. 1168–1177,
2020.

Gittins, J. C. Bandit processes and dynamic allocation
indices. Journal of the Royal Statistical Society: Series B
(Methodological), 41(2):148–164, 1979.

Greenwald, M. Live streaming e-commerce is the rage in
china. is the u.s. next? Forbes, 2020. .

Holte, R., Mok, A., Rosier, L., Tulchinsky, I., and Varvel,
D. The pinwheel: A real-time scheduling problem. In
Proceedings of the 22nd Hawaii International Conference
of System Science, pp. 693–702, 1989.

Keskin, N. B. and Zeevi, A. Chasing demand: Learning
and earning in a changing environment. Mathematics of
Operations Research, 42(2):277–307, 2017.

Kharif, O. and Townsend, M. Livestreams are the future of
shopping in america. Bloomberg, 2020. .

Kleinberg, R. and Immorlica, N. Recharging bandits. In
2018 IEEE 59th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 309–319. IEEE, 2018.

Kveton, B., Wen, Z., Ashkan, A., and Szepesvari, C. Tight
regret bounds for stochastic combinatorial semi-bandits.
In Artificial Intelligence and Statistics, pp. 535–543,
2015.

Lattimore, T. and Szepesvári, C. Bandit algorithms. Cam-
bridge University Press (preprint), 2019.

Levine, N., Crammer, K., and Mannor, S. Rotting bandits.
In Advances in neural information processing systems,
pp. 3074–3083, 2017.

Mintz, Y., Aswani, A., Kaminsky, P., Flowers, E., and
Fukuoka, Y. Nonstationary bandits with habituation and
recovery dynamics. Operations Research, 68(5):1493–
1516, 2020.

Pike-Burke, C. and Grunewalder, S. Recovering bandits. In
Advances in Neural Information Processing Systems, pp.
14122–14131, 2019.

Rothvoss, T. On the computational complexity of periodic
scheduling. Technical report, EPFL, 2009.

Sgall, J., Shachnai, H., and Tamir, T. Periodic scheduling
with obligatory vacations. Theoretical computer science,
410(47-49):5112–5121, 2009.

Slivkins, A. et al. Introduction to multi-armed bandits.
Foundations and Trends® in Machine Learning, 12(1-
2):1–286, 2019.

Whittle, P. Restless bandits: Activity allocation in a chang-
ing world. Journal of applied probability, pp. 287–298,
1988.

Yancey, K. P. and Settles, B. A sleeping, recovering ban-
dit algorithm for optimizing recurring notifications. In
Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp.
3008–3016, 2020.

Zhu, F. and Zheng, Z. When demands evolve larger and
noisier: Learning and earning in a growing environment.
In International Conference on Machine Learning, pp.
11629–11638. PMLR, 2020.

https://www.forbes.com/sites/michellegreenwald/2020/12/10/live-streaming-e-commerce-is-the-rage-in-china-is-the-us-next/?sh=3a5aad086535
https://www.bloomberg.com/news/features/2020-09-14/what-is-livestream-shopping-it-s-the-future-of-u-s-e-commerce

