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Abstract

Most current classifiers are vulnerable to adver-
sarial examples, small input perturbations that
change the classification output. Many existing
attack algorithms cover various settings, from
white-box to black-box classifiers, but typically
assume that the answers are deterministic and of-
ten fail when they are not. We therefore propose a
new adversarial decision-based attack specifically
designed for classifiers with probabilistic outputs.
It is based on the HopSkipJump attack by Chen
etal. (2019), a strong and query efficient decision-
based attack originally designed for deterministic
classifiers.  Our P(robabilisticH)opSkipJump
attack adapts its amount of queries to maintain
HopSkipJump’s original output quality across
various noise levels, while converging to its query
efficiency as the noise level decreases. We test our
attack on various noise models, including state-
of-the-art off-the-shelf randomized defenses, and
show that they offer almost no extra robustness
to decision-based attacks. Code is available at
https://github.com/cjsg/PopSkipJump.

1. Introduction

Over the past decade, many state-of-the-art neural network
classifiers turned out to be vulnerable to adversarial exam-
ples: small, targeted input perturbations that manipulate the
classification output. The many existing attack algorithms
to create adversarial inputs cover a wide range of settings:
from white- to black-box algorithms (a.k.a. decision-based)
over various gray-box and transfer-based settings, targeted
and untargeted attacks for various kinds of data (images, text,
speech, graphs); etc. Decision-based attacks are arguably
among the most general attacks, because they try not to rely
on any classifier specific information, except final decisions.
Said differently, they can attack anything that can be queried
often enough; in principle, even humans. Surprisingly how-
ever, despite this generality, they typically cannot deal with
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noisy or probabilistic classification outputs — a quite natural
and common setting in the real world. There could indeed
be many reasons for this noise: occasional measurement
errors, classifiers’ uncertainty about the answer, queries
coming from different/changing classifiers, or intentional
variations from a randomized adversarial defense. Yet, as
shown by Table 1 and Appendix B.1, randomly changing
the output label of only 1 out of 20 queries when applying
SOTA decision-based attacks suffices to make them fail.

One way to deal with probabilistic outcomes would be to
apply majority voting on repeated queries. In practice, how-
ever, some input regions may need more queries than others,
either because they are noisier, or because they are more
important for the success of the attack. So a naive implemen-
tation where every point gets queried equally often would
require unnecessarily many queries, which is often not ac-
ceptable in real-world applications.

Contributions We therefore propose to adapt Chen et al.
(2019)’s HopSkipJump (HSJ) algorithm, a query efficient,
decision-based, iterative attack for deterministic classifiers,
to make it work with noisy, probabilistic outputs. We take
a model-based, Bayesian approach that, at every iteration,
evaluates the local noise level (or probabilities) and uses it
to optimally adapt the number of queries to match HSJ’s
original performance. The result is a probabilistic version
of HopSkipJump, PopSkipJump (PSJ), that

1. outperforms majority voting on repeated queries;

2. efficiently adapts its amount of queries to maintain
HSJ’s original output quality at every iteration over
increasing noise levels;

3. gracefully converges to HSJ’s initial query efficiency
when answers become increasingly deterministic;

4. works with various noise models.

In particular, we test our attack on several recent state-of-
the-art off-the-shelf randomized defenses, which all rely
on some form of deterministic base model. PSJ achieves
the same performance as HSJ on the original base models,
showing that these defense strategies offer no extra robust-
ness to decision-based attacks. Finally, most parameters of
HSJ have a direct counterpart in PSJ. So by optimizing the
parameters of HSJ or PSJ in the deterministic setting we get
automatic improvements in the various stochastic settings.
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Related Literature. White-box attacks are the one extreme
case where the attacker has full knowledge of the classifiers’
architecture and weights. They typically use gradient in-
formation to find directions of high sensitivity to changes
of the input, e.g., FGSM (Goodfellow et al., 2015), PGD
(Madry et al., 2018), Carlini&Wagner attack (Carlini & Wag-
ner, 2017) and DeepFool (Moosavi-Dezfooli et al., 2016).
At the other extreme, decision-based attacks only assume
access to the classifiers’ decisions, i.e., the top-1 class as-
signments. State-of-the-art decision-based attacks include
the boundary attack by Brendel et al. (2018), HopSkipJump
by Chen et al. (2019) and gFool by Liu et al. (2019). In
between these two extremes, many intermediate, gray-box
settings have been considered in the literature. When the
architecture is at least roughly known but not the weights,
one can use transfer attacks, which compute adversarial
examples on a similar, substitute network in the hope that
they will also fool (‘transfer to’) the targeted net. Ilyas
et al. (2018) consider cases where the attacker knows the
top-k output logits/probabilities, or the top-k output ranks.
However, all these attacks were originally designed for de-
terministic classifiers, and typically break when answers are
just slightly noisy. This has led several authors to propose
alleged “defenses” using one or another form of randomiza-
tion, such as neural dropout, adversarial smoothing, random
cropping and resizing, etc. (details in Section 4). Shortly
later however, Athalye et al. (2018) managed to circumvent
many of these randomized defenses in the white-box setting,
by adapting existing white-box attacks to cope with noise.
Cardelli et al. (2019b;a) studied white-box attacks and certi-
fications for Gaussian process classifiers and Bayesian nets.
To date however, and to the best of our knowledge, there
has been no such attempt in the decision-based setting. In
particular, we do not know of any SOTA decision-based
attack that can handle noisy or randomized outputs. Our
paper closes this gap: we provide a decision-based attack
that achieves the same performance on randomized defenses
than SOTA decision-based attacks on the undefended nets.

Notations Vectors are bold italic (x, 9, g, .. .), their coor-
dinates and 1d variables are non-bold italic (z,d,g,...).
Random vectors are bold and upright (8, g, ¢, ...), their
coordinates and 1d random variables are non-bold upright
(8, g, 0, ...) When it cannot be avoided, we will also use the
index-notation (e.g., 8;) to designate the (¢-th) coordinate of
vector (8). Ber(p) denotes the Bernoulli distribution with
values in {—1, 1}, returning 1 with probability p.

2. Probabilistic Classifiers

Definition. We define a probabilistic classifier as a random
function (or stochastic process) ¢ from a set of inputs X
to a set of K classes K := {1, ..., K'}. Said differently, for

FLIP PSJ HSJ HSJ x3
v =0% | 0.006 (1x) | 0.006 (0.90x) | 0.005 (2.70x)
v=15% | 0.006(1x) | 0.022 (0.74x) | 0.007 (2.35x)
v=10% | 0.006 (1x) | 0.036 (0.73x) | 0.013 (2.27x)

Table 1: Median size of adversarial perturbation (“border-
distance”, see Section 4) and relative number of model calls
(in brackets) for different attacks (columns) and different
noise levels (rows) on MNIST. All attacks perform similarly
on deterministic classifiers. Randomly changing v percent
of outputs however suffices to break HopSkipJump (HSJ),
even with majority voting on 3 repeated queries, whereas
PopSkipJump (PSJ, our method) remains unaffected.

any x € X, ¢(x) is a random variable taking values in K.!
Repeated queries of ¢ at x yield i.i.d. copies of d(x).
Remark 1. For every probabilistic classifier ¢, there exists
a function of logits  — ¢(x) := (p(x)1,...,(x)Kk) €
(R U {#o0})X which (after a softmax) defines the distribu-
tion of ¢ () at every point . Conversely, every such logit
function defines a unique probabilistic classifier. So a proba-
bilistic classifier is nothing but an arbitrary function ¢ with
values in (R U {£00})¥ for which querying at & means
returning a random draw ¢ () from the distribution defined
by the logits ¢ (). In this paper, ¢ is a priori unknown.
But it can of course be recovered with arbitrary precision at
any point x by repeatedly querying ¢ at x.

Examples. Any deterministic classifier can be turned into a
probabilistic classifier with noise level v by swapping the
original output with probability v for another label, chosen
uniformly at random among the remaining classes. This
could, e.g., model a noisy communication channel between
the classifier and the attacker, noisy human answers, or
answers that get drawn at random from a set of different
classifiers. Sometimes, noise is also injected intentionally
into the classifier as a form of defense, e.g., by adding Gaus-
sian noise to the inputs as in adversarial smoothing (Cohen
et al., 2019), or via dropout of neural weights (Cardelli
et al., 2019a; Feinman et al., 2017), random cropping, re-
sizing and/or compression of the inputs (Guo et al., 2018).
All these defenses yield random outputs, i.e., probabilistic
classifiers. Finally, any neural network with logit outputs
p(z) € RE can be turned into a probabilistic classifier
by sampling from its logits instead of returning the usual
arg max;, ¢(x);. Even though perhaps not common in
practice, such randomized selection is indeed used, e.g., in
softmax-exploration in RL. Moreover, as Remark 1 shows,
sampling from logits can in principle model all the previous
examples, if the neural network is given sufficient capacity
to model arbitrary logit functions ¢, which is why we also

"Note however that, starting from Section 3, we will convene
that ¢ takes its values in {—1,1}.
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Figure 1: Original HopSkipJump algorithm for determinis-
tic classifiers (Chen et al., 2019). Illustrations correspond to
steps (a), (b), (c) and (a) from the text.

consider this setting in our experiments (Section 4).

Adversarial risk and accuracy. For a given norm |-||, loss
L and perturbation size 7 > 0, we generalize the notion of
e-adversarial (or robust) risk AR (Madry et al., 2018) from
the deterministic to the probabilistic setting as

AR([[-[I, £,7m, &) == max L($(x +6),¢)

E E
(x,0) d(x) LlIS]I<n

For deterministic classifiers, the expectation is taken only
over the distribution of the labeled datapoints (x, c) € X x
K. For probabilistic classifiers, it is also taken over the ran-
domness of the output ¢ () (at fixed input x). We define ad-
versarial accuracy as 1 — AR(L/;) where L/, denotes the
0-1 loss. In this work, ||-|| will always be the £2-norm ||-||2.

3. The PopSkipJump Algorithm

From now on, let us fix the attacked image «, with true
label ¢, and assume that the classifier ¢ returns values in
{—1, 1} with 1 meaning class ¢ and —1 not class c.

3.1. HopSkipJump algorithm for deterministic outputs

Given an image x, with label ¢ and a neural network
classifier ¢p which correctly assigns label ¢ to x,, i.e.,
¢ = argmax,cg @(x.)r, and let b(x) = ¢(x). —
maxgeg\ {c} P(€)x. Then b(x) > 0 if ¢ assigns class c
to , and b(x) < 0 if it does not. Consequently, we call
boundary the set of points & such that b(x) = 0.

Similar to the boundary attack (Brendel et al., 2018) or
gFool (Liu et al., 2019), HopSkipJump (HSJ) is a decision
based attack that gradually improves an adversarial proposal
@ over iterations ¢ by moving it along the decision boundary
to get closer to the attacked image ... More precisely, each
iteration consists of three steps (see Fig. 1):

(a) binary search on the line between an adversarial image
a; and the target x., which yields an adversarial point
x; near the classification border.

(b) gradient estimation, which estimates g(x;) :=
Vab(xt)/||Vzb(xt)|2, the normal vector to the

boundary at x;, as

g(xy) == L with u := Z oy + 6@))5@) (1)

[l =

where the 89 are uniform i.i.d. samples from a
centered sphere with radius ;. We will often simply
refer to g as “the gradient” and to g as “the gradient
estimate”.

(c) gradient step, a step of size &, in the direction of the gra-
dient estimate g(x;), yielding &1 := x+ + &g(a).

Chen et al. (2019) provide various convergence re-
sults to justify their approach and fix the size of the
main parameters, which are (a) the minimal bin size
gdet = d=3/2||x; — x|, for stopping the binary search;
(b) the sample size n{t = nd°*\/t and sampling radius
sdet — gdet\/d used to estimate the gradient; (c) the step

size €8t = @y — @12/ VE.

3.2. From HopSkipJump to PopSkipJump

While HSJ is very effective on deterministic classifiers,
small noise on the answers suffices to break the attack: see
Table 1. This is because, for one reason, binary search is
very noise sensitive: one wrong answer of the classifier
during the binary search and «; can end up being non-
adversarial and/or far from the classification border. For
another, even if binary search worked, the gradient estimate
g needs more sample points §(*) to reach the same average
performance with noise than without.

Overview of PopSkipJump. To solve these issues, our
Probabilistic HopSkipJump attack, PopSkipJump, replaces
the binary search procedure by (sequential) Bayesian ex-
perimental design, NoisyBinSearch, that not only yields
a point x4, but also evaluates the noise level around that
point. We then use this evaluation of the noise to compute
analytically (eq. 4) how many sample points n; we need
to get a gradient estimate g(x;) with the same expected
performance — as measured by E[cos(g, g)] using Eq. 3 -
than that of the same estimator with n°* points on a de-
terministic classifiers. Interestingly, when the noise level
decreases, our noisy binary search procedure recovers usual
binary search, and n; decreases to n{°t. PopSkipJump can
therefore automatically adapt to the noise level and recover
the original HopSkipJump algorithm if the classifier is deter-
ministic. We now explain in more detail the two parts of our
algorithm, noisy binary search and sample size estimation.

3.3. Noisy bin-search via Bayesian experimental design

Sigmoid assumption. Our noisy binary search procedure
assumes that the probability p.(x) of the class ¢ of x, (the
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Algorithm 1 PopSkipJump

Input: attacked point x.; starting point &, from adversarial class; probabilistic classifier ¢; input dim d;

HSJ parameters: sampling sizes nyet

for t = 1toend do

, sampling radii 5%, min bin-sizes 5" and gradient step sizes ¢

det
-

# Compute expected cosine C3* of the HSJ gradient estimate when classifier is deterministic
Cdet « f(s = 00,6 = 0,n = nfet A = §det) where f = RHS of Eq. 3

# Do noisy bin-search btw. &, and x with target cos = C{°* used in the stopping criterion

posterior(z, s, €) < NoisyBinSearch(&;, .., C3¢")
(ZAv §7 €) — Eposterior [(za S, 6)]
T — 2& + (1 — 2)a,

# (2, s, €) = sigmoid parameters

# Compute mean a posteriori of sigmoid parameters
# Move to sigmoid center (“border”)

# Compute query size n for grad estimate on prob classifier to match HSJ’s performance on det classifier

ny = ]Ezwpost [f

g(x:;) =RHS of Eq. 1

Typ1 < o + g (xy)

Tii1 ¢ Ty + 1.5(w40q — )
end for and return x;, z, s, €

LA =2-25=3¢=¢C = C8") where f~! = RHS Eq. 4

# Estimate gradient g at point x;
# Make step in the estimated gradient direction
# Enlarge obtained interval [x+41, .| to improve next bin-search

Algorithm 2 NoisyBinSearch

Input: attacked point x.; &; from adv. class; probabilistic
classifier ¢ with query model ¢(z) ~ p.(z) from Eq. 2; target
cos Ce; prior p(z, s, €)
for : = 1 to oo do

# Compute acquisition fct for all © € [&4, ]

a(z) = I(d(z), 2,8, €) with p(z, 5, €) & b(x) ~ pe(x)

# Sample at argmax of acquisition function

¢(&) ~ pc(&) where & = argmax_ a(x)

# Update prior and estimates with posterior
p(z;5,€) < p(z,5,€| $(2))
2,8, < BEpizs.e[p(2, 5, €]
# Use current posterior to compute query size for the next
grad estimate to reach an expected cos = C°
i =By s,0) [f_l(z —Z,s, e)], f ' :=RHS of Eq. 4
# Stop if k bin-search queries spare < k grad queries
if [n; — ni—k| < k : break
end for
Output: posterior p(z, s, €), posterior means (2, 3, €).

attacked image) has a sigmoidal shape along the line seg-
ment [x;, x.]. More precisely, for ¢ = (1 — z)x; + zx.
with z € [0, 1], we assume that

pe(x) = pe(z) =€+ (1 —2¢)a(s(z —2)) (2

where € models an overall noise level, and where o(x) :=
1/1+e~** is the usual sigmoid, rescaled to get a slope = 1 in
its center z when the inverse scale parameter s is equal to
1. This assumption is particularly well-suited for the exam-
ples discussed in Section 2, such as a probabilistic classifier
whose answers are sampled from a final logit layer. This as-
sumption is also confirmed by Appendix B.3, where we plot
the output probabilities along the bin-search line [x¢, .| at
various iterations ¢ of an attack on two sample images ..
Note that when s = oo, we recover the deterministic case,

with or without noise on top of the deterministic output,
depending on .

Bayesian experimental design. The noisy binary search
procedure follows the standard paradigm of Bayesian ex-
perimental design. We put a (joint) prior p*) on €, z
and s, query the classifier at a point z(*) € [0, 1] to get
a random label ¢(x*)), update our prior with the poste-
rior distribution of (e, z, s) and iterate over these steps for
k = 0,1, ... until convergence. The stopping criterion will
be discussed in Section 3.4. We choose z(¥) by maximizing
a so-called acquisition function acq(z|p®*)), which evalu-
ates how “informative” it would be to query the classifier at
point x given our current prior p(¥) on its parameters. We
tested two standard acquisition functions: (i) mutual infor-
mation I(d(z) || s, z, €) between the random answer ¢ ()
to a query at x and the parameters s, z, €; (ii) an expected
improvement approach, where we choose x to minimize the
expected sample size E ; [n:| ¢ ()] that will be required
for the next gradient estimation and where n; is computed
using Eq. 4 below. Mutual information worked best, which
is why we keep it as default. We can then use the final
prior/posterior to get an estimate (2, §, €) of the true param-
eters (z, s, €), for example with the maximum or the mean a
posteriori. We compute all involved quantities by discretiz-
ing the parameter space of (z, z, s, €) and start with uniform
priors. See details in Section 4.

3.4. Sample size for the gradient estimate

From sphere to normal distribution. Although the origi-
nal gradient estimate in the HopSkipJump attack samples
the perturbations §() of the near-boundary point z; on a
sphere, we instead sample them from a normal distribution
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N(0, B; I;) with diagonal standard deviation 3; := §;/d.
This will simplify our analytical derivations and makes no
difference in practice, since, in high dimensions d, this nor-
mal distribution is almost a uniform over the sphere with
radius d; (in particular, ||[§)]y ~ §;).

Sample size n;. We use the previous hypothesis to approx-
imate the expected cosine E[cos(g, g)] between the gradient
g(x) at point  and its estimate g () for a sample size n as
follows (justification in Appendix A.0.1).

E[cos(g, 9)] ~ where
14453
{ a(A,s,B,€) =By [y (s(A+58))3] 3)
d~N(0,1),y.(x) ~ Ber(e + (1 — 2¢) o(x)) ,

where we defined the displacement A := x — z between
the gradient sampling center = and the sigmoid center z and
where Ber denotes the Bernoulli distribution with values in
{—1,1}. This equation is easily inverted to get the sample
size n as a function of the expected cosine C":

C? d—1
n A
a?(A,s,B,e)1—C27

C :=E[cos(g,g)]. )

Finally, the following result shows how to compute o when
replacing the usual sigmoid by its close approximation, a
clipped linear function (proof in Appendix A.0.2).

Proposition 2. Assume that, in Eq. 3, o is the clipped linear
Sunction o(x) = clip(x + 1/2,0,1). Then

{ (1 —2¢€)sp -

1/2s —1/2s (5)
(erf (A5 —erf (454))

a(A, 00,8, €) = (1 - 26)\/260*“/2 : (6)

a(A’ 37 ﬁ’ 6) =

We now explain how to use these four formulae, together
with the estimates (2, §, €) from the binary search procedure,
to evaluate the sample size n; that we need to get the same
expected cosine value than with n{°t points sampled from
a deterministic classifier. First we set s = 0o,e = 0, and
n = nf® in Eq. 3 and compute the expected cosine C°* on
a deterministic classifier with n{*® sample points; then we
apply Eq. 4 with our estimates (2, §, €) and use the obtained
value n;. (Alternatively, instead of using the point estimate
(2,8, €), we could also use Eq. 4 to compute the E. ; [n]
using the full posterior over (¢, s, €).)

Stopping criterion for bin-search. We leverage Eq. 4 to
design a stopping criterion for the (noisy) bin-search proce-
dure that minimizes the overall amount of queries in PSJ. We
use it to stop the binary search when one additional query
there spares, on average, less than one query in the gradient

MNIST
— [=1.000 _—
3=0.638
3-0.128
30,064
3-0.013

B=d~'=1.28¢-3

CIFARI10

\ — [B=1.000
“m 3=0.326
e 3=0.163
\ T —— $=0.033
3=0.016
— [B=0.003

B=d~'=3.25e-4

— .00 — -
0 10 20 30 0 10 20 30
iterations iterations

median border dist

median border d

Figure 2: HSJ’s performance on deterministic deep net clas-
sifiers is largely independent of the effective sampling radius
d: = B||®: — .||z of the gradient estimator. So we can
safely increase /3 (hence d;) by several orders of magnitude,
which greatly enhance PSJ’s query efficiency in the noisy
setting (see Section 3.5) without affecting PSJ/HSJ’s output
quality in the deterministic setting. Here we let 8 range
from HSJ’s original choice 1/d to 1, and adjusted the mini-
mal bin-size 6, to preserve the ratio d;/6; = V/d, as in Chen
et al. (2019), IV.C.b. and eq. 15.

estimation procedure. Concretely, every k queries (typically,
k = 10), we use our current bin-search estimate of (z, s, €)
(or the full posterior) to compute n (or E. s c~posterior[72])
using Eq. 4 and stop the binary search when the absolute dif-
ference |Nyew — Mold| between the new and old result is < k.
The idea is that, the better we estimate the center z of the
sigmoid, the closer x (center of g) will be to z. This in turn
will reduce the number of queries required for g to reach
a certain expected cosine. (To see that, notice for example
that Eq. 4 decreases with |Al.) Since a query tends to yield
more information about the position of z at the beginning
of the bin-search procedure than later on, |n,ew — Moldl
tends to decrease with the amount of bin-search queries.
The order of magnitude of |A| when meeting the stopping
criterion depends on the shape parameter s and noise level
€ of the underlying sigmoid. For a deterministic classifier
(s = o0, e = 0), it must be at least of the order of (3, the
standard deviation of the samples §(¥) in g (see eq. 1): oth-
erwise, all points = + 6() would belong to the same class
and yield no information about the border. (See also IV.C.a.
in Chen et al. 2019.) But if 5 < 1/s, the characteristic size
of the linear part of the sigmoid, then |A| > 3 is acceptable,
as long as itis < 1/s. Our stopping criterion provides a
natural and systematic way to trade off these considerations.

3.5. PopSkipJump versus HopSkipJump

Here we discuss additional small differences between HSJ
and PSJ, besides the obvious ones that we already mentioned
— binary search, its stopping criterion, and the sample size
for the gradient estimate.

Gradients: variance reduction and size of §;. The au-
thors of HSJ propose a procedure to slightly reduce the
variance of the gradient estimate (Sec. III.C.c), which we
do not use here. Moreover, they use 6; = ||€: — x.||2/d,
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Figure 3: Adversarial accuracy versus attack size 7 for PSJ and HSJ for a fixed noise model (logit-sampling) and various
noise levels (temperatures T') in Figs. (a) &(b); and for various noise models and fixed, high noise levels in Figs. (c) & (d).
The curves obtained with PSJ are well below their HSJ counterparts in all noisy settings and both curves coincide in the
deterministic case (Figs. a & b, T=0.). This illustrates the clear superiority of PSJ over HSJ. Note that, even though all
classifiers use a same underlying base classifier, their PSJ curves do not coincide (even when n = 0, i.e., for usual accuracy).
This confirms that adversarial accuracy is ill-suited for comparisons between different noise levels and that the median
border distance should be preferred, as in Figs. 4 and 5. See paragraph “Adversarial accuracy” and Remark 4.

whereas we use 0; = V/d||%; — @.||2/100. The reason is
that, whenever s < oo, smaller d; yield noisier answers
which increases the queries needed both in the gradient esti-
mation and in the bin-search. Given that the logits of deep
nets typically have shape parameters s ~ 1, HSJ’s original
choice would require prohibitively many samples. To re-
duce noise, the larger the radius J;, the better. In practice
however, the size of ¢, is limited by the curvature of the bor-
der and by the validity range of the sigmoidal assumption
(Eq. 2). To trade of these considerations, we evaluated the
empirical performance of HSJ (on deterministic classifiers)
with various choices of d; and chose one of the largest for
which results did not differ significantly from the original
ones. See Fig. 2. A more theoretically grounded approach
that would evaluate the curvature is left for future work.

No geometric progression on &;. For HSJ, it is crucial that
x; be on the adversarial side of the border. Therefore, it
always tests whether the point @; := @11 + & §(xs—1) is
indeed adversarial. If not, it divides &; by 2 and tests again.
Since by design x;_; is adversarial, this “geometric progres-
sion” procedure is bound to converge. In the probabilistic
case, however, testing if a point is adversarial can be expen-
sive, and is not needed since, on the one hand, the noisy
bin-search procedure can estimate the sigmoid’s parameters
even if z is outside of [€, x.]; and on the other, we are less
interested in the point &, and the point value p.(x;) than in
the global direction from x, to ;. We therefore use &; as
is, without geometric progression.

Enlarging bin-search interval [Z;, x.]. It is easier for the
noisy bin-search procedure to estimate the sigmoid parame-
ters if it can sample from both sides of the sigmoid center z.
In practice however, we noticed that after a few iterations
t, the point &, tends to be very close to z. We therefore
increase the size of the sampling interval, from [£;, x.] to

[« + 1.5(€; — x.), x|, which performed much better.

4. Experiments

The goal of our experiments is to verify points 1. to 4. from
the introduction. That is, we want to show that, contrary
to the existing decision-based attacks, the performance of
PS]J is largely independent of the strength and type of ran-
domness considered, i.e., of both the noise level and the
noise model. At every iteration, PSJ adjusts its amount of
queries to keep HSJ’s original output quality, and is almost
as query efficient as HSJ on near-deterministic classifiers.
To show all this, we apply PSJ (and other attacks) to a de-
terministic base classifier whose outputs we randomize by
injecting an adjustable amount of randomness. We test var-
ious randomization methods, i.e., noise models, described
below, including several randomized defenses proposed at
the ICLR’18 and ICML’19 conferences. Figures 4 and 5
summarize our main results.

Remark 3. Although we do compare PSJ to SOTA decision-
based attacks, with or without repeated queries, we do not
compare PSJ to any decision-based attack specifically de-
signed for probabilistic classifiers because, to the best of
our knowledge, there is not any.> There are however some
white-box attacks (e.g., Athalye et al., 2018; Cardelli et al.,
2019b;a) that can deal with some specific noise models
considered in this paper (see below).

Noise models and randomized defenses. For a given de-
terministic classifier ¢, we consider the following random-
ization schemes.

The decision-based attack by Ilyas et al. (2018) for determin-
istic classifiers may still work to some extent with randomized
outputs, but it is less effective than HSJ on deterministic classifiers
(Chen et al., 2019). Since we will show that, despite the noise, PSJ
stays on par with HSJ, there is no need for further comparisons.
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Figure 4: PopSkipJump’s performance (lower is better) for a fixed noise model (dropout) and various noise levels (dropout
rate o). Performance is shown as a function of the number of algorithm iterations (a & c¢) and model queries (b & d).
Shaded areas depict the 40" to 60™ percentiles. Plots (a) & (c) illustrate property 2.: the per iteration performance of PSJ
is largely independent of the noise level (here, the dropout rate) and is on par with the performance achieved by HSJ on
the deterministic base classifier. Plots (b) & (d) illustrate property 1.: when the noise level (dropout rate) decreases and
the classifier becomes increasingly deterministic, the PSJ curves converge to the limiting HSJ curve, i.e., the per query

performance of PSJ converges to that of HSJ. See Fig. 9 in appendix for similar curves, but with other noise models.
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Figure 5: PopSkipJump’s performance (lower is better) for various noise models. Plots (a) & (c): Performance as a function
of the number of algorithm iterations, when using, for each noise model, the highest noise levels considered in Fig. 4 (see
also Fig. 9 in appendix). All curves are very similar, showing that PSJ is largely invariant to the specific type of randomness
used, even at high noise levels. Plots (b) & (d): Performance after 32 algorithm iterations (right-most part of curves in a & c)

of PSJ and HSJ as a function of the noise level. While small noise levels suffice to break HSJ (large border-distances at end

of attack), PSJ’s performance stays almost constant accross all noise levels and noise models.

e logit sampling: divide the output logits ¢ (x) by a tem-
perature parameter 1" to get 7 (x) := ¢(x)/T and sam-
ple from the new logits ¢ (x). By changing T' we can
smoothly interpolate between the deterministic classifier
(T — 0) and sampling from the original logits (I" = 1).

e dropout: apply dropout with a uniform dropout rate
a € [0, 1](Srivastava et al., 2014). Taking a = 0 yields
the deterministic base classifier; increasing « increases the
randomness. Dropout and its variants have been proposed
as adversarial defenses, e.g., in Cardelli et al. (2019a); Fein-
man et al. (2017). Note that a network with dropout can be
interpreted as a form of Bayesian neural net (Gal & Ghahra-
mani, 2016). As such, sampling from it can be understood
as sampling from an ensemble of nets.

e adversarial smoothing: add centered Gaussian noise with
standard deviation o to every input before passing it to the
classifier. Taking o = 0 yields the original base classifier.
Cohen et al. (2019) proposed majority voting over several
such queries as an off-the-shelf adversarial robustification.

e random cropping & resizing: randomly crop and resize
every input image before passing it to the classifier. Chang-

ing the cropping size allows to interpolate between the deter-
ministic setting (no cropping) and more noise. This method
and a variant were proposed by Guo et al. (2018) and Xie
et al. (2018) as adversarial defenses.

We ran all experiments on the MNIST (LeCun et al., 1998)
and CIFARI10 (Krizhevsky, 2009) image datasets. Since,
at high noise levels, the attack may need a million queries,
it could take a minute per attack on a GeForce GTX 1080
for MNIST and a few minutes for CIFAR10 (larger net; see
Appendix D for a time and complexity analysis and accel-
eration tricks.) We therefore restricted all experiments to
a same random subset of 500 images of the MNIST and
CIFARIO test sets respectively, where we kept only images
that were labeled correctly with probability > .75 when us-
ing the cropping noise model with s = 22. On CIFAR10 we
use a DenseNet-121 and on MNIST a CNN with architecture
‘conv2d(1, 10, 5), conv2d(10, 20, 5), dropout2d, linear(320,
50), linear(50,10)°. In all plots, shaded areas mark the 40t to
60" percentiles. To simplify the comparison across datasets
(cf. Eq. 3 in Simon-Gabriel et al. 2019), we divide all /5-
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Figure 6: Ratio Npsj:/Npgj as a function of noise level,
where Nygj; is the total amount of queries needed by HSJ-
with-repeated-queries to match the performance of PSJ with
Npgjy queries. HSJr needs several orders of magnitude
more queries than PSJ, even when the classifier becomes
increasingly deterministic, and even when using PSJ’s larger
sampling radius ¢ for the gradient estimator (see paragraph
“PSJ outperforms HSJr”).

distances by \/d, where the input dimension d is 27 x 27 for
MNIST and 3 x 32 x 32 for CIFAR-10. Code is available
athttps://github.com/cjsg/PopSkipJump.

Adversarial accuracy (AA). Fig. 3 plots adversarial accu-
racy as a function of the attack size 7 for various noise
levels and a fixed noise model using logit sampling (Figs.
a & b), and for various noise models at fixed, high noise
levels (Figs. ¢ & d). The accuracy curves obtained with PSJ
are well below their HSJ counterparts in all noisy settings
and both curves coincide in the deterministic case (Figs. a
& b, T=0). This illustrates the clear superiority of PSJ over
HSJ. However, despite its standard use in the deterministic
setting and its straight-forward generalization to probabilis-
tic classifiers, AA is ill-suited for comparing performances
between different noise models and noise levels. An easy
way to see this is to notice that the AA curves do not even
coincide at n = 0, even though the value at that point is just
standard accuracy and does not depend on the attack algo-
rithm. Instead, we will now introduce the (median) border
distance, which generalizes the usual “median /-distance
of adversarial examples” to the probabilistic setting, and
which is better suited for comparisons across noise models
and noise levels.

Remark 4. A deeper reason why AA is ill-suited for the
comparison between noise levels is the following. From
any probabilistic classifier one can define the deterministic
classifier obtained by returning, at every point, the majority
vote over an infinite amount of repeated queries at that point.
This deterministic classifier is “canonically” associated to
the probabilistic one in the sense that it defines the same
classification boundaries. Naturally, any metric that com-
pares an attack’s performance across various noise levels
should be invariant to this canonical transformation. Con-
cretely, it means that a set of adversarial candidates {x}
should get the same score on a probabilistic classifier than
on its deterministic counterpart. The border distance defined
below satisfies this property; AA does not.

Performance metric: border distance. In the determinis-
tic case, the border distance is essentially the /5-distance
of the proposed adversarial examples to the original image.
In the probabilistic case, however, an attack like PSJ may
return points that are close to the boundary, but actually lie
on the wrong side, because the underlying (typically un-
known) logit of the true class is only marginally greater than
the logit of the adversarial one. So, to ensure that we only
measure distances to true adversarials and for the purpose
of evaluation only, we will assume white-box access to the
true underlying logits and then project all outputs x to the
closest boundary point that lies on the line (x., x), i.e., the
closest point ' where the true and adversarial class have
same probability. We define the border-distance of x to x.
as the (y-distance ||’ — @, ||» (re-scaled by 1//d). Note
that for this evaluation metric, what matters is not so much
the output point & than finding an output-direction (x., x)
of steep(est) descent for the underlying output probabilities.

PSJ is invariant to noise level and noise model. Figure 4
fixes the noise model (dropout) and compares PSJ’s per-
formance at various noise levels (dropout rate «). (Similar
curves for the other noise models can be found in appendix,
Fig. 9.) Figure 5 instead studies PSJ’s performance on vari-
ous noise models. More precisely, Fig. 4 shows the median
border-distance at various noise levels (dropout rates «) as
a function of PS]J iterations (a & c¢) and as a function of
the median number of model queries obtained after each
iteration (b & d). Shaded areas show the 40" and 60" per-
centiles of border-distances. Figs. (a) & (c) illustrate point
2. from the introduction: the per iteration performance of
PSJ is largely independent of the noise level and on par
with HSJ’s performance on the deterministic base classi-
fier. This suggests that PSJ adapts its amount of queries
optimally to the noise level: just enough to match HSJ’s
deterministic performance, and not more. Figs. (b) & (d)
illustrate point 3.: when the noise level decreases and the
classifier becomes increasingly deterministic, the per query
performance of PSJ converges to that of HSJ, in the sense
that the PSJ curves become more and more similar to the
limiting HSJ curve. Note that the log-scale of the x-axis can
amplify small, irrelevant difference at the very beginning
of the attack. Figure 5 show that the performance of PSJ is
largely invariant to the different noise models considered
here. Figs. 5 (b) & (d) also confirm that, contrary to HSJ
that fails even with small noise, PSJ is largely invariant to
changing noise levels and noise models.

PSJ outperforms HSJ-with-repeated-queries. Let HSJ-
r be the HSJ attack with majority voting on r repeated
queries at every point. Figure 6 studies how many total
queries HSJ-r requires to match the performance of PSJ
at various noise levels with logit-sampling. It reports the
ratio Ny sy /Npsy, of total amount of queries. Concretely,
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Figure 7: PSJ’s adversarial examples are on par with the
white-box attacks, even in noisy regimes (high 7), and even
though the white box attacks use the true gradients of the
tempered logits and therefore never face any actual noise.

for logit sampling with a given temperature 7' (the noise
level), we first compute the median border-distance Dpgj
of PSJ after 32 iterations and the 40™, 50%, 60™ percentiles
Nyo, N5, Ngo of the total amount of queries used in each
attack. We then run HSJ-r for increasingly high values of
r, which improves the median border-distance Dygj,(r)
and increases the total number of queries N (7). We stop
when Dysyr = Dpgy and plot the resulting ratio N/N5q
(solid line), and N/N49, N/Ngo (small shaded area around
the median line). The result, Fig. 6, confirms property 1.:
PSJ is much more query efficient than HSJr. At first, we
were surprised that, even at very low noise levels, HSJr
needed several order of magnitudes more model queries than
PSJ. The reason, we found, is that HSJ uses a very small
sampling radius (5 = 1/d) for the gradient estimator, which
impedes the estimation in the event of noise, as discussed in
Section 3.5. We therefore also compare PSJ to a version of
HSJr where we replaced the original sampling radius by the
same one we used in PSJ (dashed line). The performance
of HSJr improved dramatically, even though PSJ remains
much more query efficient overall.

Small noise breaks HSJ. To confirm that small noise suf-
fices to break HSJ, we compare the performance of HSJ and
PSJ on MNIST, on a deterministic classifier where labels get
corrupted (flipped) with probability v € {0,.05,.1} (as in
Example ¢,, of Section 2). Results are reported in Table 1.
Corrupting only 1 out of 20 queries (v = 5%) suffices to
greatly deteriorate HSJ’s performance (i.e., increase the me-
dian border-distance) — even with queries repeated 3 times —,
while PSJ, with almost the same amount of queries than HSJ,
is almost not affected. Appendix B.1 shows similar results
when we replace HSJ by the boundary attack (Brendel et al.,
2018). This inability of HSJ to deal with noise can also be
seen on Figs. 5 (b) & (d) and 6.

PSJ vs white-box attacks. To evaluate how much perfor-
mance we lose by ignoring information about the network
architecture, we compare PSJ to several white-box attacks:
to £5-PGD with 50 gradient steps (Madry et al., 2018) and
to the ¢5-attack by Brendel et al. (2019), using their Fool-
box implementations by Rauber et al. (2017; 2020); and

to a homemade “PSJ-TrueGrad” attack, where we replaced
every gradient estimate in PSJ by the true gradient. We
compare these attacks on 100 MNIST and 50 CIFAR10 test
images, using the “logit sampling” noise model at various
temperatures 7'. That way, the true underlying logits and
their gradients are known and can be used by the white-box
attacks without resorting to any averaging over random sam-
ples. This trick is not applicable to other noise models and
makes the comparison with PSJ doubly unfair: first because
the white-box attacks have access to the model’s gradients;
and second, because here they never face any actual noise.
Given these burdens, PSJ’s performance shown in Fig. 7 is
surprisingly good: it is on par with the white-box attacks.

5. Conclusion

Although recent years have seen the development of several
decision-based attacks for deterministic classifiers, small
noise on the classification outputs typically suffices to break
them. We therefore re-designed the particularly query-
efficient HopSkipJump attack to make it work with prob-
abilistic outputs. By modeling and learning the local output
probabilities, the resulting probabilistic HopSkipJump
algorithm, PopSkipJump, optimally adapts its queries to
match HSJ’s performance at every iteration over increasing
noise levels. It is much more query-efficient than the
off-the-shelf alternative “HSJ (or any other SOTA decision-
based attack) with repeated queries and majority voting”,
and matches HSJ’s query-efficiency on deterministic and
near-deterministic classifiers. We successfully applied PSJ
to randomized adversarial defenses proposed at major recent
conferences, and showed that they offer almost no extra
robustness against decision-based attack as compared to
their underlying deterministic base model. Our adaptations
and statistical analysis of HSJ could be straightforwardly
used to extend another decision-based attack, qFool by Liu
et al. (2019), to cope with probabilistic answers. Overall,
we hope that our method will help crafting adversarial ex-
amples in more real-world settings with intrinsic noise, such
as for sets of classifiers or for humans. However, our results
also suggest that the feasibility of such attacks will greatly
depend on the noise level, since PSJ can require orders of
magnitude more queries to achieve the same performance
in the probabilistic setting than in the deterministic one.
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