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Abstract

We study how permutation symmetries in over-
parameterized multi-layer neural networks gen-
erate ‘symmetry-induced’ critical points. As-
suming a network with L layers of minimal
widths r7,...,r7_; reaches a zero-loss mini-
mum at 7j!- - -7 _! isolated points that are per-
mutations of one another, we show that adding
one extra neuron to each layer is sufficient to
connect all these previously discrete minima into
a single manifold. For a two-layer overparame-
terized network of width * + h =: m we ex-
plicitly describe the manifold of global minima:
it consists of T'(r*, m) affine subspaces of di-
mension at least h that are connected to one an-
other. For a network of width m, we identify the
number G(r,m) of affine subspaces containing
only symmetry-induced critical points that are re-
lated to the critical points of a smaller network
of width » < r*. Via a combinatorial analysis,
we derive closed-form formulas for 7" and G and
show that the number of symmetry-induced crit-
ical subspaces dominates the number of affine
subspaces forming the global minima manifold
in the mildly overparameterized regime (small k)
and vice versa in the vastly overparameterized
regime (h > r*). Our results provide new in-
sights into the minimization of the non-convex
loss function of overparameterized neural net-
works.
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1. Introduction

Neural network landscapes were traditionally thought of
as highly non-convex landscapes, where non-global critical
points may harm gradient-descent by slowing it down (due
to saddles) or making it stop in local minima. Earlier works
have argued in favor of a proliferation of saddles in high-
dimensional neural network landscapes through an analogy
with random error functions (Dauphin et al., 2014). On the
other hand, practical neural network landscapes are found
to exhibit surprising properties, such as the connectivity of
global minima (Draxler et al., 2018; Garipov et al., 2018)
and the convergence to a global minimum in the so-called
overparameterized regime (Jacot et al., 2018), thereby rul-
ing out proliferating saddles as a problem in this regime.
Yet, in mildly overparameterized networks, gradient de-
scent may find a global minimum only for a small frac-
tion of random initializations (Sagun et al., 2014; Chizat &
Bach, 2018; Frankle & Carbin, 2018).

In this work, we study the width-dependent scaling of the
number of symmetry-induced critical points and the con-
nectivity of global minima by exploiting the permutation
symmetry and further invariances of the network parame-
terization. The permutation symmetry introduces an invari-
ance to a permutation in parameterization that is character-
istic for many machine learning models beyond neural net-
works, such as mixture models, multiple kernel learning, or
matrix factorization.

Further invariances in a neural network of width m induce
equal loss manifolds such that all points in the manifold are
equivalent to a single point in a narrower network of width
r < m. The mapping approach from a point in parameter
space of the narrower network to a parameter manifold of
the full network is particularly useful for the study of criti-
cal points as critical points of the narrow network turn into
symmetry-induced critical subspaces of the full one. In par-
ticular, a global minimum of the narrow network turns into
a collection of global minima subspaces that are connected
to one another.
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Figure 1. Graph of (a) a minimal network of width 4 (teacher) and (b) a mildly overparameterized student network of width 5. (¢) With
50 random initializations, mildly overparameterized networks (blue) find a global minimum for only a fraction of initializations, whereas
vastly overparameterized networks (red, width 45) consistently find a global minimum. (d) Graph of student network with three hidden
layer learning from a teacher with widths 4 — 4 — 4. (e) Vastly overparameterized networks (red) consistently find a global minimum
whereas mildly overparameterized networks (blue) typically do not.

1.1. Main Contributions

1. Suppose an L-layer Artificial Neural Network (ANN)
with hidden layer widths r},...,rj_; reaches a
unique (up to permutation) zero-loss global minimum
(we call such a network minimal if it cannot achieve
zero loss if any neuron is removed). The permutation
symmetries give rise to 7{!---r}_;! equivalent dis-
crete global minima. We show that adding one neuron
to each layer is sufficient to connect these global min-
ima into a single zero-loss manifold.

2. For a two-layer overparameterized network of width
m = 1" + h, we describe the geometry of the global
minima manifold precisely: it consists of a union
of a number T'(r*, m) of affine subspaces of dimen-
sion > h and it is connected. Furthermore, we show
that the global minima manifold contains all the zero-
loss points for smooth activation functions satisfying
a technical condition and in the presence of infinitely
many data points with full support of the input space.

3. The symmetries of the network generate symmetry-
induced critical points, such as saddle points, which
may prevent the convergence to a global minimum
(see Figure 1). We find a surprising scaling rela-
tion between the number of subspaces formed by the
symmetry-induced critical points and the number of
subspaces making up the global minima:

* When the number of additional neurons satisfies
h < r* (i.e. at the beginning of the overparam-
eterized regime), the number of subspaces that
make up the global minima manifold is much
smaller than the number of subspaces that make
up the symmetry-induced critical points. In this
sense, there is a proliferation of saddles and the
global minima manifold is ‘tiny’.

» Conversely, when h > r* (i.e. we are far into or
within the overparameterized regime), the num-
ber of subspaces that make up the global minima

manifold is much greater than the number of sub-
spaces that make up the symmetry-induced (non-
global) critical points. In this sense the global
minima manifold is ‘huge’.

4. One may worry that, by adding ~ neurons, a saddle
of a network of width r could transform into a local
minimum. However, we show that this is not the case
and a saddle point in the smaller network transforms
into symmetry-induced saddle points.

1.2. Related Work

A number of recent works have explored the typical path
taken by a gradient-based optimizer. For very wide ANNs,
the gradient flow converges to a global minimum in spite
of the non-convexity of the loss (Jacot et al., 2018; Du
et al., 2018; Chizat & Bach, 2018; Arora et al., 2019; Du
et al., 2019; Lee et al., 2019a; 2020). First-order gradi-
ent algorithms provably escape strict saddles (Jin et al.,
2017; Lee et al., 2019b), although they can face an expo-
nential slowdown around these saddles (Du et al., 2017).
For pruned ANNS, the training with typical (random) ini-
tialization does not reach any global minimum, in spite of
their presence in the landscape (Frankle & Carbin, 2018).

Another body of work focuses on the geometric investiga-
tion of neural network landscapes. Dauphin et al. (2014)
suggested a proliferation of saddles in ANN landscapes
through an analogy with high-dimensional Gaussian Pro-
cesses. Other models have been proposed to understand the
general structure of ANN landscapes inspired by statisti-
cal physics (Geiger et al., 2019), and via high-dimensional
wedges (Fort & Jastrzebski, 2019). These model-based em-
pirical works focus mainly on the Hessian spectrum at the
critical points.

Another line of work suggests that global minima found
by stochastic gradient descent are connected (i.e. there is
a path linking arbitrary two minima along which the loss
increases only negligibly) via simply parameterized low-
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loss curves (Draxler et al., 2018; Garipov et al., 2018) or
line segments (Sagun et al., 2017; Frankle et al., 2020; Fort
et al., 2020). Theoretical work limited to ReL.U-type ac-
tivation functions, showed that in overparameterized net-
works, all global minima lie in a connected manifold (Free-
man & Bruna, 2016; Nguyen, 2019), however without giv-
ing a geometrical description of this manifold. Cooper
(2020) studied the geometry of a subset of the manifolds
of critical points. Kuditipudi et al. (2019) showed that the
global minima for ReLU networks, for which half of the
neurons can be dropped without incurring a significant in-
crease in loss, are connected via piecewise linear paths of
minimal cost.

In this paper, we show that adding or removing a single
neuron radically changes the connectedness without any
change in loss. We are the first to prove the connectivity of
the global minima manifold for continuously differentiable
activation functions. The focus on symmetries in our work
is similar to that of (Fukumizu & Amari, 2000; Brea et al.,
2019; Fukumizu et al., 2019) regarding the critical points
coming from neuron replications. In an orthogonal direc-
tion, Kunin et al. (2020); Gluch & Urbanke (2021) present
a catalog of symmetries appearing in deep networks, which
however does not include the permutation symmetry. To
the best of our knowledge, this work is the first to study the
scaling of the number of critical points in ANN landscapes
as a function of the overparameterization amount. A key
challenge to overcome is the numerous equivalent arrange-
ments of neurons inside the network.

Notation. For m > 1, set [m] = {1,...,m} and let S,
denote the symmetric group on m symbols, i.e. the set of
permutations of [m]. For a permutation = € S,,, and D >
1, the map P, : RP™ — RP™ permutes the units 9; € R”
of a point @ = (¥4, ...,Y,) according to 7, i.e. P8 =
(Or(1), - -+ > Vn(m)); We sometimes use 8 := P0.

2. Symmetric Losses

Numerous machine learning models involve permutation-
symmetric parameterizations: mixture models, matrix fac-
torization, and neural networks. In this section, we abstract
away the particular parameterization of these models and
focus on the implications of permutation symmetry on the
gradient flow. In particular, the discussion here is general
and applies to ANNs which is the main focus of this paper.

Definition 2.1. A loss function L™ : RP™ — R is a sym-

metric loss' on m units if it is a C' function and if for any
T € Sy and any @ = (91,94, ...,9,,) with¥; € RP, we
have

L™(0) = L™ (P,0).

"'When the units are 1-dimensional, symmetric losses are sym-
metric functions (Kung et al., 2009; Sagan, 2013).
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Figure 2. No gradient pointing outside of a symmetry subspace.
The gradient flow of a permutation-symmetric loss L(w1,w2) =
log(3 ((w1 4+ w2 — 3)® + (w1w2 — 2)?) + 1). Red: permutation-
symmetric global minima, purple: saddle, dashed line: the sym-
metry subspace.

The term unit may refer to a Gaussian vector in the context
of Gaussian mixture models, to a factor in the context of
matrix factorization, or to a neuron in the context of neu-
ral networks. The symmetry subspaces are defined by the
constraint that at least two units are identical:

Definition 2.2. Let iy,...,i; € [m] be distinct indices.
The symmetry subspace H;, . ;, is defined as
) €ERP™ 9 =0

Hiy i = {1, .. =9, }.

As each constraint ¥; = 1J; suppresses D degrees of free-
dom, we have dim(#,;, ... ;) = D(m —k+1). The largest
symmetry subspaces are H; ;’s: any other symmetry sub-
space is the intersection of such subspaces.

Let p : R>o — RP™ denote the gradient flow under a
symmetric loss

pt) = =V L™ (p(t)) (D

for ¢ > 0 and for a given initialization p(0). In Figure
2, we observe that the gradient on the symmetry subspace
is tangent to it. In general, the gradient components of a
symmetry subspace pointing to neighbor regions cancel out
due to permutation symmetry.

Lemma 2.1. Let L™ : RP™ — R be a symmetric loss on
m units thus a C* function and let p : R>og — RP™ be its
gradient flow. If p(0) € H;, .. ., the gradient flow stays
inside the symmetry subspace, i.e. p(t) € H;, . . forall
t > 0. If p(0) & H; j forall i # j € [m], that is outside
of all symmetry subspaces, the gradient flow does not visit
any symmetry subspace in finite time.

Remark 2.1. Lemma 2.1 does not exclude the following
scenario: if there is a critical point on the symmetry sub-
space that is attractive in some directions orthogonal to the
symmetry subspace, the gradient flow can reach it in infi-
nite time (i.e. at convergence).
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Figure 3. Left: Parameters §” of an irreducible point in a network
of r neurons with w; # w; for all 4 # j and a; # O for all 4.
Right: example of a reducible point in I's(#") in an expanded
network of m > r neurons. The incoming weight vector of the
first neuron is replicated k; times, the second one only once, etc.

3. Foundations: Invariances in 2-Layer ANNs

In this section, we discuss the implications of the permu-
tation symmetry for the ANN landscapes and identify fur-
ther invariances in network function parameterization. This
approach will allow us to describe the precise geometry
of the global minima manifold (Subsection 4.1) and the
symmetry-induced critical points (Subsection 4.2) in over-
parameterized ANNS.

Let f(2) : Rdn — R be a two-layer ANN of width m

m

f@ (x16) = Zaia(wi - )

where @ = (w1, ..., Wy, a1,...,a,)is an m-neuron point
in the parameter space RP™ with w; € R% and a; € R%u
sothat D = di, + doye and o : R — R is a C! activation
function with o (z) # 0 for all 2 € R.> Sometimes, we will
write §™ := @ to emphasize the number of neurons.

The training dataset of size N is denoted by Trn =
{(zk,yx) 1, where zj, € Ry, € R%w. The training
loss L™ : RP™ — Ris
1

mgy — (2
L"e) =+ > cf®wl).y )

(z,y)€Tm

where ¢ : Rt x R — [0, +-00) is a single-sample loss
that is C'* in its first component and ¢(9), y) = 0 if and only
if § = y, such as the least-squares loss or the logistic loss.

Since f(?)(x|@) is invariant under the permutation of neu-
rons ¥; := [w;,a;] € RP, the concatenation of the incom-
ing and outgoing weight vectors, and both o and ¢ are C'!,
L™ is a symmetric loss (Def. 2.1). Therefore the symme-
try subspaces ¥; = ¥; are invariant under the gradient flow
(Lemma 2.1). ANN functions exhibit further invariances:

2We exclude homogenous activation functions, such as ReLU
and linear function (for linear networks), where the scaling invari-
ance should also be considered.

Definition 3.1. We call an m-neuron point §™ irreducible
if it has m distinct incoming weight vectors w;, and no zero
outgoing weight vector, i.e. a; # 0 for all i € [m]. Other-
wise we say that @™ is reducible.

Any reducible point 8™ is equivalent to a point 8! with
(m — 1)-neurons in that they produce the same function
@ (z]6™) = £® (/0™ ") where ™" is

s ) if wy = w,

1. (wg,w37...,wm,a1 + ag,as,. ..

2. (wo, W3, ..., Wm,a2,0a3, .. .,a0y) if a; = 0.
Note that because of permutation symmetry, the above re-
ductions hold whenever two incoming weight vectors are
equal, i.e. w; = wj, or any one of the outgoing vectors
is zero a; = 0. Moreover, if ™! is also reducible, we
can continue dropping neurons as above until we find an
irreducible point 8”. Equivalently (going in the opposite
direction), an irreducible r-neuron point

0" = (wy,...,wp,a1,...,a,.)
yields an affine subspace of equal loss points in a network
with width m > r (see Figure 3):
Definition 3.2. Forr > 1,5 > Owithr 4+ 5 < m, let
s = (ki,....,kr,b1,...,b;) be an (r + j)-tuple of integers
such that sum(s) = k1 + ...+ k. +b1+ ... +b; =m
with k; > 1 and b; > 0. The affine subspace I';(0") of an
irreducible point 0" is

! !/
{(W1, oy Wi oy Wy oy Wy WY ey WY e, Wy W
~—— ~— —_——
k‘l k'r bl b]‘
1 kq 1 kr 1 by 1 biy .
ALy ey Q1 ey Ay ey @ QU ey O, O ...7aj]) :
ki by
where g ay = ay fort € [r] and g ay =0fort € [j]}.
i=1 i=1

3)

Note that all ™ € I';(6") implement the same function:

T k{, J bt
FO @) = "> ao(w-x) + > Y ajo(w) - )
t=1 i=1 t=1 1=1
= [P (xl6).

Neurons with incoming weight vectors w’ and outgoing
weight vectors adding up to zero are called in the following
‘zero-type’ neurons. Moreover, the network function re-
mains invariant under any permutation of neurons in Def-
inition 3.2. Each permutation defines another affine sub-
space

PLy(67) := {P0™ : 0™ € T,(6") and 7 € S,,,}
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Figure 4. The geometry of the expansion manifold ©,_,,, with m = r + 1 and the connectivity graph of the affine subspaces. The
arrangement of the subspaces is demonstrated geometrically only in (a)-(b), but their connectivity graph is shown in all three cases. Blue
subspaces have one vanishing output weight, green subspaces have two identical incoming weight vectors. (a) Case of a network with
two hidden neurons with parameters (w1, w’, a1, 0) that is reducible to a network with a single hidden neuron. The base subspace I'g
is connected to a neighbor subspace P(1 2o via three line segments: we first shift w’ towards w1 while keeping the other parameters
fixed and then move ai from a; to 0 while keeping a} + a? = a1. The connectivity graph (bottom right) shows each subspace as an
appropriately colored dot. (b) Case of a network with three hidden neurons with parameters (w1, w’, w2, a1, 0, a2) that is reducible to
a network with two hidden neurons. I'g is connected to any other subspace PrI'g through transitions from one neighbor to the next.
Note that there are 7'(2,3) = 12 subspaces. (c) The connectivity graph of subspaces for the expansion 3 — 4, there are 7'(3,4) = 60
subspaces (24 blue and 36 green), where each blue subspace is connected to three green subspaces and each green subspace is connected
to two blue subspaces.

where P, permutes the neurons ¢; = [w;, a;] of ™. We Form > r, ©,_,,,(8") is connected: any pair of distinct
call the union of these affine subspaces the expansion man-  points 0,6' € ©,._,,,(8") is connected via a union of line
ifold of 6": segments 7y : [0,1] = ©,_,(0") such that y(0) = 0 and

Definition 3.3. For r < m, the expansion manifold (1) =9

o T RDm ; i _ int 0" .
Orm(07) C of an irreducible r-neuron point 0 Proof (Sketch). The number of affine subspaces T' is equal

is defined b . ) . . X
f Y to the distinct permutations of the incoming weight vectors
/ / :
Orsm(07) = U P.T,(07), (w’l, cee Wi, WY - 7w/j’) for all posmble. tuples s where
(kv b1 ) w;’s are distinct and w;’s are dummy variables represent-
S=\~1y--es o, 015.--,05 . .
TESm ! ing zero-type neurons (the neurons that do not contribute

to the network function since their outgoing weight vectors
sum to zero). The normalization factor 1/c1lco! - - ¢y
cancels the repetitions coming from the zero-type neurons
(w}, ..., w}). For example for the standard case m = r,
there is no room for zero-type neurons. As a result we have

where s is a tuple with k; > 1, b; > 0 such that sum(s) =
m.

Since ©,_,,,(0") is an equal-loss manifold, the gradient
flow can cross it at most for once. Therefore ©,._,,, (")

is not an invariant manifold like the symmetry subspaces. r r
Next, we describe the precise geometry of the expansion T(r,r)= Z < k k ) = (1 1) =r
manifolds Fahp=r U T
ki>1
Theorem 3.1. For m > r, the expansion manifold
O, _m(07) of an irreducible point O" consists of exactly’ distinct subspaces of dimension min(din, dout) (m —7) = 0.
m—r 1 For the general case m > r, the proof for connectivity fol-
T(r,m) := Z ( m ) —_~  lows from the following observations. We start from a base
i=0 sum(s)=m iy oooskr by, o0y ) cileem ! subspace I'g = I'5(0"), where there is a zero-type neuron
ki>1,b;>1 with outgoing weight vector exactly zero* at position i*.
. - ) The neighb b i« 71 Lo, Wh N i
distinct affine subspaces (none is including another one) of e neighbor subspaces P hI'o, where (i*,7) € Sy is
dimension at least min(din, dow)(m — 1), where c; is the “If all zero-type neurons are part of a group with more than
number of occurences of i among (b, ..., b;). one neuron, we can choose the first neuron in a group and set its

_ ' outgoing weight vector to zero while respecting the condition in
("1t 7) denotes the coefficient %7““) Eq. 3.

NYyeeeyNp coonge!
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a transposition that permutes two neurons only, are con-
nected to the base subspace via three line segments (Fig-
ure 4-a). Since any permutation is a composition of trans-
positions, permuted subspaces P,['g can be reached via a
union of line segments by going from one neighbor to the
next (Figure 4-b). B

4. Overparameterized ANN Landscapes

In this section, we study the geometry of the global minima
manifold and the critical subspaces, i.e. affine subspaces
containing only critical points, in two-layer overparame-
terized neural networks. In particular, we show how the
affine subspaces that form the global minima manifold are
connected to one another (Subsection 4.1). We then find a
hierarchy of saddles induced by permutation symmetries,
which we call symmetry-induced critical points (Subsec-
tion 4.2). Finally, we compare the number of affine sub-
spaces that form the global minima manifold with the num-
ber of those that contain symmetry-induced critical points
(Subsection 4.3). Generalizations to multi-layer networks
are discussed in Section 5.

We assume that there is a minimal width r* such that 0.,
achieves zero loss, i.e. L™ (0.) = 0, that the point 6, is
unique up to permutation, and that any network with width
r* — 1 has loss > 0 at every point. We call the wider net-
works with width m > r* overparameterized and the nar-
rower networks with width » < r* underparameterized.
Note that 0. is irreducible by minimality of r*.

4.1. The global minima manifold

Applying Theorem 3.1 to the expansion manifold of a
global minimum @, of the minimal-width network, we ob-
tain a connected manifold of global minima in an overpa-
rameterized network of width m:

Corollary 4.1. In an overparameterized network with
width m > r*, the expansion manifold of global minima
O+ m (0+) is connected.

We have found a connected manifold ©,.«_,,, (6..) of global
minima. Furthermore, since ©,«_,,,(0.) is an expansion
manifold, its geometry is precisely as described in Theo-
rem 3.1, and illustrated in Figure 4. The next question is
whether ©,.« _,,,,(0.) contains all the zero-loss points.

In the remaining part of this subsection, we give a positive
answer to this question in a specific setting. We consider a
modified loss function:

Ly) = [ 7D alo). £ @uldo)

where 4 is an input data distribution with support R% and
f* : Rdn — R is a true data-generating function. The

61 1 £
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Figure 5. Left: The function oa,4(z) = owi(z) + aosg(yx)
satisfies the technical condition of Theorem 4.2. With this activa-
tion function, data is generated by a teacher network of width 4.
All 50 student networks with width 10 find a global minimum by
reaching loss values below 10 '°. Right: The 500 = 50 10 hid-
den neurons of all the 50 student networks are classified as copies
of teacher neurons or zero-type neurons with vanishing sum of
output weights. The zero-type neurons are further classified ac-
cording to group size: there are 34 neurons with vanishing output
weight (group size 1), 54 neurons that have a partner neuron with
the same input weights and the sum of output weights equal to
0 (group size 2) etc. All zero-type neurons and replications of
weight vectors can be pruned.

assumption on the activation ¢ in Theorem 4.2 below is
only required for this theorem but not in Subsections 4.2
or 4.3. We find that there is no global minimum point out-
side of the expansion manifold ©,.«_,,,(f.) for the modi-
fied loss L;}" and for a certain class of activation functions
(see Figure 5 for an example):

Theorem 4.2. Suppose that the activation function o is
C*, that 0(0) # 0, and that ™ (0) # 0 for infinitely
many even and odd values of n (where o™ denotes the
n-th derivative of o). For m > r*, let @ be an m-neuron
point, and 0, be a unique r*-neuron global minimum up
to permutation, i.e. LL* (0.) = 0. If L;}(0) = O, then
0 € O, (0.). (See Appendix-B.3 for the proof.)

Remark 4.1. The function oq (x) = 0s0(2) + a0sig (V)
with o,y > 0 (Figure 5) satisfies the conditions of Theo-
rem 4.2, but the standard softplus o, (x) = In[1+exp(x)]
or sigmoidal o,(x) = 1/[1 + exp(—2x)] functions do not.
For these, the analysis must include additional invariances.

Remark 4.2. If a global minimum is found by gradient
descent in overparameterized networks, then the final set
of parameters can be classified into groups of replicated
weight vectors according to Definition 3.2 (Figure 5). The
classification can be exploited for pruning the network.

Remark 4.3. Kuditipudi et al. (2019) construct an exam-
ple of a finite-size dataset (in contrast with our infinite
dataset framework) for two-layer overparameterized ReLU
networks where they find discrete global minima points.
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4.2. Symmetry-induced critical points

In this subsection, we consider an overparameterized net-
work with a fixed width m > r* and study critical points
in an expansion manifold ©,_,,, (9%,) where we assume that
0" is an irreducible critical point of an underparameterized
network with width r < r*. Observe that 6”, is not a zero-
loss point since r* is the minimal width to achieve zero
loss. We consider only those points without zero-type neu-
rons in ©,_,,,,(0%), we show that these have zero gradient,
and therefore are critical points of L™.

Definition 4.1. For r < m, let s = (k1,...,k,) be an
r-tuple with k; > 1 and sum(s) = m. The symmetry-
induced critical points are those in the set

ér—nn(o:) = U ,ow‘sw:)
s=(k1,...,kr)
TESm
where the critical (affine) subspace Ts(67) C RP™ of an
irreducible critical point 0%, = (w7, ..., wr, af,...,ak) is
{(wh, oy wl, oy wk, o w?, Brak, ..., B al,
—— W
k1 kr
LBLar, .. BErar Zﬁtzlforte[]} (4)

i=1

All points in ©,_,,,(8%) are critical points hence the name
symmetry-induced ‘critical points’:

Proposition 4.3. For an irreducible critical point 0", of L",

O, (07) is a union of
m
ki,....k,

G(r,m) := Z
ki+-+kr=m
i>1

distinct non-intersecting affine subspaces of dimension m—
r. All points in ©,_,,,,(07) are critical points of L™.

Proposition 4.3 shows that a critical point of a smaller net-
work 0% expands into G(r,m) critical subspaces in the
overparameterized network with width m. If 07 is a strict
saddle, ©,_,,,(8") contains only strict saddles, since the
escape direction is preserved for affine transformations I.

Proposition 4.4. For C? functions c and o, for all 9™ €
O, (07), the spectrum of the Hessian V2L™(0™) has
(m —r) zero eigenvalues. Moreover, if 0", is a strict saddle,
then all points in ©,_,,,,(0") are also strict saddles, i.e.,
their Hessian has at least one negative eigenvalue.

If @7 is a local minimum, Fukumizu et al. (2019) show that
the subspaces for which only one neuron is replicated (k; >
1, k; = 1 for all j # 1) may contain both local minima
and strict saddles depending on the spectrum of a matrix
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Figure 6. The ratio Ry (r*,m) of the multiplier for k-th level
saddle G(r* — k,m) to the number of global minima subspaces
T(r*,m) as the width m of the overparameterized network in-
creases, plotted for a fixed width v = 30 of the minimal network.
The ratio of all critical subspaces to the global minima subspaces
> _11 arG(r* — k,m)/T(r*,m) is shown in blue assuming
aj = 1 for all k. Note that for m >> r* the blue curve approaches
the curve for k = 1 indicating that only subspaces corresponding
to first-level saddles are potentially relevant, yet the global min-
ima subspaces clearly dominate.

of derivatives [see their Theorem 11]. We expect a similar
result to hold true for all subspaces in ©,_,,, ("), including
arbitrary replications.

Remark 4.4. We explore a hierarchy between symmetry-
induced critical points in U,<.«©,_,,(07) in a network
of width m. first-level saddles refer to symmetry-induced
critical points that are equivalent to a minimum of a net-
work of width v* — 1; more generally, k-th level saddles
refer to those equivalent to a minimum of a network of
width r* — k. Adding neurons enables the network to reach
a lower loss minimum thus higher-level symmetry-induced
saddles usually attain higher losses. We notice a similarity
with Gaussian Process (Bray & Dean, 2007) and spherical
spin glass (Auffinger et al., 2013) landscapes, where the
higher-order® saddles attain higher losses.

Finally, we note that the dimensionality of the global
minima subspaces P.I's(6.) and the critical subspaces
P.I,(07) differ, in particular in the way they depend on
r. What is common is that they are all ‘tiny’ compared to
the ambient dimensionality of the parameter space. In the
following subsection, we will thus focus on the compari-
son of the number of critical subspaces and that of global
minima subspaces.

4.3. Width-dependent comparison of the critical
subspaces and the global minima subspaces

In the loss landscape of an overparameterized network of
width m, we have the connected global minima mani-

SThe order of a saddle point is the number of negative eigen-

values of its Hessian.
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fold ©,.« _,,,,(0.) as well as many subspaces of symmetry-
induced critical points in ©,_,,,(0%), where 6" is an irre-
ducible critical point in a smaller network with some width
r = r* — k < r*. In this subsection, we count these sub-
spaces and find

e T(r*, m) global minima subspaces (Corollary 4.1)

* G(r* — k,m)ay critical subspaces for all k& =
1,...,7" — 1 (Proposition 4.3)

where ay, is the number of distinct® irreducible critical
points in a network with width * — k and where G(r* —
k,m) is the multiplier.

To compare the number of non-global critical subspaces
with the number of global minima subspaces, we give
closed-form formulas for G and 7. This is proven in
Appendix-B.5 using Newton’s series for finite differences
(Milne-Thomson, 2000) and a counting argument:

Proposition 4.5. For r < m, we have

G(r,m) = Z C) (—1)7hm

i=1

T(r,m) = G(r,m) + mz_: <

where g(u) = 375, %G(j, w).

Using Proposition 4.5, we find the following asymptotic
behaviors for G and 7"

Lemma 4.6. For any k > 0 fixed, we have,

k

Gm —k,m)~T(m—k,m) ~ m!, asm — 0.

m
2k k!
For any fixed r > 0, we have G(r,m) ~ r™ as m — oo.

We are now ready to compare the number of global min-
ima subspaces 1" with the number of critical subspaces G
under the assumption that the minimal width r* is large.
This is realistic since for a real-world dataset the network
should be sufficiently wide to achieve zero loss. Apply-
ing Lemma 4.6, we find that the symmetry-induced critical
points dominate the global minima in mildly overparam-
eterized, and vice versa in vastly overparameterized net-
works (see Figure 6). A mathematical analysis yields:

Mildly Overparameterized. Let m = r* + h for fixed h.
We have in the limit 7* — oo and for fixed k a ratio:
G(r* —k,m) 1

T(r*,m) 26(h+k)---(h+1)

Ri(r*,m) :=
&)

SWe say two irreducible critical points 2 and 6% are distinct
if 8% £ P.0° for all applicable permutations 7.

(r*)".

Thus, for a small amount of overparameterization, the mul-
tiplier of the k-th level saddles G(r* — k,m) scales as
(r*)¥T(r*,m), indicating a proliferation of saddles at a
rate much larger than that of the global minima. Related
to this proliferation, we empirically encounter training fail-
ures (i.e. training halts before reaching a global mini-
mum) for typical initializations in this regime (see Fig-
ure 1). Moreover, we empirically find traces of approach-
ing a saddle in gradient trajectories in narrow two-layer
ANNSs trained on MNIST (see Appendix).

Vastly Overparameterized. For m very large, i.e. m >
r*, we have

r*—1

Z Ri(r*, m)ay =
k=1

;;:_11 G(r* —k,m)ay < (-1
T(r*,m) -

r*

(6)

if ay’s satisfy a < (ngll). Because the RHS of Eq. (6)
decreases down to 0 as m — oo (at a geometric rate),
the global minima dominate all symmetry-induced critical
points. We note that there could be other critical points in
addition to those generated by the symmetries. The calcu-

lations above are presented in the Appendix.

5. Multi-Layer ANNs

In this section, we introduce the expansion manifold for
multi-layer networks that enables obtaining connectivity
and counting results on the global minima manifold for
multi-layer networks (i.e., generalizing Theorem 3.1 and
Corollary 4.1). Finally, we compare the number of affine
subspaces of the global minima and symmetry-induced
critical points. An ANN with L layers f(F) : R — Rou
with widths r = (r1,7r2,...,7-1) is

P alg) = W W ED (WD) ()

where W) € R™*"e=1 for { = 1,...,L with o = diy
and r;, = dyy, the non-linearity o is applied element-
wise, and = (W) ... W) € R4 is the vector
of parameters of dimension d(r) = Zle r9—17¢. Observ-
ing that any pair of weight matrices (W (), W (¢+1) for
¢ =1,...,L — 1 forms a two-layer network within the
multi-layer network, we say that a multi-layer network is
irreducible if all pairs (W (), W (+1) are irreducible.

The global minima manifold. We define the expansion
manifold of an irreducible network with widths 7 into
larger widths m by taking the sequential expansion man-
ifolds of all pairs (W), W(+1), More precisely, we de-
fine the multi-layer expansion manifold as follows

Orsm(07) == {¢1 € RY™ . ¢, ; c OV (),
e €0, (82)} ()
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where %%, (¢) substitutes the pair (W W+ with
those of a point in the usual expansion manifold (Def. 3.3).
Since each expansion leaves the output of the network un-
changed, all points in this expansion have the same loss.
Note that the order in which we take these expansions af-
fects the final manifold; expanding from the last layer to
the first one gives the largest final manifold. The same fi-
nal manifold can be obtained via a ‘forward pass’ if one
considers expansion up to an equivalence of the incoming
weight vectors.

Assume that a minimal L-layer network achieves a unique
(up to permutation) global minimum point 8, with widths
r* = (rf,r3,...,r5_;). In an overparameterized network
of widths m = (mq,...,mp_1) withmy > r} forall ¢ €
[L —1] (i.e. at least one extra neuron at every hidden layer),
we find a connected manifold of global minimum, which is
simply the multi-layer expansion manifold O+ _,,, (0.) of
the minimum point 8.. The zero-loss expansion manifold
Or+,m(0.) consists of the following number of distinct

affine subspaces
L-1

| AGR)

(=1

Symmetry-induced critical points. Similarly, we can
consider the symmetry-induced critical points for multi-
layer networks by applying sequential expansions @fﬁm
to all hidden layers. We note that applying this expansion
to a pair (Wy), W*(Z'H)) of a critical point 07, generates a
manifold of critical points as in the two-layer case, hence
these expansions preserve criticality. The number of affine
subspaces in the set of symmetry-induced critical points is

L-1

H G(T’g, mg).

{=1

Application. Similar to Fig 1-(d,e), we consider the case
where a minimal L-layer network with r* neurons at each
hidden layer reaches a global minimum point .. Let us
consider an overparameterization with m = r* + h neu-
rons at each hidden layer. The ratio of the number of crit-
ical subspaces of k-th level saddles to the global minima
subspaces is

G(r* — k,m))L_l

et = (S

which is exponential in depth. Therefore in the mildly over-
parameterized regime, i.e. when h is small, we see that
the ratio of the number of saddles to that of global minima
grows exponentially with depth. In other words, we ob-
serve that the dominance of the number of saddles is even
more pronounced in the multi-layer case. For the vastly
overparameterized regime, i.e. when h is large, we observe

the opposite effect: the dominance of the number of global
minima is stronger in the multi-layer case. Finally, we ob-
serve a width-depth trade-off in reaching a dominance of
the global minima: one can either increase the width of a
two-layer network so that the ratios Ry (r*, m) go down to
0; or increase the depth in a network where each layer is
just large enough to guarantee Ry (r*, m) < 1 which even-
tually decreases the total ratio down to 0.

6. Conclusion & Discussion

In this paper, we explicitly characterize the geometry
formed by the critical points in overparameterized neural
networks. For the global minima, we showed that under
mild conditions they live in a manifold consisting of a num-
ber of connected affine subspaces. We characterize a cer-
tain type of critical points, the so-called symmetry-induced
critical points and we showed that they form an explicit
number of affine subspaces. From the theoretical point of
view, it remains an open question whether there are other
critical points in the overparameterized networks in addi-
tion to the symmetry-induced ones. We also leave it to fu-
ture work to study whether all symmetry-induced critical
points are strict saddles or not.

Our main result quantifies the scaling of the numbers of
global minima subspaces and the subspaces containing
symmetry-induced critical points as the width grows. In
mildly overparameterized networks, the number of critical
subspaces is much greater than that of the global minima
subspaces, so that in practice, the gradient trajectories may
get influenced by these saddles or even get transiently stuck
in their neighborhood for a fraction of typical initializa-
tions. However, in vastly overparameterized networks, the
number of global minima subspaces dominates that of the
critical subspaces so that symmetry-induced saddles play
only a marginal role. From a practical point of view, our
theoretical results pave the way to applications in optimiza-
tion of non-convex neural networks loss landscapes via a
combination of overparameterization and pruning.
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