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Abstract

We study the attribution problem in a graphical
model, wherein the objective is to quantify how
the effect of changes at the source nodes prop-
agates through the graph. We develop a model-
agnostic flow-based attribution method, called re-
cursive Shapley value (RSV). RSV generalizes
a number of existing node-based methods and
uniquely satisfies a set of flow-based axioms. In
addition to admitting a natural characterization for
linear models and facilitating mediation analysis
for non-linear models, RSV satisfies a mix of de-
sirable properties discussed in the recent literature,
including implementation invariance, sensitivity,
monotonicity, and affine scale invariance.

1. Introduction

Quantifying effect propagation is a fundamental problem,
related to various concepts on causality: direct / indirect
effects (Pearl, 2001), responsibility (Chockler & Halpern,
2004), explanations (Halpern & Pearl, 2005), mediation
analysis (MacKinnon et al., 2007), and causal influence
(Janzing et al., 2013). A recent application of effect propa-
gation is on interpretable ML / explainable Al (XAI) (Adadi
& Berrada, 2018). For example, in a neural network, quanti-
fying how the effect of changes at the input layer propagates
through the network aids in explaining its behavior, thus
turning a complex and opaque Al system into a “glass-
box” (Sokol & Flach, 2018; Biecek, 2018; Turek, 2020). In
addition to being desirable, model interpretability is now en-
forced as a “right to explanation” (Selbst & Powles, 2018),
highlighting the need to understand effect propagation.

In this work, we consider a graphical model where the un-
derlying graph is a DAG with arbitrary relations between the
variables (“model agnostic”). This is an adequately general
framework capturing a wide array of causal and Al systems
(e.g., non-linear structural equations and neural networks).
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For instance, as we illustrate in §6, our framework can be
used to understand whether sensitive attributes exert an “un-
fair” influence on the output (e.g. school admission or credit
approval). The key research question addressed is: “Given
a change in the “source” nodes, how does the effect (change
in the output) flow through the graph?”

S

Figure 1. Example of a linear graphical model. X is set exoge-
IlOllSly, XQ = 2X1, X3 = 3X1, and Y = 5X1 + XQ + X3

As an example, consider the deterministic graphical model
in Figure 1, specified by linear structural equations. Suppose
the value at source node (without parents) X; changes from
0 to 1. As aresult, the output Y changes from 0 to 10. How
does the effect (10) of this change at X; flow through the
graph? For this linear model, a natural answer is to use the
edge weights: path X; — X5 — Y propagates 20% of
the effect, X; — Y propagates 50%, and X; — X3 — Y
propagates 30%. It is of interest to address the following
questions regarding how changes at the “source” nodes flow
through the graph: (a) what if the model is non-linear and
(b) how the graph structure impacts the propagation.

The main contribution is to develop a flow-based attribution
method that quantifies effect propagation, coined recursive
Shapley value (RSV). RSV operates on a top-down principle
by first attributing to the “source” nodes and then flowing it
down the DAG, as illustrated in Figure 2. RSV generalizes
a number of existing methods. Further, we establish RSV’s
uniqueness to a set of flow-based axioms, characterize it
under a linear model, and illustrate how it facilitates media-
tion analysis in non-linear models. Finally, we demonstrate
its adherence to various desirable properties discussed in
the recent literature, including implementation invariance,
sensitivity, monotonicity, and affine scale invariance.

Qutline. The attribution problem is stated in §2, limitations
of existing approaches' in §3, and the proposed approach in

"'We focus on the XAl literature and plan to explore connections
with the causality literature in a future work.
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Figure 2. Illustration of RSV on the model from Figure 1. First, RSV attributes all the value of 10 (i.e., change in Y) to node 1. Second,
RSV splits node 1°s value (10) to its outgoing edges by evaluating their “contributions” via counterfactual questions of the following form:
how much attribution would node 1 have received if edge (1, 2) had not propagated the change at node 1? Third, RSV flows down the
value received by node 2 to its outgoing edge by evaluating the attribution node 2 would have received if edge (2,Y") had not propagated

the change at node 2. Fourth, RSV repeats the procedure at node 3.

§4, followed by its properties and an application in §5 and
§6, respectively. Concluding remarks are drawn in §7.

2. Problem Definition

We start by defining the underlying graphical model (§2.1)
followed by the attribution problem (§2.2).

2.1. Graphical Model Setting

Consider a graph G = (N1 E) with node set Nt :=
{1,...,n,n + 1} and edge set E. There may be multiple
source nodes (nodes without “parents”) and we denote their
collection by Ng. The output of interest (e.g., model predic-
tion) is captured by the sink node (node without “children”)
that corresponds to node n + 1. For ease of exposition,
the focus is on a single sink node, but generalizations are
straightforward. Define N := Nt \ {n+ 1} = {1,...,n}.
We assume G to be directed acyclic (DAG). Node i is a
parent of node j (and node j is a child of node 1), if there
exists an edge (4, j) in E. Denote by P; the set of parents
of node j, ie, P; := {i € N : (i,j) € E} Vj € N*.
By definition, source nodes do not have any parents, i.e.,
P; = 0 for all j € Ny. Denote by C; the set of children
of node i, i.e., C; := {j € NT : (i,j) € E} Vi € NT.
By definition, the sink node does not have any children,
ie.,, Cop1 = 0. Node i € N corresponds to a (possibly
multi-dimensional) variable X; and the sink node n + 1 to
variable Y € R. Occasionally, we will use X,,;; to denote
Y. Define X := (X3,...,X,) and Xy := (X;);en for
all N C N. For ease of exposition, we assume each node
to be a deterministic function of its parents: X; = f;(Xp,)
forall i € NT \ No. Extension to stochastic functions is
possible via structural equations with errors (Pearl, 2009),
as illustrated with an example in §6 (Example 3). The values
of the source nodes Ng are set exogenously and indepen-
dently of each other. We denote the output as a function of
all the variables in the DAG by Y = f(X), which equals
Jnt+1(Xp,,., ). Given the deterministic setup along with the
DAG structure, the source variables Xy, are sufficient to
determine the output Y. The graphical model is denoted by
M := (G, F), where F := [fi(-)]ien+\n,-

Remark 1. The relationships in F are not necessarily
causal; in case they are, then the posited graphical model is
also causal. Hence, the proposed general framework cap-
tures causal graphs as a special case, but is not restricted
to them, thus reflecting a wide array of ML / Al systems.

2.2. The Attribution Problem

Next, we state the attribution problem. We are
interested in two values of the input variables X:
X (X{l), e Xr(Ll)) (background) and X :=
(X:f2)7 . ,Xff)) (foreground). Both X() and X®) sat-
isfy the equations in F. Since the system is determin-
istic, changes at source nodes dictate changes in the en-
tire graph. The background X (1) defines the baseline out-
put YU := £(X®), and analogously Y?) := f(X(®)).
Hence, the change in the output Y equals Y(?) — Y (1) Since
source nodes Ng capture all the exogenous sources of varia-
tion, the change in Y is solely driven by the magnitude of
the change at Ny and its propagation through the DAG.

The question of interest is how to attribute the change in Y’
to the changes at Ny and their propagation through edges. In
a DAG with a single node, i.e., n = 1, attribution is trivial
since the single node is solely responsible for the change
and hence, receives 100% attribution, which flows through
the only edge. However, in a DAG with n > 1 nodes, there
can be non-trivial interactions. How does one decouple such
interactions? Is it possible to leverage the structure of the
graphical model and compute a flow-based attribution?

To address these questions, some additional notation is intro-
duced: [7;];en denotes attribution to nodes and [;;](; j)ee
attribution to edges (attribution flow). Their scale is ex-
pressed in terms of Y(2) — Y (1) In our deterministic setup,
since the source nodes capture all the exogenous source of
. . . . . 2 1
variation, a desirable property is ZieNo =YY@ Yy,
which we call source efficiency. Further, we require that
flow be conserved at each node, i.e., flow in equals flow out.

Definition 1 (Flow conservation). At internal node j €
N \ No, Zz‘ePJ Ty = Zkecj mik. For source nodes,

DieNy Qojec; Tij = Y@ — v At sink node,
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Ziepnﬂ Timi1 =Y @ -y 1),

Wang et al. (2021) advocate for a similar property: “cut
efficiency”. It is easy to verify that flow conservation holds
iff cut efficiency holds. Moreover, flow conservation gener-
alizes the conservation properties in Bach et al. (2015) as we
do not assume G to be layered. Though flow conservation is
desirable, it is not sufficient to output a unique flow.

Given our focus on attribution, we assume M to be given.
Graph estimation / causal discovery (Peters et al., 2017;
Glymour et al., 2019) is an active area of research and we
emphasize that even with a known graphical model / causal
graph, attribution is challenging. As noted in Remark 1, M
need not be causal and hence, we can “incorporate known
causal relationships without the prohibitive requirement of
a full causal graph”, as advocated in Frye et al. (2020b).

3. Existing Approaches and Their Limitations

Next, we use the proposed framework to discuss existing ap-
proaches in the XAl literature, including node-based (§3.1)
and edge- / flow-based (§3.2).

3.1. Node-based Approaches

Node-based approaches typically use the Shapley value
(SV) (Shapley, 1953)? for attribution to the nodes in a graph.
They consider the nodes as the players in the underlying
game and define an appropriate coalition and a characteristic
function. The attribution received by a node is its SV in
the constructed game. Depending on how the coalition and
the characteristic function are defined, the attribution can be
different. Independent SV (ISV) (Strumbelj & Kononenko,
2010; Sun & Sundararajan, 2011; Sundararajan et al., 2020;
Janzing et al., 2020; Sundararajan & Najmi, 2020) attributes
all the value to the parents of the output node, whereas con-
ditional SV (CSV) (gtrumbelj & Kononenko, 2014; Datta
et al., 2016; Lundberg & Lee, 2017; Aas et al., 2019; Frye
et al., 2020a) attributes to all the nodes. Both violate source
efficiency. Asymmetric SV (ASV) (Frye et al., 2020b) sat-
isfies source efficiency, but does not inform how the ef-
fect flows through the DAG. We formally define these ap-
proaches using our graphical model language in Appendix
A and focus here on illustrating their key limitations via a
simple example (Example 1).

C—)—()

Figure 3. The graphical model for Example 1. The source variable
X is set exogenously, Xo = X, and Y = X,. We consider
the background value of X fl) = 0 and the foreground value of
X{Q) = 1. Hence, XQ(I) =y® =0and Xéz) =y® =1

2See Chapter 8 (Peleg & Sudhélter, 2007) for a primer on SV.

Example 1 (Chain). Consider the model in Figure 3. ISV
attributes all the value to node 2: (7%, 75") = (0,1). CSV
splits the value: (7§%V, 7w§5) = (1/2,1/2). Thus, ISV and
CSVviolate source efficiency. ASV attributes all the value
to node 1: (%Y, m45") = (1,0). Though ASV obeys source
efficiency, it does not identify how the effect flows through
the DAG. (Detailed computations are given in Appendix A.)

We note that such node-based approaches are better suited
for regression settings, wherein all the nodes in the DAG
except the sink node are source nodes. A flow-based view is
most useful in “hierarchical” graphs. In fact, as we discuss
in §5, our flow-based approach recovers such node-based
approaches for regression settings.

3.2. Edge-based / Flow-based Approaches

Approaches such as LRP (Bach et al., 2015; Binder et al.,
2016), DeepLIFT (Shrikumar et al., 2017), conductance
(Dhamdhere et al., 2018), and internal influence (Leino
et al., 2018) are flow-based but model-specific, since they
impose assumptions on the model M (e.g., layered structure
in G or continuity / linearity in F). As Frye et al. (2020b)
note, “model-specific approaches are bespoke in nature and
do not solve the problem of explainability in general”. The
approach we propose in §4 is model-agnostic (Ribeiro et al.,
2016), wherein we allow for an arbitrary M (as long as G is
a DAG). Further, backpropagation-based approaches such
as LRP (Binder et al., 2016), DeepLIFT (Shrikumar et al.,
2017), and DeepSHAP (Lundberg & Lee, 2017) do not
satisfy implementation invariance (see §8.2 of Dhamdhere
et al. (2018)), whereas our approach does (§5).

The closest idea to our approach is Shapley Flow (SF) (Wang
et al., 2021). At a high-level (details in Appendix B), in
contrast to our edge-based approach, SF is path-based as it
considers each source-to-sink path as a player. Furthermore,
SF modifies the original definition of SV by only consid-
ering orderings that are consistent with a depth first search
(discussed in Appendix B). Given this modification, it is
unclear what connection SF exhibits with SV (if any). To
the best of our knowledge, there is no underlying “game” for
which SF is the SV of . On the other hand, our edge-based
proposal comes out naturally from a well-defined sequence
of games, without any ad hoc modifications.

There exists a growing body of literature on interpretable
ML in addition to the approaches discussed above. We refer
the reader to Molnar (2020) and Molnar et al. (2020) for a

3Given a cut, Wang et al. (2021) define a game with the cut-set
being the players. A coalition is defined to be a “partial history
fromt = Otoany t € [0...T]”, where a “history is a list of
edges detailing the event from ¢ = 0 (values being X Ntot =T
(values being X © )”. The characteristic function is “the evaluation
of f following the coalition”. We are unable to map this to a formal
game and verify its connection to the path-based formula of SF.
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comprehensive overview. It suffices to note that this stream
of literature does not focus on flow-based approaches and
hence, is not directly related to our goal.

4. The Recursive Shapley Value Approach

We start by defining necessary quantities, followed by intu-
ition (§4.1) and then a formal definition (§4.2). Finally, we
establish related axioms (§4.3).

For convenience, we insert a super-source (node 0) to G
with edges directed to source nodes: (0, j) for j € Ng. We
re-define E < EU {(0,7) : j € No} to include the super-
source edges, and N <~ N U {0} and N* +~ N* U {0} to
include the super-source node. We still use Ny to denote
the original set of source nodes (and not the super-source).
E; := {(4,4) : j € C;} denotes outgoing edges of node
i € N and hence, (Ey, ..., E,) is a partition of E. Our flow-
based approach outputs edge attributions [r;;](; j)ce and we
define node attributions as the sum of all incoming flows,
e, mj = Zier m;; forall j € N\ {0}.

The notion of an edge being active or inactive, defined next,
proves helpful in the sequel. In the posited framework, an
edge communicates information. Thus, motivated by Pearl
(2001), an edge (¢, 7) € E being active means it transmits
the “updated” value X; from node ¢ to j, whereas an inac-
tive edge (4, j) € E is unable to communicate the “update”
and thus, node j receives the background value X 1-(1), as
illustrated in Figure 4.

A0

Figure 4. Illustration of active and inactive edges. Set of edges
E = {(0,1),(1,2),(1,3),(2,3)}. Node “3” corresponds to Y.
Edges (1,3) and (2, 3) are inactive (red dashed lines). Node 1
is set to the foreground X 1(2) since edge (0, 1) is active. Node 2
receives X{Q) (since edge (1, 2) is active and X is set to X{m)
but node 3 (“Y”) receives Xfl) (since edge is (1, 3) inactive) and
X" (since edge (2, 3) is inactive). Hence, X; = X2, X, =
f2 (X£2>), andY = f3 (XF), X2(1>). If edge (0, 1) were inactive,
then X; = X, Xo = fo(X), and Y = f3(XP, x{V).

In general, consider any subset of active edges F/ C E. Then,
each source node 7 € N is set as follows:

xM
x?

if (0,1) ¢ E

1
if (0,i) € E. M

XL(E) = {
Each non-source node j € N*\{NqU{0}} obeys X, (E) =
[i((Xi;(E))iep, ), where for all i € Py,

xM i) ¢

SIEE
X;(E) if(i,5) € E.

Xij (E) = {

Notation X;; is new. X,,41(E) denotes the output Y (E).
Hence, the notation Y (E) is well-defined for all E C E.
With this notation at hand, we proceed to providing intuition.

4.1. Intuition Guiding RSV

The RSV approach first attributes to the source nodes. Then,
it flows down the DAG the attributions by computing the
“contribution” of each outgoing edge (“top-down”). As a
concrete example, consider the graph in Figure 5 and an arbi-
trary F. Recall that X changes from X(!) to X(?), resulting
in Y changing from Y1) to Y'(?)_ In the deterministic setup,
source nodes Ng = {1, 2} capture all the exogenous source
of variation and hence, the change in Y is solely driven by
how the changes at (X, X2) propagate through the DAG.
Thus, in agreement with distal ASV (Frye et al., 2020b), we
first attribute to the source nodes. To do so, we consider
the following game at node 0. The set of players is Eg =
{(0,1),(0,2)}. Given a coalition Ey C Eg, the characteris-
tic function is defined as v (Fy) := Y (Ey, E1, Eo, E3, Ey4),
where the notation Y'(-) follows (1) and (2). All down-
stream edges (E1, Es, E3, E4) are active. Then, edges (0, 1)
and (0, 2) receive attributions mp; and 7oz equal to the SVs
of this game (Figure 6). Source efficiency is satisfied, since
T + 72 = mo1 + T2 = vo(Eo) — vo(0) = Y@ —yW,
The second equality follows SV efficiency and the third
equality is by construction. For clarity, we use o1 (E),
mo2(E), m1(E), and m2(E) to capture the dependence on
E = (Eo, E1, Eo, E3, Ey).

@@

Cog=(x)
@

Figure 5. Graph for illustrating RSV’s intuition.

Next, we proceed down to nodes 1 and 2. Attribution
through node 1 is trivial since it only has one outgoing
edge. Hence, flow conservation implies m5 = m1(E).
However, understanding how m5(E) flows through node
2 is non-trivial, since node 2 has two outgoing edges:
Es = {(2,3),(2,4)}. We wish to understand how much of
the attribution received by node 2 is due to the “presence”
of each of these two edges. Recall that in the game at node
0, we assumed the downstream edges to be active. Hence,
if both (2, 3) and (2, 4) are active, then node 2 receives an
attribution of 79 (Eg, E1, E2, E3, E4). To determine o3 and
a4, We posit the following counterfactual questions. How
much attribution would node 2 have received if both (2, 3)
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Figure 6. Visualizing the computation of mo2. Edge (0, 2) receives an attribution equal to its “value-add”, which is evaluated via the
following counterfactual question: how much would have been the effect (change at node Y) had edge (0, 2) been inactive? Note that
there are two possibilities in such a counterfactual question: (a) edge (0, 1) is inactive and (b) edge (0, 1) is active. The difference
between the first two subfigures corresponds to possibility (a), i.e., value-add of edge (0, 2) when edge (0, 1) is inactive. Similarly, the
difference between the last two subfigures corresponds to possibility (b), i.e., value-add of edge (0, 2) when edge (0, 1) is active. The
attribution received by edge (0, 2) is the weighted average of these two value-adds, where the weights come from the classical SV (1/2 for
this instance). Note that all downstream edges (E1, E2, E3, E4) are active. The computation of o1 can be visualized similarly.
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Figure 7. Visualizing the computation of m23. Edge (2, 3) receives an attribution equal to its “value-add”, which is evaluated via the
following counterfactual question: how much attribution would node 2 have received had edge (2, 3) been inactive? Note that there are
two possibilities in such a counterfactual question: (a) edge (2, 4) is inactive and (b) edge (2, 4) is active. The difference between the first
two subfigures corresponds to possibility (a), i.e., value-add of edge (2, 3) when edge (2, 4) is inactive. Similarly, the difference between
the last two subfigures corresponds to possibility (b), i.e., value-add of edge (2, 3) when edge (2, 4) is active. The attribution received
by edge (2, 3) is the weighted average of these two value-adds, where the weights come from the classical SV (1/2 for this instance).
However, one still needs to compute the attribution node 2 receives in each of these four subfigures. In Figure 6, we did this computation
for the third subfigure here, i.e., assuming both (2, 3) and (2, 4) to be active. Figure 8 below shows the computation corresponding to the
first subfigure, i.e., (2, 3) active but (2, 4) inactive. Computations for subfigures 2 and 4 are similar and not shown for brevity. Further,
the computation of 724 can be visualized similarly.

and (2, 4) were inactive? What if one of them was inactive?
Observe that in the game at node 0, if both (2, 3) and (2, 4)
were inactive, then the corresponding characteristic function
would have been Y (Eg, E1, 0, E3, E4) VEy C Eg and edge
(0,2) (and hence, node 2) would have received zero attri-
bution, i.e., m2(Eg, E1, 0, E3, E4) = 0. Hence, edges (2, 3)
and (2, 4) are “responsible” for node 2 receiving 72 (E) and
it seems logical to conserve flow: o (E) = ma3 + m24. How-
ever, this is not sufficient to uniquely determine (a3, m24).

An easy case corresponds to a setting, wherein an edge being
active or inactive does not change the attribution received
by node 2. Then, it seems natural to assign zero attribution
to that edge (“nullity”). Another easy case is if both edges
“exert same impact” on the attribution received by node 2.
For example, if node 2 received an attribution of 7o (E)/2 if
either of the edges were active, then splitting 72 (E) equally
between the two edges seems appropriate (“symmetry”).

To operationalize this intuition, we consider the following

game at node 2, with the set of players being E,. Given a
coalition Fy C E,, the characteristic function is defined as
the attribution received by node 2 from the game at node 0
(hence, “recursive”), i.e., va(F2) := ma(Eo, E1, B2, E3, E4).
Then, edges (2, 3) and (2, 4) receive attributions 7e3 and
a4 equal to the SVs of this game (Figure 7). Flow conser-
vation holds since 7oz + maq4 = v2(Ez) — va(0) = ma(E).
‘We then move down to nodes 3 and 4, which use a similar
logic. The set of players at the node 3 game is E3 and given
coalition F3 C Ej3, the characteristic function is defined as
the attribution received by node 3 from the upstream games,
i.e., 1)3(E3) = 7T3(E0, E17 EQ, Eg, E4)

Remark 2. Our “top-down” philosophy is fundamentally
different from backpropagation-based (“bottom-up”) ap-
proaches that rely on an ad hoc “chain rule” and a “lin-
ear approximation” to conserve flow (see (15) and (16) in
Lundberg & Lee (2017)). As shown in §4.3, RSV naturally
satisfies flow conservation and three additional flow-based
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Figure 8. Visualizing the computation of 7o (attribution node 2 receives) when edge (2, 4) is inactive. The four subfigures here are
identical to those in Figure 6 but with one difference: edge (2,4) in inactive. The computational procedure is the same as discussed in the

caption of Figure 6.

properties. Further, as we establish in Proposition 1, it
obeys implementation invariance, which is a known issue
with bottom-up approaches (Dhamdhere et al., 2018).

4.2. Recursive Shapley Value

RSV involves multiple recursions. A recursion is initialized
via a game at each node j € N\ {0}, with set of
players E;. Given a coalition F/; C E;, the characteristic
function is defined as the attribution received by node
7 from the upstream games assuming all other edges to
be active, ie., vj(E;) = m;(Eo,...,E;,....Ep) =
ZZEPJ- 7Tij(EOa---7E‘j;-~-7En)~ Then, the at-
tribution received by edge (j,k) € E; equals
the corresponding SV of this game: m;,(E) =
2B, CEN Gy W, (B5) x v (B U{(J, k)}) — v (Ej)}
where we, (E;) = |E;|/(|E;| — |E;| — 1)!/[E;|! is the
SV weight. Observe that 75 (Eo,...,E,) depends on
mij(Eo, ..., Ej,...,Ey) for E; C E;, where i is a parent
of j; the latter defines a recursion. When computing
mij(Eo,..., Ej,...,Ey) at any upstream node i € Pj,
the characteristic function of the corresponding game
at node ¢ would be m;(Eo,..., E;, ..., E;,...,E,) for
E; C E;, as opposed to 7;(Eo,...,E;, ..., Ej, ... Ep),
i.e., we do not assume all other edges to be active
within a recursion, but only at its initialization. The
pseudocode in Algorithm 1 below clarifies this. We use the
notation v;(E; | E_;) to emphasize the difference when
needed, where E_; = (Eo,...,E;_1,Ej1,...,Ey)
and £, C E, V¢ € N. Unless otherwise stated,
v; (1) =v;(- | E-j) Vj €N.

Every recursion breaks via a game at node 0, which
is defined as follows. Consider an arbitrary collec-
tion of downstream edges (E1,...,E,), where E, C
Ey,, V¢ = 1,....,n. We define this game conditioned
on (Ey,...,E,), with set of players E;. Given a coali-
tion Ey C Eg, the characteristic function is defined as
the output value given edges E_ (recall (1) and (2)), i.e.,
vo(Fo | E—o) := Y(Eo, E_p). Then, the attribution re-
ceived by edge (0,k) € Eg equals the corresponding SV

of this game: 7o (Eg, E_o) = ZEOQEO\{(O,k)} we, (Ep) X
{vo(Eo U{(0,k)} | E_o) — vo(Ep | E_o)}, which is non-
recursive. The attribution received by super-source edges
themselves correspond to the game at node 0 with all down-
stream edges being active: (Eq,...,E,).

Each recursion is well-defined due to the DAG and boils
down to evaluating Y (E) for E C E. Algorithm 1 along
with the sub-routine Algorithm 2 formalize the recursive
procedure to compute RSV. Algorithm 1 outputs 733" =
7ik(E) V(j, k) € E. The inputs N and E to Algorithm 1 are

assumed to contain the super-source node and edges.

Algorithm 1 RsV(N, E)
1: for (j,k) € E
2: W?SV = RSij(Eo,...
3: end for

4: return [75V](j k) e

,En)

In Example 1, (783", 755, 55" ) = (1,1, 1) (see Appendix
C), where 7§3" is the flow received by node 1. Thus, RSV
gives a complete view of effect propagation. In fact, for
Example 1, flow conservation suffices to uniquely determine
this flow. However, this is not true in general. Hence, it is
of interest to investigate what properties uniguely determine
an attribution flow, a task resolved next.

4.3. Flow-based Axioms

The first property is flow conservation, as introduced in
§2. The second and third properties are flow symmetry
and nullity, as alluded to in §4.1. Informally, symmetry
requires “equivalent” outgoing edges to receive the same
flow, whereas nullity requires a “redundant” edge to receive
zero flow. The fourth property is flow linearity, presented
after the formal definition of these properties.

Definition 2. The flow-based axioms are as follows:

1. Flow conservation: Zkeco 7o = Y@ YD gnd
Zier Tij = Zkecj Tk Vj € N\ {0}.
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Algorithm 2 RSV, (Ep, ..., Ey)
1:ifj >0 % recursion
2: return ZEJQSJ\{(],k)} ’U)gj (E]) X ZiEPJ {RSVij(So, ey Ej @] {(], k)}, ey En) — Rsvij(ao, ey Ej, ey gn)}
3: else % base case
4: I‘etfl..ll‘ll ZEOQSO\{(O,IC)} we, (Eo) X {Y(EO U {(0, kj)}, 817 ey 8n) — Y(Eo, 817 ey 8n)}’
5: end i

2. Flow symmetry: For node j € N, if (j, k) € E; and
(4,%) € Ej are such that v;(E; U{(j,k)}) = v;(E; U
{0 VE; CEN{(, k), (7,0)}, then mjp, = mjo.

3. Flow nullity: Fornode j € N, ifv;(E; U{(j,k)}) =
v;(E;) VE; € Ej\{(j, k)}, then wjr. = 0.

4. Flow linearity: For node j € N, consider charac-
teristic functions v;(-) and w;(-). Linearity requires
ij(vj+uj') = ij(vj)+7fjk(Uj) V(], k) S Ej. (Nota-
tion 7 (v;) captures the dependence of ;i on v;(-).)

Note that flow conservation is stated differently than in
Definition 1, but the two are equivalent. To interpret linear-
ity, observe that [v;(+)];en, as defined in §4.2, ultimately
corresponds to F since for all j € N, v;(-) boils down to
evaluating vo(-), which depends on F. Think of [u;(-)];en
corresponding to a different population of X, such that
the underlying equations are different (say F’). Linearity
requires the attribution to be robust to mixing heteroge-
neous populations. That is, mixing the two populations
first (v; + u;) and using the mixture population to compute
attribution (7 (v; + u;)) should be the same as comput-
ing attributions on individual populations first (7, (v;) and
7k (u;)) and mixing them later (75 (v;) + ;i (u;)).

To interpret symmetry in terms of the model primitive Y(-),
it is easy to verify that for node j € N, if (j,k) € E; and
(j.) € E; obey Y (BU{(j, k)}) = Y (EU{(j, O)}) VE C
E\{(j, k), (4,0)}, then flow symmetry implies 7;, = ;.
Similarly, if Y(E U {(j,k)}) = Y(E)VE CE\{(4,k)}.
then flow nullity implies 7;, = 0. Having defined the
axioms, we establish in Theorem 1 that RSV is their unique
solution (proof given in Appendix D).

Theorem 1. [7}"](; 1)<k is the unique solution to the flow-
based axioms.

Theorem 1 follows when the uniqueness of SV is applied to
the game at each node. Thus, the novelty is primarily in con-
structing the overall flow-based recursive framework, which
facilitates such axioms in the first place. Further, in the
original SV setting (Shapley, 1953), uniqueness holds for a
given game (defined via the set of players and the charac-
teristic function). Thus, uniqueness of RSV holds given our
choice of n 4+ 1 games (one game for each node in N). For
the game at node 0, we defined the set of players as Ey and
the characteristic function as Y (Ey, E1, ..., E,) VEy C Eo.

For the game at node j € N\ {0}, we defined the set of
players as E; and the characteristic function as the attri-
bution received by node j from the upstream games, i.e.,
Zier mii(Eos..., Ej,...,En) VE; C E;. Such a setup
seems apt as it naturally results in flow conservation. Fur-
ther, as we show in §5, RSV satisfies additional properties
that have been deemed desirable in the ML / Al literature.
To conclude this section, we illustrate the flow-based axioms
via a DAG equipped with linear equations F (Example 2).

Example 2 (Linear model). Consider the model in Figure
9. RSV attributes ayza24 to edges (1,2) and (2,4), a13a34
to edges (1,3) and (3,4), and a14 to edge (1,4).

e

Figure 9. The model for Example 2. The source variable X; is
set exogenously, Xo =a12X1, X3 =a13 X1, and Y = a14X1 +
a24 X2 + a34.X3. We consider the background Xfl) = 0 and the
foreground X1(2) = 1. Hence, (Xél),Xél),Y(l)) = (0,0,0) and
(X§2), X§2), Y<2)) = (a12, a13, 614 + a12a24 + a13as4). (Node
0 is not included for brevity.)

Flow conservation is straightforward. To understand sym-
metry, suppose a2 = a3 and asq = asy, so that the node
1 change communicated to the output node through edge
(1,2) is identical to that through (1, 3). RSV attributes the
same flow to both these edges. For nullity, suppose a;; = 0
for some (j, k) € E. RSV attributes zero flow to such an
edge. Finally, for linearity, consider a different model with
the same G, but different coefficients a9  forall (5, k) € E.
RSV in the “mixture” model (& = (a + a’)/2) equals the
RSV under the individual models “averaged” together. For
example, mixture model attributes (a14 + a’,)/2 to edge
(1,4) and individual models attribute a4 and a,.

Example 2 also illustrates how RSV distinguishes direct /
indirect effects (Pearl, 2001; Basu, 2020; Schamberg et al.,
2020). The direct effect of X; on Y is captured via the flow
to edge (1,4), i.e., a4, and the indirect effect is captured
through edges (1, 2) and (1, 3): a12a24 + a13a34. Further,
RSV decomposes the indirect effects and hence, facilitates
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mediation analysis (MacKinnon et al., 2007; Heskes et al.,
2020). From MacKinnon et al. (2007), “a mediating variable
transmits the effect of an independent variable on a depen-
dent variable”. In Figure 9, X is the independent variable
and it changes from 0 to 1, causing the dependent variable Y
to change from 0 to a14 + aj2a24 + aj3ass. RSV precisely
quantifies how much of the effect is transmitted through the
mediating variables X5 (aj2a24) and X3 (a13as34).

It is possible to generalize such analysis to an arbitrary DAG
G with linear equations F: X; = 37, p a;;X; Vj € NT \
{NoUO0}. For brevity, we defer it to Appendix E (Proposition
A). Such a flow seems natural for a linear model and the
node-based approaches fail this sanity check. Though some
edge-based approaches (e.g. DeepSHAP) obey Proposition
A (easy to verify), they violate implementation invariance,
as we discuss next.

5. Additional Properties of RSV

We now establish RSV obeys four additional properties that
have been deemed desirable in the recent literature.

5.1. Implementation Invariance and Sensitivity

Sundararajan et al. (2017) propose “two axioms that every
attribution method must satisfy”: implementation invari-
ance and sensitivity. Implementation invariance refers to
the robustness of attribution w.r.t. “internal” changes in the
model. We define it in our langauage next, where g(-) de-
notes the mapping from source nodes to the output, i.e.,
Y = g(Xn,) (with (Eq,...,E,) active).

Definition 3 (Implementation invariance). Consider models
M; = (Gy,Fy) and My = (G, Fo) with the same source
nodes, i.e., No(G1) = No(Gz), and the same input-output
mapping, i.e., g(- | F1) = g(- | F2). An attribution method
obeys implementation invariance if the source nodes receive
the same attribution under the two models, i.e., m;(M;) =
7Tj(M2) V] € No.

Sundararajan et al. (2017) define sensitivity in two parts,
which we formalize in our language next.

Definition 4 (Sensitivity(a)). Consider background Xy
and foreground X(Nzo) s.t. XJ(.I) = X](?) Vi € No\ {i} and
X,L.(l) #* Xi(Q), where © € Ng. Further, suppose X,(\Ilo) and
X,(\IQO) result in different output values, i.e., y® #+ Y(Q),
where Y1) = g(Xﬁ,l)) and Y = g(X(Ni)). Then, an

0

attribution method obeys sensitivity(a) if w; # 0.

Definition 5 (Sensitivity(b)). Consider a source node i €
No. Suppose the output g(Xn, ) is independent of X;. Then,
an attribution method obeys sensitivity(b) if m; = Q.

Proposition 1. RSV obeys implementation invariance, sen-
sitivity(a), and sensitivity(b).

See Appendix F.1 for a proof. As shown using an example
by Dhamdhere et al. (2018), backpropagation-based ap-
proaches (e.g. DeepSHAP) lack such robustness. We show
RSV’s robustness using the same example in Appendix F.2.

5.2. Demand Monotonicity and Affine Scale Invariance

We now establish RSV obeys the “proper uniqueness re-
sult” of Sundararajan & Najmi (2020) by satisfying demand
monotonicity (DM) and affine scale invariance (ASI).

Definition 6 (DM). Suppose g(-) is monotone in X; for

some i € Ng. Consider background Xf\llo) and foreground
(X,(\IQO)\ e x;). An attribution method obeys DM if 7; in-

creases as x; increases, holding X(Nlo) and X,(\IQO)\ (i} fixed.

Definition 7 (ASI). Suppose G is topologically sorted
so that nodes 1 to |Ng| denote source nodes. Consider
an alternate input-output function ¢'(+) s.t. Ve € R and
d € R gXny) = ¢ Xu,.. ., (X5 —d)/e,..., Xing))s
for j € Nqg arbitrary. An attribution method
obeys AS(I )if Wi(}((l(\)lgo)’ X,(\llo),g()) = m((Xl(Q)(, .). . CXJ(-Q) +
2 1 1 1 )
'cfl,...7X|N0|),(X1 NEENO.¢ +d""’X\NO\)79/) Vi €
0-

Proposition 2. RSV obeys DM and ASI.

See Appendix F.3 for a proof. Before concluding this sec-
tion, we note that a key reason RSV obeys such properties is
its top-down nature. In fact, distal ASV (Frye et al., 2020b)
operates on a similar principle and satisfies such properties
too. Interestingly, RSV generalizes the node-based distal
ASV to a flow-based attribution. In particular, RSV at-
tributes the same value to the source nodes as distal ASV,
but in addition, gives a breakdown of how the effect flows
through the graph. Proposition 3 formalizes this connection
(proof in Appendix G.1).

Proposition 3. Source nodes receive the same attribution
under RSV and distal ASV, i.e., m*" = 7*V ¥j € No.

The notation [73°V] N, is defined in Appendix A.3. Hence,
RSV generalizes distal ASV, which only attributes to the
source nodes. On the other extreme, ISV and proximate
ASYV attribute all the value to the parent nodes of the output.
However, such an attribution is apt only if the graph is “flat”
since otherwise, it violates source efficiency. As we show in
Appendix G.2, RSV recovers ISV / proximate ASV under

such graphs, highlighting another desirable feature of RSV.
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6. An Application on Mediation Analysis

To illustrate how RSV facilitates non-linear mediation anal-
ysis, we use the “causal unfairness” example (Frye et al.,
2020b). We wish to understand unresolved discrimination
(Kilbertus et al., 2017); i.e., if sensitive attributes influence
output without being mediated by resolving variables.

//—\\
CXy )

True graph Observed graph

Figure 10. True (left) and observed (right) graphs for Example 3.

Example 3 (Causal unfairness). Suppose the causal graph
is as in Figure 10 (left panel). X; € [0,1], Xo € R,
Xs € {0,1}, and X4 € {0,1} represent the sensitive
attribute, test score, department choice, and unreported
referral; Y € {0,1} represents admission outcome. X1
and X are exogenous. In the data generating process
(Appendix H), an applicant with a higher value of X1 is
more likely to apply to department I and is more likely to
have a referral. The likelihood of admission is increasing
in each of its inputs: Y is a Bernoulli variable with mean
O(ax X2 + a3 X3 + a4 X4), where O(-) is the standard nor-
mal CDF and (as,a3,a4) € R3+ are the probit weights. As
as > 0, department 1 is less competitive. Thus, applicants
with a higher X1 have a higher chance of admission due to
the following two reasons: (1) they apply to the less compet-
itive department more often ( “fair channel”) and (2) they
have a referral more often (“unfair channel”). As noted
by Frye et al. (2020b), a challenge here is that the referral
variable X4 is unobserved and the observed graph is as in
Figure 10 (right panel). To understand unresolved discrimi-
nation, we generate multiple datasets by varying a, while
fixing (az, a3) at (1,1). For each dataset, we fit a proba-
bilistic model at nodes 3 (as a function of X1) and Y (as a
function of X1, Xa, X3); details in Appendix H. For each
estimated model, we compute RSV by considering two ap-
plicants: (Xfl),XQ(D) = (0,0) and (X§2),X2(2)) = (1,0);
i.e., different value of the sensitive attribute, but same score.
This enables us to understand if the sensitive attribute has
an unfair influence on the outcome. In Figure 11, we show
attributions to the fair (X1 — X3 — Y) and the unfair
(X1 — Y) channels as a function of ay. Attribution to
the unfair channel increases with ay. When ay = 1, the
predicted admit probabilities of applicants 1 and 2 are 0.55
and 0.93. Given symmetric weights (a3 = ay4), RSV splits
the difference equally and attributes 0.19 to each channel.
When there is no unfairness (a4 = 0), the unfair chan-
nel receives zero attribution (nullity). Since the test scores

are identical, channel Xo — Y receives zero attribution
(another instance of nullity).
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Figure 11. Numerics for Example 3. Attribution to the unfair chan-
nel increases with the level of unfair influence ay4.

Node-based approaches do not facilitate such mediation
analysis; Frye et al. (2020b) used “a variant” of ASV to cap-
ture such discrimination. RSV needs no such tweak, high-
lighting the significance of flow-based attribution. Though
backpropagation-based approaches might work well for the
graph in Example 3, they violate implementation invariance.

7. Concluding Remarks

We develop a model agnostic flow-based attribution method
(RSV) for a graphical model, using a sequence of recursive
games. RSV generalizes existing node-based methods and
uniquely satisfies a set of flow-based axioms. In addition
to admitting a clean characterization for linear models and
facilitating mediation analysis for non-linear models, it sat-
isfies multiple properties deemed desirable in the literature.

This work opens up a few research directions worth pursu-
ing. It is of interest to extend our deterministic framework
to allow for stochasticity, which we believe is possible via
structural equations with errors (Pearl, 2009). RSV uniquely
satisfies one set of axioms and as with any axiomatic ap-
proach, it is of interest to explore alternative axioms. Given
our foundational focus, a few practical questions such as
runtime of RSV and robustness to model estimation need
further investigation. Finally, connecting RSV to the causal-
ity literature (see §1) is worthwhile. In fact, Chockler &
Halpern (2004) mention using SV to quantify the “degree
of responsibility” in structural equations models.

Acknowledgements

We thank the ICML reviewers and the following colleagues
for useful comments: David Afshartous, Patrick Bloebaum,
Kailash Budhathoki, Antoine Desir, Philipp Michael Faller,
Kumar Goutam, James Hensman, Garud Iyengar, Ryan
McNellis, Jay Sharma, and Luke Smith.



Flow-based Attribution in Graphical Models 10

References

Aas, K., Jullum, M., and Lgland, A. Explaining individual
predictions when features are dependent: More accu-
rate approximations to Shapley values. arXiv preprint
arXiv:1903.10464, 2019.

Adadi, A. and Berrada, M. Peeking Inside the Black-Box:
A Survey on Explainable Artificial Intelligence (XAI).
IEEE Access, 6:52138-52160, 2018.

Bach, S., Binder, A., Montavon, G., Klauschen, F., Miiller,
K.-R., and Samek, W. On Pixel-Wise Explanations for
Non-Linear Classifier Decisions by Layer-Wise Rele-
vance Propagation. PLOS ONE, 10(7):e0130140, 2015.

Basu, D. On Shapley Credit Allocation for Interpretability.
arXiv preprint arXiv:2012.05506, 2020.

Biecek, P. DALEX: Explainers for Complex Predictive
Models in R. The Journal of Machine Learning Research,
19(1):3245-3249, 2018.

Binder, A., Montavon, G., Lapuschkin, S., Miiller, K.-R.,
and Samek, W. Layer-wise Relevance Propagation for
Neural Networks with Local Renormalization Layers. In
International Conference on Artificial Neural Networks,
pp. 63-71. Springer, 2016.

Chockler, H. and Halpern, J. Y. Responsibility and Blame:
A Structural-Model Approach. Journal of Artificial Intel-
ligence Research, 22:93-115, 2004.

Datta, A., Sen, S., and Zick, Y. Algorithmic Transparency
via Quantitative Input Influence: Theory and Experiments
with Learning Systems. In 2016 IEEE Symposium on
Security and Privacy (SP), pp. 598-617. IEEE, 2016.

Dhamdhere, K., Sundararajan, M., and Yan, Q. How Im-
portant Is a Neuron? arXiv preprint arXiv:1805.12233,
2018.

Frye, C., de Mijolla, D., Begley, T., Cowton, L., Stanley, M.,
and Feige, I. Shapley explainability on the data manifold.
arXiv preprint arXiv:2006.01272, 2020a.

Frye, C., Rowat, C., and Feige, I. Asymmetric Shapley val-
ues: incorporating causal knowledge into model-agnostic
explainability. Advances in Neural Information Process-
ing Systems, 33, 2020b.

Glymour, C., Zhang, K., and Spirtes, P. Review of Causal
Discovery Methods Based on Graphical Models. Fron-
tiers in Genetics, 10:524, 2019.

Halpern, J. Y. and Pearl, J. Causes and Explanations: A
Structural-Model Approach. Part II: Explanations. The
British Journal for the Philosophy of Science, 56(4):889—
911, 2005.

Heskes, T., Sijben, E., Bucur, I. G., and Claassen, T. Causal
Shapley Values: Exploiting Causal Knowledge to Explain
Individual Predictions of Complex Models. Advances in
Neural Information Processing Systems, 33, 2020.

Janzing, D., Balduzzi, D., Grosse-Wentrup, M., Scholkopf,
B., et al. Quantifying causal influences. The Annals of
Statistics, 41(5):2324-2358, 2013.

Janzing, D., Minorics, L., and Blobaum, P. Feature rele-
vance quantification in explainable Al: A causal problem.
In International Conference on Artificial Intelligence and
Statistics, pp. 2907-2916. PMLR, 2020.

Kilbertus, N., Carulla, M. R., Parascandolo, G., Hardt, M.,
Janzing, D., and Scholkopf, B. Avoiding Discrimina-
tion through Causal Reasoning. In Advances in Neural
Information Processing Systems, pp. 656666, 2017.

Leino, K., Sen, S., Datta, A., Fredrikson, M., and Li, L.
Influence-Directed Explanations for Deep Convolutional
Networks. In 2018 IEEE International Test Conference
(ITC), pp. 1-8. IEEE, 2018.

Lundberg, S. M. and Lee, S.-I. A Unified Approach to
Interpreting Model Predictions. In Advances in Neural
Information Processing Systems, pp. 4765-4774, 2017.

MacKinnon, D. P, Fairchild, A. J., and Fritz, M. S. Media-
tion Analysis. Annual Review of Psychology, 58:593-614,
2007.

Molnar, C. Interpretable Machine Learning. Lulu.com,
2020.

Molnar, C., Casalicchio, G., and Bischl, B. Interpretable
Machine Learning — A Brief History, State-of-the-Art and
Challenges. arXiv preprint arXiv:2010.09337, 2020.

Pearl, J. Direct and Indirect Effects. Proceedings of the
Seventeenth Conference on Uncertainty in Artificial Intel-
ligence, 32:411-420, 2001.

Pearl, J. Causality. Cambridge University Press, 2009.

Peleg, B. and Sudholter, P. Introduction to the Theory of
Cooperative Games, volume 34. Springer Science &
Business Media, 2007.

Peters, J., Janzing, D., and Scholkopf, B. Elements of Causal
Inference. The MIT Press, 2017.

Ribeiro, M. T., Singh, S., and Guestrin, C. Model-Agnostic
Interpretability of Machine Learning. arXiv preprint
arXiv:1606.05386, 2016.

Schamberg, G., Chapman, W., Xie, S.-P., and Coleman, T. P.
Direct and Indirect Effects — An Information Theoretic
Perspective. Entropy, 22(8):854, 2020.



Flow-based Attribution in Graphical Models

11

Selbst, A. and Powles, J. “Meaningful Information” and
the Right to Explanation. In Conference on Fairness, Ac-
countability and Transparency, pp. 48—48. PMLR, 2018.

Shapley, L. S. A value for n-person games. Contributions
to the Theory of Games, 2(28):307-317, 1953.

Shrikumar, A., Greenside, P., and Kundaje, A. Learning
Important Features Through Propagating Activation Dif-
ferences. In Proceedings of the 34th International Con-
ference on Machine Learning, volume 70, pp. 3145-3153.
PMLR, 2017.

Sokol, K. and Flach, P. A. Glass-Box: Explaining Al Deci-
sions With Counterfactual Statements Through Conver-
sation With a Voice-enabled Virtual Assistant. In IJCAI,
pp- 5868-5870, 2018.

Strumbelj, E. and Kononenko, I. An Efficient Explanation
of Individual Classifications using Game Theory. The
Journal of Machine Learning Research, 11:1-18, 2010.

Strumbelj, E. and Kononenko, 1. Explaining prediction
models and individual predictions with feature contri-
butions. Knowledge and Information Systems, 41(3):
647-665, 2014.

Sun, Y. and Sundararajan, M. Axiomatic Attribution for
Multilinear Functions. In Proceedings of the 12th ACM
Conference on Electronic Commerce, pp. 177-178, 2011.

Sundararajan, M. and Najmi, A. The Many Shapley Values
for Model Explanation. In Proceedings of the 37th Inter-
national Conference on Machine Learning, volume 119,
pp- 9269-9278. PMLR, 2020.

Sundararajan, M., Taly, A., and Yan, Q. Axiomatic Attribu-
tion for Deep Networks. In Proceedings of the 34th Inter-
national Conference on Machine Learning, volume 70,

pp- 3319-3328. PMLR, 2017.

Sundararajan, M., Dhamdhere, K., and Agarwal, A. The
Shapley Taylor Interaction Index. In Proceedings of the
37th International Conference on Machine Learning, vol-
ume 119, pp. 9259-9268. PMLR, 2020.

Turek, M. Explainable Artificial Intelligence (XAI).
2020. URL https://www.darpa.mil/program/
explainable—artificial-intelligence.

Wang, J., Wiens, J., and Lundberg, S. Shapley Flow: A
Graph-based Approach to Interpreting Model Predictions.
In International Conference on Artificial Intelligence and
Statistics, pp. 721-729. PMLR, 2021.


https://www.darpa.mil/program/explainable-artificial-intelligence
https://www.darpa.mil/program/explainable-artificial-intelligence

