Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

Sungryull Sohn “'? Sungtae Lee? Jongwook Choi

Abstract

We propose the k-Shortest-Path (k-SP) constraint:
a novel constraint on the agent’s trajectory that
improves the sample efficiency in sparse-reward
MDPs. We show that any optimal policy neces-
sarily satisfies the k-SP constraint. Notably, the k-
SP constraint prevents the policy from exploring
state-action pairs along the non-k-SP trajectories
(e.g., going back and forth). However, in prac-
tice, excluding state-action pairs may hinder the
convergence of RL algorithms. To overcome this,
we propose a novel cost function that penalizes
the policy violating SP constraint, instead of com-
pletely excluding it. Our numerical experiment
in a tabular RL setting demonstrates that the SP
constraint can significantly reduce the trajectory
space of policy. As a result, our constraint enables
more sample efficient learning by suppressing re-
dundant exploration and exploitation. Our exper-
iments on MiniGrid, DeepMind Lab, Atari, and
Fetch show that the proposed method significantly
improves proximal policy optimization (PPO) and
outperforms existing novelty-seeking exploration
methods including count-based exploration even
in continuous control tasks, indicating that it im-
proves the sample efficiency by preventing the
agent from taking redundant actions.

1. Introduction

Recently, deep reinforcement learning (RL) has achieved a
large number of breakthroughs in many domains including
video games (Mnih et al., 2015; Vinyals et al., 2019), and
board games (Silver et al., 2017). Nonetheless, a central
challenge in reinforcement learning (RL) is the sample ef-
ficiency (Kakade et al., 2003); it has been shown that the
RL algorithm requires a large number of samples for suc-
cessful learning in MDP with large state and action space.

“Equal contribution 'University of Michigan >LG AI Research
3Yonsei University *Microsoft Research. Correspondence to: Sun-
gryull Sohn <srsohn@umich.edu>.

Proceedings of the 38" International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

1

Harm van Seijen* Mehdi Fatemi* Honglak Lee?'

Moreover, the success of the RL algorithm heavily hinges
on the quality of collected samples; the RL algorithm tends
to fail if the collected trajectory does not contain enough
evaluative feedback (e.g., sparse or delayed reward).

To circumvent this challenge, planning-based methods uti-
lize the environment’s model to improve or create a policy
instead of interacting with the environment. Recently, com-
bining the planning method with an efficient path search al-
gorithm, such as Monte-Carlo tree search (MCTS) (Norvig,
2002; Coulom, 2006), has demonstrated successful re-
sults (Guo et al., 2016; Vodopivec et al., 2017; Silver et al.,
2017). However, such tree search methods would require an
accurate model of MDP and the complexity of planning may
grow intractably large for a complex domain. Model-based
RL methods attempt to learn a model instead of assuming
that model is given, but learning an accurate model also
requires a large number of samples, which is often even
harder to achieve than solving the given task. Model-free
RL methods can be learned solely from the environment re-
ward, without the need of a (learned) model. However, both
value-based and policy-based methods suffer from poor sam-
ple efficiency, especially in sparse-reward tasks. To tackle
the sparse reward problem, researchers have proposed to
learn an intrinsic bonus function that measures the novelty
of the state that agent visits (Schmidhuber, 1991; Oudeyer
& Kaplan, 2009; Pathak et al., 2017; Savinov et al., 2018b;
Choi et al., 2018; Burda et al., 2018b). However, when
such an intrinsic bonus is added to the reward, it often re-
quires a careful balancing between environment reward and
bonus and scheduling of the bonus scale to guarantee the
convergence to an optimal solution.

To tackle the aforementioned challenge of sample efficiency
in sparse reward tasks, we introduce a constrained-RL frame-
work that improves the sample efficiency of any model-free
RL algorithm in sparse-reward tasks, under the mild as-
sumptions on MDP (see Appendix J). Of note, though our
framework will be formulated for policy-based methods, our
final form of the cost function (Eq. (15) in Section 4) applies
to both policy-based and value-based methods. We propose
a novel k-shortest-path (k-SP) constraint (Definition 7) that
improves the sample efficiency of policy learning (See Fig-
ure 1). The k-SP constraint is applied to a trajectory rolled
out by a policy; all of its sub-path of length £ is required
to be a shortest-path under the 7-distance metric which we

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

Unconstrained Constrained

k-shortest-path (k-SP) constraint (k=2)

v"" s A - A Path Sub-paths k-SP?
T AT ¢ AN
S é__, _;.: ‘ e t=0~2 A
@A | .
MDP :"f O ¢ ® " Ao o SP —True
e)‘ V‘“ 00 T ,./ N &
»’ VIR e .-*B o
————— 40~ N/A
_________ A S 4 . A4 g TFO
- k-SP L N Path Sub-paths k-SP?
(3 @ constraint @ g J P .
Roll _» ', PR » 4 Y t=0~2 .\ RNet_ Non’
-out A0 @ - @ (& A L o v & : -SP
Tree PR L : & ¥ B N\ ® —>False
B-@® B @ ? B RNel— sp ;
R v v t=1~3 il
Initial state: Rewarding state: Non-rewarding state: @ Allowed transition:--> Path:—> RNet:‘RNet‘ AND:®|

Figure 1. The k-SP constraint improves the sample efficiency of RL methods in sparse-reward tasks by pruning out suboptimal trajectories
from the trajectory space. Intuitively, the k-SP constraint means that when a policy rolls out into trajectories, all of the sub-paths of length
k is the shortest path (under a distance metric defined in terms of policy, discount factor, and transition probability; see Section 3.2 for
the formal definition). (Left) MDP and a rollout tree are given. (Middle) The paths that satisfy the k£-SP constraint. The number of
admissible trajectories is drastically reduced. (Right) A path rolled out by a policy satisfies the k-SP constraint if all sub-paths of length k
are shortest paths and have not received a non-zero reward. We use a reachability network to test if a given (sub-)path is the shortest path

(See Section 4 for details).

define in Section 3.1. We prove that applying our constraint
preserves the optimality for any MDP (Theorem 3), except
the stochastic and multi-goal MDP which requires addi-
tional assumptions. We relax the hard constraint into a soft
cost formulation (Tessler et al., 2019), and use a reachability
network (Savinov et al., 2018b) (RNet) to efficiently learn
the cost function in an off-policy manner.

We summarize our contributions as the following: (1) We
propose a novel constraint that can improve the sample effi-
ciency of any model-free RL method in sparse reward tasks.
(2) We present several theoretical results including the proof
that our proposed constraint preserves the optimal policy
of given MDP. (3) We present a numerical result in tabular
RL setting to precisely evaluate the effectiveness of the pro-
posed method. (4) We propose a practical way to implement
our proposed constraint and demonstrate that it provides
a significant improvement on four complex deep RL do-
mains. (5) We demonstrate that our method significantly
improves the sample efficiency of PPO, and outperforms
existing novelty-seeking methods on four complex domains
in sparse reward settings.

2. Preliminaries

Markov Decision Process (MDP). We model a task as an
MDP tuple M = (S, A, P, R, p,7), where S is a state set,
A is an action set, P is a transition probability, R is a reward
function, p is an initial state distribution, and v € [0,1) is a
discount factor. For each state s, the value of a policy 7 is
denoted by V™ (s) = E™[>", v'r¢ | so = s]. Then, the goal
is to find the optimal policy 7* that maximizes the expected

return:

(1)
2

argmaxE?NP[Zt Yiry | so = s
argmaxEg., [V7(s)].

Constrained MDP. A constrained Markov Decision Pro-
cess (CMDP) is an MDP with extra constraints that restrict
the domain of allowed policies (Altman, 1999). Specifically,
CMDP introduces a constraint function C'() that maps a
policy to a scalar, and a threshold e € R. The objective of
CMDP is to maximize the expected return R(7) = >, v'ry
of a trajectory 7 = {sg, ag, r1, 1, a1, 2, S2, - . . } subject to
aconstraint: 7* = arg max, E,. [R(7)], s.t. C(7) < o
A popular choice of constraint is based on the transi-
tion cost function (Tessler et al., 2019) ¢(s,a,r,s') € R
which assigns a scalar-valued cost to each transition. Then
the constraint function for a policy 7 is defined as the
discounted sum of the cost under the policy: C(m)
Err [, ¥ie(se, ar, eg1, Se41)] - In this work, we pro-
pose a shortest-path constraint, that provably preserves the
optimal policy of the original unconstrained MDP, while
reducing the trajectory space. We will use a cost function-
based formulation to implement our constraint (see Sec-
tion 3 and 4).

3. Formulation: k-shortest-path Constraint

We define the k-shortest-path (k-SP) constraint to remove
redundant transitions (e.g., unnecessarily going back and
forth), leading to faster policy learning. We show two im-
portant properties of our constraint: (1) the optimal policy
is preserved, and (2) the policy search space is reduced.

In this work, we limit our focus to MDPs satisfying

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

R(s) +~yV*(s) > 0 for all initial states s s.t p(s) > 0
and all rewarding states that optimal policy visits with non-
zero probability s € {s|r(s) # 0,pr«(s) > 0} where p.(s)
is a probability of visiting state s with policy m. We exploit
this mild assumption to prove that our constraint preserves
optimality. Intuitively, we exclude the case when the op-
timal strategy for the agent is at best choosing a “lesser
of evils” (i.e., largest but negative value) which often still
means a failure. We note that this is often caused by un-
natural reward function design; in principle, we can avoid
this by simply offsetting the reward function by a constant
—|mingegspp... (3 V*(s)| for every transition, assuming the
policy is proper'. Goal-conditioned RL (Nachum et al.,
2018), most of the well-known domains such as Arari (Belle-
mare et al., 2013), DeepMind Lab (Beattie et al., 2016),
MiniGrid (Chevalier-Boisvert et al., 2018), etc., satisfy this
assumption. Also, for general settings with stochastic MDP
and multi-goals, we require additional assumptions to prove
the optimality guarantee (See Appendix J for details).

3.1. Shortest-path Policy and Shortest-path Constraint

Let 7 be a path defined by a sequence of states: 7 =
{50, ..., 5¢(r)}, where £(7) is the length of a path T (i.e.,
£(7) = |7| — 1). We denote the set of all paths from s to s’
by 7s,s. A path 7* from s to s’ is called a shortest path from
sto s’ if £(7*) is minimum, i.e., £(7*) = min, 7., (7).

Now we will define similar concepts (length, shortest path,
etc.) with respect to a policy. Intuitively, a policy that rolls
out shortest paths (up to some stochasticity) to a goal state
or between any state pairs should be a counterpart. We
consider a set of all admissible paths from s to s’ under a
policy m:

Definition 1 (Path set). 77, = {7 | so = s,5(;) =
s',px(T) > 0,584 # s for vVt < (1)} Thatis, T, is a set
of all paths that policy ™ may roll out from s and terminate
once visiting s'.

If the MDP is a single-goal task, i.e., there exists a unique
(rewarding) goal state s, € S such that s, is a terminal
state, and R(s) > 0 if and only if s = S¢, any shortest
path from an initial state to the goal state is the optimal path
with the highest return R(7), and a policy that always rolls
out a shortest path from an initial state to the goal state is
therefore optimal (see Lemma 4).” This is because all states
except for s, are non-rewarding states, but in general MDPs
this is not necessarily true. However, this motivates us to
limit the domain of the shortest path to non-rewarding states.
We define non-rewarding paths from s to s” as follows:

Definition 2 (Non-rewarding path set). 7 ={r|re

K
s,s’,nr

"It is an instance of potential-based reward shaping which has
optimality guarantee (Ng et al., 1999).

2We refer the readers to Appendix I for more detailed discus-
sion and proofs for single-goal MDPs.

T re=0forVt < £(7)}.

s,s'

In words, 7", ,, is a set of all non-rewarding paths from
s to s’ rolled out by policy 7 (i.e., T € T.) without any
associated reward except the last step (i.e., ry = 0 for V¢ <
£(7)). Now we are ready to define a notion of length with

respect to a policy and shortest path policy:

Definition 3 (7-distance from s to s'). DT.(s,s') =
1Og—y (]ETNTr: TETT, [VZ(T)])

Definition 4 (Shortest path distance from s to s’).
Dy, (s,8") = min,; DT (s, s).

We define 7-distance to be the log-mean-exponential of
the length £(7) of non-rewarding paths 7 € 7, .. To
be thorough, pi-distance is not a “distance” but a quasi-
metric since by definition, pi-distance is asymmetric. When
there exists no admissible path from s to s’ under policy
, the path length is defined to be co: DT (s,s') = oo if
T e = (). We note that when both MDP and policy are

deterministic, D™ (s, s") recovers the natural definition of
path length, DT (s, s") = ¢(7).

We call a policy a shortest-path policy from s to s’ if it rolls
out a path with the smallest 7-distance:

Definition 5 (Shortest path policy from s to s'). m €
3P, , = {r € 1| DT (s,5") = Due(s,5)}.

§—S

Finally, we will define the shortest-path (SP) con-
straint. Let S = {s | R(s) > Oorp(s) > 0}
be the union of all initial and rewarding states, and
O™ = {(s,5) | s,5" € S, p(s) > 0, T, ,, # 0} be the
subset of S™ such that agent may roll out. Then, the SP
constraint is applied to the non-rewarding sub-paths be-
tween states in @2 T = U s year Tohs - We note
that these definitions are used in the proofs (Appendix J).
Now, we define the shortest-path constraint as follows:

Definition 6 (Shortest-path constraint). A policy 7 satisfies
the shortest-path (SP) constraint if m € 1157, where TIF =
{7 | Forall s,s' € Tg it holds w € TI3"

nr’ s—)s’}'

Intuitively, the SP constraint forces a policy to transition be-
tween initial and rewarding states via shortest paths. The SP
constraint would be particularly effective in sparse-reward
settings, where the distance between rewarding states is
large.

Given these definitions, we can show that an optimal policy
indeed satisfies the SP constraint in a general MDP set-
ting. In other words, the shortest path constraint should not
change optimality:

Theorem 1. For any MDP, an optimal policy 7* satisfies
the shortest-path constraint: 7 € II5.

Proof. See Appendix J for the proof. O

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

3.2. Relaxation: k-shortest-path Constraint

Implementing the shortest-path constraint is, however, in-
tractable since it requires a distance predictor D, (s, s’).
Note that the distance predictor addresses the optimization
problem, which might be as difficult as solving the given
task. To circumvent this challenge, we consider its more
tractable version, namely a k-shortest path constraint, which
reduces the shortest-path problem Dy, (s, s’) to a binary de-
cision problem — is the state s’ reachable from s within
k steps? — also known as k-reachability (Savinov et al.,
2018b). The k-shortest path constraint is defined as follows:

Definition 7 (k-shortest-path constraint). A policy m satis-
fies the k-shortest-path constraint if 1 € 1IF, where

1LY = {7 |Forall s,s' € T v, DT(s,8') < k,
it holds 7 € TI5F }. 3)

s—+s’
Note that the SP constraint (Definition 6) is relaxed by
adding a condition D7, (s, s") < k. In other words, the k-SP
constraint is imposed only for s, s’-path whose length is not
greater than k. From Eq. (3), we can prove an important
property and then Theorem 3 (optimality):

Lemma 2. For an MDP M, TI3? C TP if k < m.

Proof. 1t is true since {(s,s’) | Dp.(s,s') < k} C
{(s,s") | DL.(s,s") <m}fork < m. O

Theorem 3. For an MDP M and any k € R, an optimal
policy 7* is a k-shortest-path policy.

Proof. Theorem 1 tells 7* € TI5P. Eq. (3) tells I15F = II5F
and Lemma 2 tells II3¥ C IIP. Collectively, we have
€ ISP = TI3P C II3P. O

In conclusion, Theorem 3 states that the k£-SP constraint
does not change the optimality of policy, and Lemma 2
states a larger k results in a larger reduction in policy search
space. Thus, it motivates us to apply the k-SP constraint in
policy search to more efficiently find an optimal policy. For
the numerical experiment on measuring the reduction in the
policy roll-outs space, please refer to Section 6.6.

4. Shortest-Path Reinforcement Learning
(SPRL)

In Section 3, we defined our k-SP constraint and proved that
it preserves the optimality. In this section, we derive how the
k-SP constraint on policy can be estimated by the k-SP cost
that can be computed from the agent’s on-policy trajectory.
The proposed intrinsic cost term can be subtracted from the
extrinsic reward and optimized together via any model-free
RL method.

k-shortest-path Cost. The objective of RL with the k-SP
constraint Hip can be written as:

7 = argmax, E™ [R(7)], s.t. 7€ ILF, 4)

where II}F = {7 | V(s,s € Tg)y Do (8,) <
k,itholds m € Hgf;s,} (Definition 7). We want to for-
mulate the constraint ™ € Hip in the form of constrained
MDP (Section 2), i.e., as C'(7) < a. We begin by re-writing

the k-SP constraint into a cost-based form:
P = {n | C3¥(7) = 0}, where ®)

G (m) = > I[Dne(s,s") < D (s,)]
(s,‘s’€’7:I§',m):D’r (s,8")<k

nr

(6)

Note that I [Dy,(s,s’) < DT.(s,s")] =0 <> Dy, (s,8') =
D7 (s, s") since Dy, (s,s") < DT (s,s") from Definition 4.
Similar to Tessler et al. (2019), we apply the constraint to
the on-policy trajectory 7 = (sg, $1, . . .) with discounting
by replacing (s, s') with (s, s¢1;) where [t, ¢+ 1] represents
each segment of 7 with length [:

CYF () = Error [CRF(7)] 4 (7)
C/EP(T) = Z(t,z);tzo,zgk vt (H;ilt_l Ir; = 0])
“T[Du(st, s141) < Dip(se, se+)] (8)
< Saesoack 7 (TEE 1y = 0])
I [Dnr(s¢, 8t41) < k])
£ C¥ (), (10)

where the Inequality. (9) holds because DT.(s¢, St41) =
log, (Eféﬁ’;,sw,m

Note that it is sufficient to consider only the cases | = k
(because for [< k, given Dy, (s¢, s¢1x) < k, we have

D(s, s¢4+1) < 1 < k). Then, we simplify C3F (1) as

hh\]) < k from Jensen’s inequality.

~SP _
Cr (1) = X V"I [Due (50, 5044) < K TISEY ™ Ty = 0]

Y

= 3, VIt > KT [Doe (50— 5¢) < K] TTj=_j, L = 0].

(12)
Finally, the per-time step cost ¢; is given as:
t—1

Ct = H[t >]{3] -1 [Dm(st_k,st) < k] . H I [Tj = O])
j=t—k
13)

where C5P () = E,r 3, 7'¢:]. Note that C5P(7) is an
upper bound of C$P (), which will be minimized by the
bound to make as little violation of the shortest-path con-
straint as possible. Intuitively speaking, c; penalizes the

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

(@)

Figure 2. An example observation of (a) FourRooms-11x11, (b) GoalLarge in DeepMind Lab, (c) the maze layout (not available to the
agent) of GoalLarge, (d) Montezuma’s Revenge in Atari, and (e) FetchPush-vI in Fetch.

agent from taking a non-k-shortest path at each step, so
minimizing such penalties will make the policy satisfy the
k-shortest-path constraint. In Eq. (13), ¢; depends on the
previous k steps; hence, the resulting CMDP becomes a
(k + 1)-th order MDP. In practice, however, we empirically
found that feeding only the current time-step observation to
the policy performs better than stacking the previous k-steps
of observations (See Appendix A.3 for details). Thus, we
did not stack the observation in all the experiments. We use
the Lagrange multiplier method to convert the objective (4)
into an equivalent unconstrained problem as follows:

. _ . t _
I)?\(l>1101 max L(A\0) = min max Eromy [Et ¥t (ry)\ct)],
(14)

where L is the Lagrangian, 6 is the parameter of policy T,
and A\ > 0 is the Lagrangian multiplier. While in ordinary
Lagrange multiplier method A is unique since Theorem 3
shows that the shortest-path constraint preserves the opti-
mality, we can control how much weight we will give to
the constraint, i.e., we are free to set any A > 0. Thus, we
simply consider)\ as a tunable positive hyperparameter, and
simplify the min-max problem (14) to an RL objective with
costs c; being added:

max Erory [Zt v (ry — /\ct)}) (15)

Practical Implementation of the Cost Function.
We implement the binary distance discriminator
I(Dyr(St—k, 8¢) < k) in Eq. (13) using the k-reachability
network (Savinov et al., 2018b). The k-reachability network
Rnety (s, s') is trained to output 1 if the state s’ is reachable
from the state s with less than or equal to k£ consecutive
actions, and 0 otherwise. Formally, we take the functional
form: Rnety(s,s’) ~ T(Dn(s,s’) <k+1). We then
estimate the cost term ¢; using (k — 1)-reachability network
as follows:

t—1
¢t =1[Dux(si—r,50) <KLt > k] [] I[r; =0] (16)
j=t—k
t—1
= Rnety_1(si—, s)L[t > k] [] I[r; = 0. (17)
j=t—k

Intuitively speaking, if the agent takes a k-shortest path,
then the distance between s;_j, and s; is k, hence ¢; = 0. If
it is not a k-shortest path, ¢; > 0 since the distance between
s¢—x and s; will be less than k. In practice, due to the
error in the reachability network, we add a small tolerance
At € N to ignore outliers. It leads to an empirical version
of the cost as follows:

¢y ~Rnety_1(si—k—at, 5¢) - H

I(t >k + At). (18)

In our experiment, we found that a small tolerance At ~
k /5 works well in general. Similar to Savinov et al. (2018b),
we used the following contrastive loss for training the reach-
ability network:

£Rnet = — log (Rlletk_l (Sanca S+)) (19)
—log (1 — Rnety_1(Sane;5-)), (20)

where Sy, S+, S— are the anchor, positive, and negative
samples, respectively (See Appendix E.3 for the detail of
training).

5. Related Work

Shortest-path Problem and Planning. Many early
works (Bellman, 1958; Ford Jr, 1956; Bertsekas & Tsit-
siklis, 1991; 1995) have discussed (stochastic) shortest path
problems in the context of MDP. They viewed the shortest
path problem as a planning problem and proposed a dy-
namic programming-based algorithm similar to the value
iteration (Sutton & Barto, 2018) to solve it. Our main idea
is inspired by (but not based on) this viewpoint. Specifically,
our method does not directly solve the shortest path problem
via planning; hence, our method does not require a forward
model for planning. Our method only exploits the optimality
guarantee of the shortest-path under the 7-distance to prune
out sub-optimal policies (i.e., non-shortest paths).

Distance Metric in Goal-conditioned RL. In goal-
conditioned RL, there has been a recent surge of inter-
est in learning a distance metric in state (or goal) space
to construct a high-level MDP graph and perform plan-
ning to find a shortest-path to the goal state. Huang et al.
(2019); Laskin et al. (2020) used the universal value func-

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

FourRooms-7x7 FourRooms-11x11

1.00 1.00
0.75 0.75

£ £

20.50 20.50

(o g
0.25 0.25
0.00, 0.2 0.4 0.004 1 2

steps (Millions) steps (Millions)

KeyDoor-7x7

KeyDoor-11x11

1.00 1.00
- SPRL

0.75 0.75 GT-Grid
£ £ — PPO
20.50 20501 — Eco
2 2 — ICM

0.25 0.25

v
0000025 05 075 1 999 2 4

steps (Millions) steps (Millions)

Figure 3. Progress of average episode reward on MiniGrid tasks. We report the mean (solid curve) and standard error (shadowed area) of

the performance over six random seeds.

tion (UVF) (Schaul et al., 2015) with a constant step penalty
as a distance function. Zhang et al. (2018); Laskin et al.
(2020) used the success rate of transition between nodes as
distance and searched for the longest path to find the plan
with the highest success rate. SPTM (Savinov et al., 2018a)
defined a binary distance based on the reachability network
(RNet) to connect nearby nodes in the graph. However, the
proposed distance metrics and methods can be used only
for the goal-conditioned task and lack the theoretical guar-
antee in general MDP, while our theory and framework are
applicable to general MDP (see Section 3.1).

Reachability Network. The reachability network (RNet)
was first proposed by Savinov et al. (2018b) as a way to
measure the novelty of a state for exploration. Intuitively,
if the current state is not reachable from previous states in
episodic memory, it is considered to be novel. SPTM (Savi-
nov et al., 2018a) used RNet to predict the local connectivity
(i.e., binary distance) between observations in memory for
graph-based planning in a navigation task. Zhang et al.
(2020) used the k-adjacency network, which is analogous
to the RNet, to improve the subgoal generation of hierarchi-
cal reinforcement learning (HRL) by constraining the goal
space into adjacent states from the current state. On the
other hand, we use RNet for constraining the policy (i.e.,
removing the sub-optimal policies from policy space). Thus,
in ours and the other three compared works, RNet is being
employed for fundamentally different purposes.

Sparse Reward Problem. One of the most famous ap-
proaches to tackle the sparse reward problem in RL is intrin-
sic motivation (Bellemare et al., 2016; Pathak et al., 2017,
Savinov et al., 2018b; Burda et al., 2018a). By adding in-
trinsic reward, they aim to transform the original sparse
reward problem into a dense reward problem. Bellemare
et al. (2016) is one of the pioneer works that formulated the
intrinsic reward based on the pseudo count of state visita-
tion to measure the state novelty. Pathak et al. (2017); Burda
et al. (2018a) designed an intrinsic reward using prediction
error. Savinov et al. (2018b) defined the intrinsic reward
based on whether the current state is “reachable” from the
previously visited states, where the reachability between a
pair of states is predicted by a neural network that is trained
via temporal contrastive learning. Florensa et al. (2017)
created a curriculum based on the starting positions in train-

ing to tackle the sparse reward problem. The positions near
the goal are considered easy and the positions far from the
goal are considered hard. Riedmiller et al. (2018) formed
the sparse reward problem into multiple low-level tasks. Af-
ter designing an auxiliary reward function and learning a
policy for every task, they learned a high-level policy that
decides the sequence of low-level policies. Ecoffet et al.
(2019) proposed to learn a policy that can go back to pre-
viously visited states, such that the agent can perform a
directed exploration around the promising state. Our SPRL
is not concerned with measuring the state novelty but aims
to shrink the policy search space to improve the sample
efficiency of RL algorithms. The exploration is promoted
as a byproduct of the reduced policy search space.

More Related Works. Please refer to Appendix K for
further discussions about other related works.

6. Experiments
6.1. Settings

Environments. We evaluate our SPRL on four challeng-
ing domains: MiniGrid (Chevalier-Boisvert et al., 2018),
DeepMind Lab (Beattie et al., 2016), Atari (Bellemare et al.,
2013), and Fetch (Plappert et al., 2018). MiniGrid is a 2D
grid world environment with challenging features such as
pictorial observation, random initialization of the agent and
the goal, complex state and action space where coordinates,
directions, and other object statuses (e.g., key-door) are con-
sidered. We conducted experiments on four standard tasks:
FourRooms-7x7, FourRooms-11x11, KeyDoors-7x7, and
KeyDoors-11x11. DeepMind Lab is a 3D environment
with a first-person view. Along with the nature of partially-
observed MDP, at each episode, the agent’s initial and the
goal location are reset randomly with a change of texture,
maze structure, and colors. We conducted experiments on
three standard tasks: GoalSmall, GoalLarge3 , and Object-
Many. For Atari, among 52 games we chose two sparse-
reward tasks (Montezuma’s Revenge, Freeway), one dense-
reward task (Ms.Pacman), and three non-navigational tasks
(Gravitar, Seaquest, HERO) where the agent receives re-
ward by hitting the enemy by firing a bullet or removing the

3GoalLarge task corresponds to the Sparse task in Savinov
et al. (2018b), and our Figure 4 reproduces the result reported.

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

GoalSmall

ObjectMany

return

GT-Grid
— ICM : n A !C:

0 10 20 0 5
steps (Millions)

10
steps (Millions)

GoallLarge
PPO
20 0 5 10 15 20

SPRL WAW
ECO
steps (Millions)

15

Figure 4. Progress of average episode reward on DeepMind Lab tasks. We report the mean (solid curve) and standard error (shadowed

area) of the performance over four random seeds.

Montezuma 3000 Gravitar SeaQuest
g 2000 g 2000
2 2 1000
o0 20 40 00 20 40 0 20 40
steps (Millions) steps (Millions) steps (Millions)
40 Freeway 6000 MsPacman 40000 Hero
c C C
:::) 30 § 4000 § 30000
19} 19} o
B " 2000 ~ 20000
200 20 40 0 20 40 0 20 40

steps (Millions)

steps (Millions)

steps (Millions)

Figure 5. Progress of average episode reward on Atari tasks. We report the mean (solid curve) and standard error (shadowed area) of the
performance over four random seeds. The performances of PPO and ICM in Montezuma’s Revenge are both zero, hence invisible in the

figure.
1.0 FetchPush FetchSlide
0.8
S oo SPRL S
> - 0.6
EO-G —— PPO g
—— ECO
0.4 — ICM 0.4
0 2 4 0 2.5 5 7.5

steps (Millions) steps (Millions)

10

1.00 FetchReach FetchPickAndPlace
0.75 06
£ £
20.50 204
[} [}
= 0.25 =
' 0.2
0'000 0.2 0.4 0 10

steps (Millions) steps (Millions)

Figure 6. Progress of average episode reward on Ferch tasks. We report the mean (solid curve) and standard error (shadowed area) of the

performance over four random seeds.

obstacle by installing a bomb. Fetch is a continuous control
environment with a two-fingered gripper. Initial locations of
the agent and the goal change every episode. We made two
changes in the environment to make it a sparse-reward task.
The agent receives +1 reward if the agent reaches the goal
and 0 rewards otherwise. Also, the episode terminates when
the agent reaches the goal such that the agent can receive a
non-zero reward at most once in an episode. We conducted
experiments on all four tasks: FetchPush-v1, FetchSlide-vl,
FetchReach-vl, FetchPickAndPlace-vI. We refer the readers
to Figure 2 for examples of observations. See Appendix D,
Appendix E, Appendix F, and Appendix G for more details
of MiniGrid, DeepMind Lab, Atari, and Fetch respectively.

Baselines. We compared our methods with four base-
lines: PPO (Schulman et al., 2017), episodic curiosity
(ECO) (Savinov et al., 2018b), intrinsic curiosity module

(ICM) (Pathak et al., 2017), and GT-Grid (Savinov et al.,
2018b). The PPO is used as a baseline RL algorithm for
all other agents. The ECO agent is rewarded when it vis-
its a state that is not reachable from the states in episodic
memory within a certain number of actions; thus the nov-
elty is only measured within an episode. Following Savinov
et al. (2018b), we trained RNet in an off-policy manner from
the agent’s experience and used it for our SPRL and ECO
on MiniGrid (Section 6.2), DeepMind Lab (Section 6.3),
Atari (Section 6.4) and Fetch (Section 6.5). For the accuracy
of the learned RNet on each task, please refer to Appendix B.
The GT-Grid agent has access to the agent’s (z, y) coordi-
nates. It uniformly divides the world into 2D grid cells, and
the agent is rewarded for visiting a novel grid cell. The ICM
agent learns a forward and inverse dynamics model and uses
the prediction error of the forward model to measure the

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

9 10,ZTraJectory space reduction
— At=0
° At=1
o ! At=2
_

c 1074

°

=1

o)

3

3 10-6

e 10 K=3 K=7 K=11

Figure 7. (Left) 7x7 Tabular four-rooms domain with initial agent
location (red) and the goal location (). (Right) The trajec-
tory space reduction ratio (%) before and after constraining the
trajectory space for various k and At with k-SP constraint. Even
a small k can greatly reduce the trajectory space with a reasonable
tolerance At.

novelty. We used the publicly available codebase (Savinov
et al., 2018b) to obtain the baseline results. We used the
same hyperparameter for all the tasks for a given domain
— the details are described in the Appendix. We used the
standard domain and tasks for reproducibility.

6.2. Results on MiniGrid

Figure 3 shows the performance of all the methods on the
MiniGrid domain. SPRL consistently outperforms all the
baseline methods over all tasks. We observe that exploration-
based methods (i.e., ECO, ICM, and GT-Grid) perform
similarly to the PPO in the tasks with small state space (e.g.,
FourRooms-7x7 and KeyDoors-7x7). However, SPRL
demonstrates a significant performance gain since it im-
proves the exploitation by avoiding sub-optimality caused
by taking a non-shortest-path.

6.3. Results on DeepMind Lab

Figure 4 shows the performance of all the methods on Deep-
Mind Lab tasks. Overall, SPRL achieves superior results
compared to other methods. By the task design, the diffi-
culty of exploration increases in the order of GoalSmall,
ObjectMany, and GoalLarge tasks, and we observe a co-
herent trend in the result. For harder exploration tasks,
the exploration-based methods (GT-Grid, ICM and ECO)
achieve a larger improvement over PPO: e.g., 20%, 50%,
and 100% improvement in GoalSmall, ObjectMany, and
GoalLarge, respectively. As shown in Lemma 2, SPRL is
expected to have larger improvement for larger trajectory
space and sparser reward settings. We can verify this from
the result: SPRL has the largest improvement in GoalLarge
task, where both the map is largest and the reward is most
sparse. Interestingly, SPRL even outperforms GT-Grid
which simulates the upper-bound performance of novelty-
seeking exploration method. This is possible since SPRL
improves the exploration by suppressing unnecessary explo-
rations, which is different from novelty-seeking methods
and also improves the exploitation by reducing the policy
search space.

6.4. Results on Atari

One of the main challenges in Afari is the distribution shift
in the state space within a task. Unlike MiniGrid and Deep-
Mind Lab, many Atari tasks involve the transition between
different rooms in each of which the agent observes a signif-
icantly different set of states. This induces instability in the
RNet training; RNet often overfits to the initial room and
performs poorly when the agent navigates to the different
rooms. To mitigate this problem, we added the weight decay
for the RNet training. For other technical details, please
refer to Appendix F.3.

Figure 5 summarizes the performance of all the methods
on Atari tasks. SPRL outperforms all the baseline methods
on five out of six tasks except for Ms.Pacman, which is a
dense reward task. We note that other exploration meth-
ods, ICM and ECQO, also perform poorly on this task. For
the sparse reward task, especially in Montezuma’s Revenge,
SPRL achieves the performance comparable to the SOTA
exploration methods such as RND (Burda et al., 2018b)
(1000 score at SOM steps with 32 parallel environments.
SPRL used 12 parallel environments.) and SOTA exploita-
tion methods such as SIL (Oh et al., 2018) (2500 score at
50M steps). Lastly, SPRL achieves the largest improvement
to the PPO in non-navigational tasks (Gravitar, Seaquest,
HERO). This verifies that our k-SP constraint is not limited
to just the geometric path but can be applied to any general
trajectory, or a sequence of state transitions, in MDP.

6.5. Results on Fetch

Figure 6 summarizes the performance of all the methods
on Fetch tasks. SPRL outperforms all the baseline meth-
ods on every task except for FetchReach-v1, in which all
the compared methods perform similarly well. We also
found that the performance improvement of the exploration
methods such as SPRL, ECO, and ICM over PPO is larger
for the tasks with sparser reward; the reward is the densest
in FetchReach-vI while the most sparse in FetchSlide-vI.
As suggested by our theory, this result shows that SPRL
is not restricted to the domains with discrete action space
but performs well on the continuous control domain. We
present the additional results in Appendix B showing that
the reachability network, which is the key component of
SPRL, can be efficiently trained and accurately compute
the state proximity in the continuous control domain.

6.6. Quantitative Analysis on k-SP Constraint

In this section, we numerically evaluate the effect of our
k-shortest path constraint in a tabular-RL setting. Specifi-
cally, we study the following questions: (1) Does the k-SP
constraint with larger k results in more reduction in trajec-
tory space? (i.e., validation of Lemma 2) (2) How much
reduction in trajectory space does k-SP constraint provide

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

(a) Random (b) GT-UCB
In reward-free settings (a-c), we show rewarding states in
from the environment. The location of the agent’s initial state (
limited to 500 steps.

with different k and tolerance A¢?

We implemented a simple tabular 7x7 four-rooms domain
where each state maps to a unique (z,y) location of the
agent. The agent can take up, down, left, right primitive
actions to move to the neighboring state, and the episode
horizon is set to 14 steps. The goal of the agent is reaching
the goal state, which gives +1 reward and terminates the
episode. We computed the ground-truth distance between
a pair of states to implement the k-shortest path constraint.
We used the ground-truth distance function instead of the
learned RNet to implement the exact SPRL agent.

Figure 7 summarizes the reduction in the trajectory space
size. We searched over all possible trajectories of length
14 using breadth-first-search (BFS). Then we counted the
number of trajectories satisfying our k-SP constraint with
varying parameters k and tolerance At and divided by the
total number of trajectories (i.e., 4'* = 268M). The re-
sult shows that our k-SP constraint drastically reduces the
trajectory space even in a simple 2D grid domain; with a
very small £ = 3 and no tolerance At = 2, we get only
24/268M size of the original search space. As we increase
k, we can see more reduction in the trajectory space, which
is consistent with Lemma 2. Also, increasing the tolerance
At slightly hurts the performance, but still achieves a large
reduction (See Appendix A for more analysis on the effect
of k and tolerance).

6.7. Qualitative Analysis on MiniGrid

We qualitatively studied what type of policy is learned with
the k-SP constraint with the ground-truth RNet in Nine-
Rooms domain of MiniGrid. Figure 8 (a-c) shows the con-
verged behavior of SPRL (k = 15), the ground-truth count-
based exploration (Lai & Robbins, 1985) agent (GT-UCB),
and uniformly random policy (Random) in a reward-free
setting. We counted all the state transitions (s; — S¢+1)
of each agent’s roll-out and averaged over 4 random seeds.
Random cannot explore further than the initial few rooms.
GT-UCB seeks novel states and visits all the states uni-
formly. SPRL learns to take the longest possible shortest
path, which results in a “straight” path across the rooms.

i |15
e

(d) SPRL+Reward

m ik

(c) SPRL

Figure 8. Transition count maps for baselines and SPRL: (a), (b), and (c) are in a reward-free while (d) is in a reward-aware setting.

only for the visualization, but the agent does not receive rewards

) and rewarding states (dark green) are fixed. The episode length is

Note that this only represents a partial behavior of SPRL,
since our cost also considers the existence of non-zero re-
ward (see Eq. (13)). Thus, in (d), we tested SPRL while
providing only the existence of non-zero reward (but not the
reward magnitude). SPRL learns to take the shortest path
between rewarding and initial states that is consistent with
the shortest-path definition in Definition 7.

7. Conclusion

We presented the k-shortest-path constraint, which can im-
prove the sample efficiency of any model-free RL method
by preventing the agent from taking sub-optimal transitions.
We empirically showed that SPRL outperforms vanilla RL
and strong novelty-seeking exploration baselines on four
challenging domains. We believe that our framework devel-
ops a unique direction for improving the sample efficiency
in reinforcement learning; hence, combining our work with
other techniques for better sample efficiency will be an inter-
esting future work that could benefit many practical tasks.

Acknowledgements This research is supported in part by
NSF IIS #1453651 and Korea Foundation for Advanced
Studies.

References

Abel, D., Hershkowitz, D., and Littman, M. Near optimal
behavior via approximate state abstraction. In Interna-
tional Conference on Machine Learning, pp. 2915-2923,
2016.

Abel, D., Arumugam, D., Lehnert, L., and Littman, M.
State abstractions for lifelong reinforcement learning. In
International Conference on Machine Learning, pp. 10—
19, 2018.

Altman, E. Constrained Markov decision processes, vol-
ume 7. CRC Press, 1999.

Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wain-
wright, M., Kiittler, H., Lefrancq, A., Green, S., Valdés,
V., Sadik, A., et al. Deepmind lab. arXiv preprint
arXiv:1612.03801, 2016.

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253-279, 2013.

Bellemare, M. G., Srinivasan, S., Ostrovski, G., Schaul,
T., Saxton, D., and Munos, R. Unifying count-based
exploration and intrinsic motivation. arXiv preprint
arXiv:1606.01868, 2016.

Bellman, R. On a routing problem. Quarterly of applied
mathematics, 16(1):87-90, 1958.

Bertsekas, D. P. and Tsitsiklis, J. N. An analysis of stochas-
tic shortest path problems. Mathematics of Operations
Research, 16(3):580-595, 1991.

Bertsekas, D. P. and Tsitsiklis, J. N. Neuro-dynamic pro-
gramming: an overview. In Proceedings of 1995 34th
IEEE Conference on Decision and Control, volume 1, pp.
560-564. IEEE, 1995.

Bertsekas, D. P., Castanon, D. A_, et al. Adaptive aggrega-
tion methods for infinite horizon dynamic programming.
1988.

Burda, Y., Edwards, H., Pathak, D., Storkey, A., Darrell, T.,
and Efros, A. A. Large-scale study of curiosity-driven
learning. arXiv preprint arXiv:1808.04355, 2018a.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. Ex-
ploration by random network distillation. arXiv preprint
arXiv:1810.12894, 2018b.

Castro, P. S. Scalable methods for computing state simi-
larity in deterministic markov decision processes. arXiv
preprint arXiv:1911.09291, 2019.

Chevalier-Boisvert, M., Willems, L., and Pal, S. Minimalis-
tic gridworld environment for openai gym. https://
github.com/maximecb/gym-minigrid, 2018.

Choi, J., Guo, Y., Moczulski, M., Oh, J., Wu, N., Norouzi,
M., and Lee, H. Contingency-aware exploration in re-
inforcement learning. arXiv preprint arXiv:1811.01483,
2018.

Coulom, R. Efficient selectivity and backup operators in
monte-carlo tree search. In International conference on
computers and games, pp. 72—83. Springer, 2006.

Dean, T. L., Givan, R., and Leach, S. Model reduction
techniques for computing approximately optimal solu-
tions for markov decision processes. arXiv preprint
arXiv:1302.1533, 2013.

Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert,
M., Radford, A., Schulman, J., Sidor, S., Wu, Y., and
Zhokhov, P. Openai baselines. https://github.
com/openai/baselines, 2017.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O.,
and Clune, J. Go-explore: a new approach for hard-
exploration problems. arXiv preprint arXiv:1901.10995,
2019.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih,
V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning,
L., et al. Impala: Scalable distributed deep-rl with impor-
tance weighted actor-learner architectures. arXiv preprint
arXiv:1802.01561, 2018.

Ferns, N., Panangaden, P., and Precup, D. Metrics for finite
markov decision processes. In UAI, volume 4, pp. 162—
169, 2004.

Florensa, C., Held, D., Wulfmeier, M., Zhang, M., and
Abbeel, P. Reverse curriculum generation for reinforce-
ment learning. In Conference on robot learning, pp. 482—
495. PMLR, 2017.

Ford Jr, L. R. Network flow theory. Technical report, Rand
Corp Santa Monica Ca, 1956.

Givan, R., Dean, T., and Greig, M. Equivalence notions
and model minimization in markov decision processes.
Artificial Intelligence, 147(1-2):163-223, 2003.

Guo, X., Singh, S., Lewis, R., and Lee, H. Deep learning
for reward design to improve monte carlo tree search in
atari games. arXiv preprint arXiv:1604.07095, 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp- 770-778, 2016.

Higgins, L., Pal, A., Rusu, A., Matthey, L., Burgess, C.,
Pritzel, A., Botvinick, M., Blundell, C., and Lerchner,
A. Darla: Improving zero-shot transfer in reinforcement
learning. In Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70, pp. 1480-1490.
JMLR. org, 2017.

Huang, Z., Liu, F.,, and Su, H. Mapping state space using
landmarks for universal goal reaching. In Advances in
Neural Information Processing Systems, pp. 1940-1950,
2019.

Kakade, S. M. et al. On the sample complexity of reinforce-
ment learning. PhD thesis, University of London London,
England, 2003.

Khetarpal, K. and Precup, D. Attend before you act: Lever-
aging human visual attention for continual learning. arXiv
preprint arXiv:1807.09664, 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid
https://github.com/openai/baselines
https://github.com/openai/baselines

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

Lai, T. L. and Robbins, H. Asymptotically efficient adaptive
allocation rules. Advances in applied mathematics, 6(1):
4-22, 1985.

Laskin, M., Emmons, S., Jain, A., Kurutach, T., Abbeel,
P., and Pathak, D. Sparse graphical memory for robust
planning. arXiv preprint arXiv:2003.06417, 2020.

Li, L., Walsh, T. J., and Littman, M. L. Towards a unified
theory of state abstraction for mdps. In ISAIM, 2006.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529-533, 2015.

Nachum, O., Gu, S. S., Lee, H., and Levine, S. Data-
efficient hierarchical reinforcement learning. In Advances

in Neural Information Processing Systems, pp. 3303—
3313, 2018.

Ng, A. Y., Harada, D., and Russell, S. Policy invariance
under reward transformations: Theory and application to
reward shaping. In ICML, volume 99, pp. 278-287, 1999.

Norvig, P. R. Artificial Intelligence: A Modern Approach.
Prentice Hall, 2002.

Oh, J., Guo, Y., Singh, S., and Lee, H. Self-imitation learn-
ing. In International Conference on Machine Learning,
pp- 3878-3887. PMLR, 2018.

Oudeyer, P.-Y. and Kaplan, F. What is intrinsic motivation?
a typology of computational approaches. Frontiers in
neurorobotics, 1:6, 2009.

Pathak, D., Agrawal, P.,, Efros, A. A., and Darrell, T.
Curiosity-driven exploration by self-supervised predic-
tion. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, pp. 2778-2787. JIMLR.
org, 2017.

Plappert, M., Andrychowicz, M., Ray, A., McGrew, B.,
Baker, B., Powell, G., Schneider, J., Tobin, J., Chociej,
M., Welinder, P, et al. Multi-goal reinforcement learn-
ing: Challenging robotics environments and request for
research. arXiv preprint arXiv:1802.09464, 2018.

Riedmiller, M., Hafner, R., Lampe, T., Neunert, M., De-
grave, J., Wiele, T., Mnih, V., Heess, N., and Springen-
berg, J. T. Learning by playing solving sparse reward
tasks from scratch. In International Conference on Ma-
chine Learning, pp. 4344-4353. PMLR, 2018.

Savinov, N., Dosovitskiy, A., and Koltun, V. Semi-
parametric topological memory for navigation. arXiv
preprint arXiv:1803.00653, 2018a.

Savinov, N., Raichuk, A., Marinier, R., Vincent, D., Polle-
feys, M., Lillicrap, T., and Gelly, S. Episodic curiosity
through reachability. /CLR, 2018b.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. Universal
value function approximators. In International conference
on machine learning, pp. 1312-1320, 2015.

Schmidhuber, J. Adaptive confidence and adaptive curios-
ity. In Institut fur Informatik, Technische Universitat
Munchen, Arcisstr. 21, 800 Munchen 2. Citeseer, 1991.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shang, W., Sohn, K., Almeida, D., and Lee, H. Under-
standing and improving convolutional neural networks
via concatenated rectified linear units. In international
conference on machine learning, pp. 2217-2225, 2016.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I, Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354-359, 2017.

Sutton, R. S. Between mdps and semi-mdps: Learning, plan-
ning, and representing knowledge at multiple temporal
scales. 1998.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Tessler, C., Mankowitz, D. J., and Mannor, S. Reward
constrained policy optimization. /CLR, 2019.

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N.,
Jaderberg, M., Silver, D., and Kavukcuoglu, K. Feu-
dal networks for hierarchical reinforcement learning. In
Proceedings of the 34th International Conference on Ma-
chine Learning-Volume 70, pp. 3540-3549. JMLR. org,
2017.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., Georgiev, P., et al. Grandmaster level in starcraft ii
using multi-agent reinforcement learning. Nature, 575
(7782):350-354, 2019.

Vodopivec, T., Samothrakis, S., and Ster, B. On monte
carlo tree search and reinforcement learning. Journal of
Artificial Intelligence Research, 60:881-936, 2017.

Zhang, A., Lerer, A., Sukhbaatar, S., Fergus, R., and Szlam,
A. Composable planning with attributes. /CML, 2018.

Zhang, T., Guo, S., Tan, T., Hu, X., and Chen, F. Generating
adjacency-constrained subgoals in hierarchical reinforce-
ment learning. arXiv preprint arXiv:2006.11485, 2020.

