
PC-MLP: Model-based Reinforcement Learning
with Policy Cover Guided Exploration

Yuda Song 1 Wen Sun 2

Abstract
Model-based Reinforcement Learning (RL) is a
popular learning paradigm due to its potential
sample efficiency compared to model-free RL.
However, existing empirical model-based RL ap-
proaches lack the ability to explore. This work
studies a computationally and statistically effi-
cient model-based algorithm for both Kernelized
Nonlinear Regulators (KNR) and linear Markov
Decision Processes (MDPs). For both mod-
els, our algorithm guarantees polynomial sam-
ple complexity and only uses access to a plan-
ning oracle. Experimentally, we first demon-
strate the flexibility and the efficacy of our al-
gorithm on a set of exploration challenging con-
trol tasks where existing empirical model-based
RL approaches completely fail. We then show
that our approach retains excellent performance
even in common dense reward control bench-
marks that do not require heavy exploration.

1. Introduction
Model-based Reinforcement Learning (MBRL) has played
a central role in Reinforcement Learning for decades and
has achieved great empirical performance on tasks such
as robotics (Deisenroth & Rasmussen, 2011; Levine &
Abbeel, 2014) and video games (Kaiser et al., 2019). How-
ever, most existing empirical model-based RL approaches
lack the ability to perform strategic exploration. Thus they
usually can not guarantee any global performance.

In this work, we consider learning to control a nonlin-
ear dynamical system. Specifically, we focus on systems
that can be modeled via Reproducing Kernel Hilbert Space
(RKHS). Following (Kakade et al., 2020), we name such
models Kernelized Nonlinear Regulators (KRNs). Such
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Figure 1. Example of the exploration ability of PC-MLP in the
HandEgg Experiment. The environment involves complex dy-
namics and sparse reward. Left: the HandEgg environment.
Right: PC-MLP can explore strategically and thus learns much
faster than other MBRL (SLBO and MBPO) baselines which rely
on random exploration.

model has been extensively used in the robotics community
in the last two decades due to its flexibility to capture popu-
lar models such as linear dynamics (LQRs), piece-wise hy-
brid linear system, nonlinear models that can be modeled
by higher-order polynomials, and systems that can be cap-
tured by Gaussian Processes (GPs) (e.g., (Ko et al., 2007;
Deisenroth & Rasmussen, 2011; Bansal et al., 2017; Fisac
et al., 2018; Umlauft et al., 2018; Mania et al., 2020)).
The fact that KNRs have been widely used in real-world
robotics and control problems proves that KNR is capa-
ble to model real-world dynamics. Thus it motivates the
development of algorithms that have global performance
guarantees, and are also provably sample and computation
efficient for KNRs.

(Kakade et al., 2020) initiated an information theoretical
analysis for KNRs and provided an algorithm (LC3) that
achieves near-optimal regret. However, the proposed LC3
algorithm relies on an optimistic planning oracle (see Sec. 3
for the detailed definition of an optimistic planning oracle)
which is unfortunately not computationally efficient. Thus
LC3 algorithm cannot be easily implemented using off-
shelf computational tools developed from the planning and
control community (e.g., highly efficient planning oracles).
While its regret analysis is novel and tight, the computation
inefficiency dramatically limits the practical usage of LC3.
In this work, we develop a Model-based algorithm named
PC-MLP, standing for Model Learning and Planning with
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Policy Cover for Exploration, that is provably sample ef-
ficient (i.e., polynomial in all relevant parameters), and is
also planning-oracle efficient, i.e., it only requires access to
a classic planning oracle rather than an optimistic planning
oracle. Thus PC-MLP allows one to leverage existing off-
shelf efficient planning oracles from the motion planning
and control community, which provide excellent flexibility
when deploying the algorithm to real-world control prob-
lems.

From RL side, several new linear MDP models (Yang &
Wang, 2019; Jin et al., 2019; Modi et al., 2020; Zhou et al.,
2020) recently have gained a lot of interest in the theoret-
ical RL community, though unlikely KNRs, these linear
MDP models haven’t been demonstrated to be applicable
in real world problems. While our focus in this work is
on KNRs due to their proven applicability to real-world
robotics problems, we nevertheless also analyze our algo-
rithm directly on linear MDPs. Note that linear MDPs are
different from KNRs as linear MDPs cannot capture simple
linear dynamical systems such as LQR.

Our contributions in this work are twofold. First, theoret-
ically, we provide a single algorithm framework PC-MLP
that is provably sample efficient, and computation-wise is
planning-oracle efficient (i.e., no more optimistic planning)
in both KNRs and Linear MDPs (Yang & Wang, 2019), si-
multaneously. Our algorithm is modular and simple. It
maintains a policy cover (i.e., an ensemble that contains
all previous learned policies) and learns a model from the
traces of the policies in the cover. Policy cover avoids
catastrophic forgetting issue when fitting the model (i.e.,
during model fitting, the latest model overfits to the cur-
rent policies’ traces). The algorithm also uses a simple
reward bonus scheme that is motivated from classic lin-
ear bandit algorithms (Dani et al., 2008) and also recent
RL algorithms that work beyond tabular settings (Agarwal
et al., 2020a). Unlike count-based reward bonus, our bonus
works provably on continuous state and actions space. Em-
pirically, we develop a practical version of PC-MLP—
Deep PC-MLP, which uses deep neural network for model
fitting, and random features (either Random fourier fea-
tures (Rahimi & Recht, 2008) or random network based
features (Burda et al., 2019)) for reward bonus design. We
evaluate Deep PC-MLP extensively on common continu-
ous control benchmarks including both sparse reward en-
vironments (e.g., sparse reward hand manipulation shown
in Fig. 1) and dense reward environments. Our algorithm
achieves excellent performance in both exploration chal-
lenging control tasks and the classic dense reward control
tasks.

This paper is structured as follows: in section 2 we provide
additional related works. Section 3 introduces the KNR and
linear MDPs settings, notations and basic assumptions. In

section 4 we describe our algorithm framework, PC-MLP,
while in section 5 we provide the main results on the sam-
ple complexity of PC-MLP in both linear MDPs and in
KNR. We then describe a practical implementation of PC-
MLP using deep neural networks in section 6. Sections 7
includes a comprehensive empirical evaluation of the prac-
tical implemenation.

2. Related Works
Below we discuss additional related works. On the theoret-
ical side of KNRs, (Mania et al., 2020) studied KNRs from
a system identification perspective. Their approach relies
on a reachability assumption and a Lipschitz assumption on
state-action features. Our work does not require any of the
two assumptions. The high-level intuition is that if there is
a subspace that is not reachable, it does not matter in terms
of policy optimization as no policy can reach that subspace
to collect rewards. When specializing in LQR, there are a
lot of prior works studying sample complexity of learning
in LQRs (Abbasi-Yadkori & Szepesvári, 2011; Dean et al.,
2018; Mania et al., 2019; Cohen et al., 2019; Simchowitz &
Foster, 2020). Optimal planning oracle in LQR exists and
has a closed-form solution of the optimal control policy.

On the RL side, in both theory and in practice, model-
based approaches are often considered to be sample effi-
cient (Deisenroth & Rasmussen, 2011; Levine & Abbeel,
2014; Chua et al., 2018; Sun et al., 2018; Kurutach et al.,
2018; Nagabandi et al., 2018; Luo et al., 2018; Ross & Bag-
nell, 2012; Sun et al., 2019; Osband & Van Roy, 2014;
Ayoub et al., 2020; Lu & Van Roy, 2019). Many exist-
ing empirical MBRL algorithms lack the ability to perform
exploration and thus cannot automatically adapt to explo-
ration challenging tasks. Existing theoretical works either
do not apply to KNRs directly or rely on optimistic plan-
ning oracles or a Thompson sampling approach which only
guarantees a regret bound in the Bayesian setting.

3. PRELIMINARIES
We consider episodic finite horizon MDPs M =
{S,A, H, r, P ?, s0} where s0 is a fixed initial state, 1 S
and A are continuous state and action space, H ∈ N+

is the horizon, r : S × A 7→ [0, 1] is the reward func-
tion, and P ? : S × A 7→ ∆(S) is the Markovian tran-
sition. In our learning setting, we assume reward r is
known but transition P ? is unknown. The learner is
equipped with a policy class Π ⊂ S 7→ ∆(A), and the
goal is to search for an optimal policy π? ∈ Π, such
that π? ∈ argmaxπ∈Π J(π; r, P ?), where J(π; r, P ) :=

1Our approach generalizes to a fixed initial state distribution.
We use fixed initial state to emphasize the need for exploration.
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E
[∑H−1

h=0 r(sh, ah)|ah ∼ π(·|sh), sh+1 ∼ P (·|sh, ah)
]

is
the expected total reward of π under a transition P ∈
S × A 7→ ∆(S) and reward r : S × A 7→ [0, 1]. In ad-
ditional to policy class Π, a model-based learner is also
equipped with a model class P ⊂ S × A 7→ ∆(S).
Throughout the paper, we assume realizability in model
class:

Assumption 1 (Model Realizability). We assume P is rich
enough such that P ? ∈ P .

We require the sample complexity of our learning algo-
rithm to depend only on the complexity measures of the
model class P .

The goal is to find an ε-near optimal policy from Π, i.e., a
policy π̂ such that J(π̂; r, P ?) ≥ maxπ∈Π J(π; r, P ?)− ε,
with high probability, using number of samples scaling
polynomially with respect to all relevant parameters includ-
ing the complexity of the model class P . With the above
setup, we discuss two specific examples.

Kernelized Nonlinear Regulators For a KNR, we de-
note the transition as s′ = W ?φ(s, a) + ε where S ⊂ Rds ,
ε ∼ N (0, σ2I), ‖W ?‖F ≤ F ∈ R+, and φ : S × A 7→
Rd is potentially a nonlinear mapping. In other words,
P ?(·|s, a) = N (W ?φ(s, a), σ2I). Here φ is known, σ is
known, but W ? is unknown to the learner. When φ cor-
responds to some kernel feature mapping, W ?φ(s, a) falls
into the corresponding Reproducing Kernel Hilbert Space
(RKHS). In this case, the model class P consists of tran-
sitions parameterized by W with ‖W‖F ≤ F . We can
denoteW = {W : ‖W‖F ≤ F}. It is clear that W ? ∈ W .
Prior work LC3 relies on an optimistic planning oracle, i.e.,
maxW∈Ball maxπ∈Π J(π; r,W ) with Ball ⊂ W .

Linear MDPs We consider a specific linear MDP model
P ?(s′|s, a) = 〈µ?(s′), φ(s, a)〉,∀s, a, s′ with φ : S×A 7→
Rd, where we assume µ? ∈ Υ ⊂ S 7→ Rd. Here µ? is
unknown but φ is known. Recently (Agarwal et al., 2020b)
show that such linear model has a latent representation in-
terpretation. For this model we assume Υ is finite and
µ? ∈ Υ. For norm bound, we assume ‖µ · ν‖2 ≤

√
d

for any ν ∈ R|S| with that ‖ν‖∞ ≤ 1. The statistical com-
plexity of the model class is the log of the cardinality of Υ,
i.e., ln |Υ|. This model does not directly capture the linear
MDP proposed by (Jin et al., 2019), but captures the ver-
sion from (Yang & Wang, 2019) due to its finite degree of
freedom in the linear model’s parameterization.2 The algo-
rithm from (Yang & Wang, 2019) also relies on optimistic
planning with value iteration to be the specific planning or-

2In (Yang & Wang, 2019), µ?(s) = M?ψ(s′) where M? ∈
Rdφ×dψ has bounded norm and ψ is known to the learner. Hence
standard covering argument can show that ln |Υ| is equivalent to
the covering dimension of the linear model parameterization.

acle.

Note that two models, linear MDPs and KNRs, are differ-
ent: one does not generalize the other. While linear MDP
generalizes the usual tabular MDPs, the Gaussian noise
makes KNRs are unable to generalize tabular MDPs di-
rectly. However KNRs generalizes polynomial dynamical
systems (i.e., linear system s′ = As+Ba+ ε) while linear
MDPs cannot.

Despite the differences in two models, we present a single
model-based algorithmic framework that takes P and Π as
inputs, and outputs an ε near-optimal policy π in sample
complexity scaling polynomially with respect to H, 1/ε, d
and the complexity of P , with polynomial number of calls
to a planning oracle OP(Π, r, P ).

Assumption 2 (Planning Oracle). Given reward r, tran-
sition P , and Π, we assume access to a planning oracle:
OP(Π, r, P ) := argmaxπ∈Π J(π; r, P ).

We treat OP as a black-box planning oracle and we do not
place any restrictions on the form of the oracle. It could
be a trajectory optimization based motion planner and con-
troller (Ratliff et al., 2009; Todorov & Li, 2005; Sun et al.,
2016) or it could be an asymptotically optimal sampling-
based planner (Williams et al., 2017a; Karaman & Fraz-
zoli, 2011). Note that OP(Π, r, P ) is a computation oracle
which does not use any real-world samples.

The algorithm framework simultaneously ap-
plies to both KNR and Linear MDPs, with
P =

{
P (·|s, a) : N (Wφ(s, a), σ2I),∀s, a | ‖W‖F ≤ F

}
and P = {P (·|s, a) : µφ(s, a),∀s, a | µ ∈ Υ} as model
class inputs, respectively,

Additional Notations We denote dπh ∈ ∆(S ×A) as the
state-action distribution induced by policy π at time step h,
and dπ =

∑H−1
h=0 d

π
h/H as the average state-action distri-

bution from π.

4. Algorithm Framework
In this section, we introduce our algorithmic framework.
Alg. 1 summarizes the algorithm PC-MLP standing for
Model Learning and Planning using Policy Cover for Ex-
ploration.

In high-level, the algorithm maintains a policy cover πn =
{π1, . . . , πn} that contains all previously learned policies.
In each episode, the model learning procedure is a max-
imum likelihood estimation on training data collected by
πn. Sampling from πn can be implemented by first sam-
pling i ∈ [1, . . . , n] uniformly random, and then sample
(s, a) from dπi . The model P̂n trained this way (via the
classic Maximum Likelihood Estimation) can predict well
under state-action pairs covered by πn. This forces the
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Algorithm 1 The PC-MLP Framework
Require: MDPM, inputs (N,K, λ,M,P, c)

1: Initialize π1

2: Set policy-cover π1 = {π1}
3: for n = 1→ N do
4: Draw K samples {si, ai} ∼ dπn
5: Set Σ̂πn =

∑K
i=1 φ(si, ai)φ(si, ai)

>/K

6: Set covariance matrix Σ̂n =
∑n
i=1 Σπi + λI

7: Model Learning (MLE) with data from policy-cover
πn and denote P̂n as an approximate optimizer of
the following optimization program:

max
P∈P

M∑
i=1

lnP (s′i|si, ai) (1)

where {si, ai} ∼ dπn , s′ ∼ P ?si,ai ,∀i ∈ [M ]

8: Set reward bonus b̂n as in Eq. 2
9: Plan πn+1 = OP

(
Π, r + b̂n, P̂n,

)
10: Update policy-cover: πn+1 = πn ⊕ {πn+1}
11: end for

learned model to achieve good prediction performance un-
der the state-action pairs that are covered by the current
policy cover πn.

For state-action pairs that do not well covered by πn, we
design reward bonus. Specifically, we form the (unnormal-
ized and regularized) empirical covariance matrix of the
policy cover πn, i.e., Σ̂n =

∑n
i=1 Σπi + λI . Intuitively,

any state-action pair (s, a), whose feature φ(s, a) falls into
the subspace corresponding to the eigenvectors of Σ̂n with
small eigenvalues, is considered as novel. Concretely, we
design reward bonus as:

b̂n(s, a) = min

{
2c

√
φ(s, a)>Σ̂−1

n φ(s, a), H

}
(2)

with c being a parameter. Note we truncate it at H just
because we know that the total reward is always upper
bounded by H . To gain an intuition of the reward bonus,
we can think about the tabular MDP as a special case here.
To model tabular MDPs, one can design φ(s, a) ∈ R|S|A|
as a one-hot vector that encodes state-action pair (s, a). In
this case, Σ̂n is a diagonal matrix and a diagonal entry ap-
proximates the probability ofπn visiting the corresponding
state-action pair.

With reward bonus to encourage further exploration at
novel state-action pairs, we invoke the planning oracle
OP(Π, r+ b̂n, P̂n) to search for the best policy from Π that
optimizes the combination r+b̂n under the empirical model
P̂n. The intuition here is that the optimal policy πn+1 re-
turned by the planning oracle can visit novel state-action

pairs due to reward bonus. Thus the new policy cover πn+1

expands the coverage of πn, which leads to exploration.

Such iterative framework—iteratively fitting model and
collecting new data using the optimal policy of the learned
model, is widely used in practical model-based approaches
(e.g., (Ross & Bagnell, 2012; Kaiser et al., 2019)), and our
framework simply designs additional reward bonus for the
planning oracle. There are prior works that leverage heuris-
tic reward bonus inside tree search (Schrittwieser et al.,
2019) for discrete action domains, though the reward bonus
in tree search in worst case performs no better than uniform
random exploration (Munos, 2014).

For KNRs and Linear MDPs models, different from the
LC3 algorithm (Kakade et al., 2020)3 and the algorithm
for linear MDP from (Yang & Wang, 2019), our algorithm
avoids the optimistic planning oracle and abstracts the de-
tails (e.g., optimistic value iteration) away via a black-box
planning oracle. Not only optimistic planning is compu-
tationally inefficient, but it also limits the flexibility of
plugging in existing efficient planning oracles developed
from the motion planning and control community. As we
demonstrate in our experiments, Alg. 1 has flexibility to
integrate rich function approximation (e.g., deep nets for
modeling transition P ), and furthermore state-of-the-art
model-based planning algorithms. In our experiments, we
use TRPO inside the learned model as the planner. Mean-
while, we also offer another implementation using MPPI
as the planner, and we perform an empirical comparison
between the two planners in Appendix C.1.

We note that the idea of policy cover was previously used
in PC-PG (Agarwal et al., 2020a). While PC-PG achieves
PAC bounds on linear MDPs, it cannot be applied to KNRs
due to the potential nonlinear Q functions in KNRs.4

5. Analysis
Algorithm 1 simultaneously applies to both linear MDPs
and KNRs except that it takes different parameterized
model class P as algorithmic inputs. PC-MLP achieves
polynomial sample complexity in both models, with access
to a planning oracle. Note prior work on KNR requires an
optimistic planning oracle, which is computationally inef-
ficient even in linear bandit.

For KNRs, regarding the MLE oracle, we can approxi-
mately optimize it via SGD. Namely, in Eq. 1, we can draw
one sample at a time, and perform one step of SGD. We

3While (Kakade et al., 2020) experimentally rely on Thomp-
son sampling, it is unclear if their frequentist regret bounds still
hold under Thompson sampling.

4PC-PG crucially relies on the fact that in linear MDPs the
quantity Es′∼P?(·|s,a)[f(s′)] is linear with respect to φ(s, a) for
any function f .
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perform total M steps of SGD. Due to the specific parame-
terization for P for KNRs, we can guarantee a generaliza-
tion bound that the learned model parameterized by Ŵn, is
close to W ? under dπn ,5

Es,a∼dπn ‖Ŵ
nφ(s, a)−W ?φ(s, a)‖2 ≤ Õ(1/

√
M).

Theorem 3 (KNRs). Fix ε ∈ (0, H) and δ ∈ (0, 1). With
probability at least 1 − δ, PC-MLP learns a policy π such
that J(π; r, P ?) ≥ maxπ∈Π J(π; r, P ?)− ε, using number
of samples Poly

(
H, 1/ε, ln(1/δ), d, ds, F,

1
σ

)
.

The detailed parameter setup and the polynomial depen-
dency can be found in Theorem 15. Unlike prior work
LC3 which relies on optimistic planning, here we show
that KNR is planning-oracle efficient PAC learnable. We
note that in their experiments, (Kakade et al., 2020) use a
Thompson sampling version of LC3, though without pro-
viding a regret proof of the Thompson sampling (TS) al-
gorithm. To the best of our knowledge, while achieving a
Bayesian regret bound is possible via TS, it is unclear if TS
achieves a frequentist regret bound for KNRs.

For linear MDPs result, we need a stronger assumption on
the MLE oracle. Specifically, we are going to assume that
we can exactly solve Eq. 1, i.e., we can find the best P ∈ P
that maximizes the training likelihood objective, i.e.,

P̂n ∈ argmax
P∈P

M∑
i=1

lnP (s′i|si, ai).

This poses a slightly stronger assumption on the computa-
tional MLE oracle. Such offline computational oracle has
been widely assumed in RL works using general function
approximation (e.g., (Ross & Bagnell, 2012; Agarwal et al.,
2020b)). Prior work (Agarwal et al., 2020b) established a
generalization bound for MLE in terms of the total varia-
tion distance. Specifically, we can show that under realiz-
ability assumption P ? ∈ P , we have the following gener-
alization bound:

Es,a∼dπn‖µ̂
nφ(s, a)− µ?φ(s, a)‖2tv ≤ Õ(1/M).

See Theorem 21 from (Agarwal et al., 2020b) for example.
With this MLE maximization oracle at training time, we
get the following statement for linear MDPs.

Theorem 4 (Linear MDPs Model). Fix ε ∈ (0, H) and δ ∈
(0, 1). With probability at least 1−δ, PC-MLP learns a pol-
icy π such that J(π; r, P ?) ≥ maxπ∈Π J(π; r, P ?)− ε, us-
ing number of samples Poly (H, 1/ε, ln(1/δ), d, ln (|Υ|)).

Note that the sample complexity scales polynomially with
respect to ln (|Υ|) rather than the cardinality |Υ|. Note that

5The Õ notation hides absolute constants and log terms.

Algorithm 2 Deep PC-MLP
Require: MDPM

1: Initialize π1

2: Set replay buffer D = ∅
3: Initialize model Pθ with parameters θ
4: for n = 1 . . . do
5: Draw K samples {si, ai, s′i} ∼ dπn
6: Set Σ̂πn =

∑K
i=1 φ(si, ai)φ(si, ai)

>/K

7: Set covariance matrix Σ̂n =
∑n
i=1 Σπi + λI

8: Add {si, ai, s′i}Ki=1 to replay buffer D
9: Perform C steps of SGD on model Pθ (Eq. 3)

10: Set reward bonus b̂n as in Eq. 2
11: Denote πn+1 := TRPO

(
r + b̂n, Pθ

)
12: end for

our model generalizes the linear MDP model from (Yang
& Wang, 2019) as we can use classic covering argument
here and ln(|Υ|) will correspond to the covering dimension
of the parameter space of the linear model from (Yang &
Wang, 2019). We provide detailed hyper-parameter setup
and polynomials in Theorem 14, and its proofs in Ap-
pendix A.

Theorems 3 and 4 indicate that the PC-MLP framework
achieves an oracle-efficient PAC guarantee on KNRs and
Linear MDPs simultaneously.

6. A Practical Algorithm: Deep PC-MLP
The PC-MLP framework and its analysis from the previous
sections convey three important messages: (1) use a policy
cover to ensure the learned model P̂ is accurate at the state-
action space that is covered by all previous learned policies,
(2) use the bonus to reward novel state-action pairs that are
not covered by all previous policies, (3) and use a planning
oracle on the combined reward to balance exploration and
exploitation. PC-MLP relies on three modules: (1) MLE
model fitting, (2) reward bonus design, (3) a planning or-
acle. In this section, we instantiate these three modules
which lead to a practical implementation (Alg. 2) that is
used in the experiment section.

In high level, the instantiation, Deep PC-MLP (Alg. 2), im-
plements the above three modules using standard off-shelf
techniques. For bonus, it uses Eq. 2 with φ being the value
of the second from the last layer of a randomly initialized
neural network, or a Random Fourier Feature (RFF) that
corresponds to the RBF kernel (Rahimi & Recht, 2008).
Randomly initialized network based bonus has been used
in practice before in the model-free algorithm RND (Burda
et al., 2019). Here we also demonstrate that such a bonus
can be effective in the model-based setting. 6

6In our setting, the random network shares the same structure
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For model learning, we represent model class P as a class
of feedforward neural networks Pθ with θ being the pa-
rameters to be optimized, that takes state-action pair as
the input, and outputs the predicted next state. Under the
assumption that both models and the true transition have
Gaussian noise with the covariance matrix σ2I , negative
log likelihood loss simply is reduced to standard `2 re-
construction loss. We use the standard replay buffer D to
store all previous (s, a, s′) triples. Note that since the re-
play buffer stores all prior experiences, it approximates the
state-action coverage from the policy cover πn. We up-
date the model with a few steps mini-batch SGD with the
mini-batch {si, ai, s′i}

m+L
i=1 randomly sampled from the re-

play buffer D. Here we use an L-step loss given its better
empirical performance demonstrated in (Nagabandi et al.,
2018; Luo et al., 2018):

θ :=

θ − µ
m∑
i=1

∇θ

(
L∑
l=1

‖(ŝi+l − ŝi+l−1)− (si+l − si+l−1)‖2

)
,

(3)

where ŝi = si and ŝi+l+1 = Pθ(ŝi+l, ai+l). In our experi-
ments, we use L = 2. 7

For planning oracle, we use TRPO (Schulman et al., 2015)
as our planner and adopt the framework in (Luo et al.,
2018) where in each iteration we make multiple inter-
changeable updates between the model and the TRPO
agent. We note that we can also leverage the state-of-art
model-based planner such as Model-Predictive-Path Inte-
gral (MPPI) (Williams et al., 2017a) due to its excellent
performance on challenging real-world continuous control
tasks, for example, agile autonomous driving (Williams
et al., 2017b). MPPI is easy to implement and for complete-
ness, we include the pseudocode of MPPI in Appendix D.1.
We also include an empirical comparison between the two
planners (TRPO and MPPI) in Appendix C.1.

7. Experiments
In this section, we investigate the empirical performance
of Deep PC-MPL. Our tests are mainly in two folds: we
first experiment on sparse rewards experiments which are
usually difficult for existing MBRL algorithms due to the
demand for significant exploration. We then test our al-
gorithm on benchmark environments with dense rewards,

as the deep dynamics model Pθ .
7We refer the construction of the L-step loss to Eq. (6.1) in

(Luo et al., 2018). Note that such update attempts to minimize the
gap between the difference between consecutive predicted states
and difference between consecutive ground truth states.
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Figure 2. Episodic returns and success rates on MountainCar
(top), Acrobot (bottom) environments with continuous action
spaces, averaged over 4 random seeds. For the learning curve
of HandEgg experiment, we refer back to Fig. 1. The solid line
denotes the mean and the shaded area denotes one standard devi-
ation. Note in the top plot the results of SLBO and PETS-GT al-
most overlap after the second iteration and thus the learning curve
of SLBO is covered.

where exploration is not mandatory. Our results show that
our practical algorithm achieves competitive results in both
scenarios and a moderate amount of exploration induced
by our algorithm can even boost the performance under the
dense reward settings. In this section, we refer our algo-
rithm as the version that uses φ from the random network
and TRPO as the planner. We include all experiments and
hyperparameter details in Appendix D.

7.1. Sparse Reward Environments

We first investigate how our algorithm mitigates the ex-
ploration issue faced by traditional MBRL algorithms with
three continuous control and robotic environments in Ope-
nAI Gym (Brockman et al., 2016). The first environment is
the Mountain Car environment (Moore, 1990) with a con-
tinuous action space of [−1, 1]. Upon every timestep, a
small control cost is incurred, and the learner receives no
reward until they reach the goal where they receive a reward
of 100 and the episode terminates. The second environment
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HalfCheetah Hopper-ET Walker2D-ET Reacher Ant

PETS-CEM 2795.3± 879.9 129.3± 36.0 −2.5± 6.8 −15.1± 1.7 1165.5± 226.9
SLBO 1097.7± 166.4 805.7± 142.4 207.8± 108.7 −4.1± 0.1 718.1± 123.3

Best MBBL 3639.0 ± 1185.8 926.9± 154.1 312.5± 493.4 −4.1± 0.1 1852.1 ± 141.0
Deep PC-MLP (Ours) 3599.9± 662.6 1076.1 ± 378.6 1873.9 ± 927.0 −3.8 ± 0.2 1583.1± 903.6

TRPO −12± 85.5 237.4± 33.5 229.5± 27.1 −10.1± 0.6 323.3± 24.9

Humanoid-ET SlimHumanoid-ET Swimmer Swimmer-v0 Pendulum

PETS-CEM 110.8± 91.0 355.1± 157.1 306.3± 37.3 22.1± 25.2 167.4± 53.0
SLBO 1377.0± 150.4 776.1± 252.5 125.2± 93.2 46.1± 18.4 173.5± 2.5

Best MBBL 1377.0± 150.4 1084.3± 77.0 336.3 ± 15.8 85.0 ± 98.9 177.3 ± 1.9
DEEP PC-MLP (Ours) 1775.5 ± 322.2 1521.0 ± 232.6 161.8± 167.8 26.1± 21.0 174.0± 2.4

TRPO 289.8± 5.2 281.3± 10.9 215.7± 10.4 37.9± 2.0 166.7± 7.3

Table 1. Final performance for benchmark Mujoco locomotion and navigation tasks. The MBRL (top 4) algorithms are evaluated after
200k real world samples and the MFRL algorithm (TRPO) is evaluated after 1 million real world samples. All the results of the
baselines (both model-based and model-free ones) are directly adopted from (Wang et al., 2019). We use the same 4 random seeds as in
the benchmark paper while testing our algorithm and reporting the results. Here “ET” in the environment name denotes that the planner
has access to the termination function, which is a common assumption in current MBRL algorithms (Janner et al., 2019; Rajeswaran
et al., 2020). We use bold font to highlight the results of the algorithms with top 1 episodic rewards in each of the environments.

is Acrobot (Sutton, 1996; Geramifard et al., 2015), and
while the original action space is discrete, here we change
the action space to continuous with range [−1, 1]. We use
the same reward scheme as in Mountain Car. The third en-
vironment is a hand manipulation task on the egg object
(Plappert et al., 2018). We follow the original task design
that incurs a constant penalty for not reaching the goal but
we change the reward to 10 upon reaching the goal state.
We remove the rotational perturbation but still keep the po-
sitional perturbation during goal sampling. This slightly
relaxes the problem since our focus is on exploration issue
instead of solving goal-conditioned RL problems and one
algorithm is still required to learn the rotational dynamics
by strategic exploration.

We observe that these three environments are very chal-
lenging to traditional MBRL algorithms: in the first two
environments, because of the existence of the motor cost,
one suboptimal policy is to just take actions with minimal
motor costs. Thus the model will only be accurate around
the initial states and never reach the goal state. For the
manipulation environment, the huge state space and com-
plex dynamics prohibit random exploration, which could
require impractical numbers of samples to accurately cap-
ture the dynamics.

Here we compare with three MBRL baselines: a) PETS-
GT (Chua et al., 2018) with CEM (Botev et al., 2013),
and here we gives it the access to the ground truth dy-
namics. We also include baselines with moderate explo-
ration power: b) SLBO (Luo et al., 2018) enforces entropy
regularization during TRPO updates and adding Ornstein-
Uhlunbeck noise while collecting samples. c) MBPO (Jan-
ner et al., 2019) uses SAC (Haarnoja et al., 2018) as the
planner to encourage exploration. We plot the learning

curves in Fig. 2. In the first two environments, while all the
other baselines completely fail, Deep PC-MPL achieves the
optimal performance within very few model updates. This
indicates that with our constructed bonus, the planner has
enough exploration power to reach the goal state with small
numbers of samples. The results on the manipulation task
also verify our hypothesis: with strategic exploration, our
algorithm captures the dynamics in a reasonable number
of samples and thus the planner learns to reach to the goal
while planning under the accurate model. However, with
the same number of samples, the other baseline (SLBO)
with random exploration could barely reach the goal state
with the inaccurate dynamics model due to insufficient ex-
ploration.

7.2. Dense Reward Environments

For dense reward environments, we follow the same setup
as in the MBRL benchmark paper (Wang et al., 2019). We
test Deep PC-MPL in 10 Mujoco (Todorov et al., 2012)
locomotion and navigation environments. We report the fi-
nal evaluation performance of our algorithm (after training
with 200k real-world samples) in Table 1. For reference,
we include the performances of PETS-CEM (Chua et al.,
2018), SLBO (Luo et al., 2018), and the best MBRL algo-
rithm in the benchmark paper for each corresponding en-
vironment (denoted as Best MBBL). We also include the
evaluation result of our planner algorithm, TRPO, trained
with 1 million real-world samples. Following the format
in (Wang et al., 2019), we also provide the ranking of each
algorithm in Table 2.

The results show that Deep PC-MPL achieves the best per-
formances in 5 out of 10 environments, including the most
challenging control environments such as Humanoid and
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PETS-CEM SLBO
Mean Rank 5.6/11 4/11

Median Rank 6/11 5/11
Best MBBL Deep PC-MLP (Ours)

Mean Rank 4/11 2.4/11
Median Rank 4/11 1.5/11

Table 2. The rankings of our algorithm and other baselines in the
10 benchmark environments in Table 1. The rankings are out
of 11 algorithms (10 baselines from the benchmark paper plus
Deep PC-MLP). We rank the algorithms descendingly based on
their mean episodic returns for each task. We then take the aver-
age position in the ranking (from 1 to 11) across the 10 tasks as
the mean rank and likewise for the median rank. Note here the
best mean and median rank from the benchmark paper (denoted
as Best MBBL) may not be the rank of the same algorithm.

Walker. This indicates that our exploration scheme helps
boost the performances even under dense reward settings.
Note that our algorithm uses the same set of hyperparame-
ters for all 10 environments.

7.3. Ablation Study on Bonus

Next, we investigate how the magnitude of the exploration
bonus affects the performance of our algorithm. We con-
trol the amount of exploration by changing the bonus coef-
ficient c defined in Eq. 2 and we show the learning curves
of different coefficient choices in Fig. 3.

For sparse reward environment such as Mountain Car, lack-
ing exploration results in a suboptimal policy that takes ac-
tions that minimize the motor cost, which resembles the
behaviors of the other baseline algorithms in section 7.1. If
the bonus signal is not strong enough (c = 1), we hypothe-
size that the control cost still dominates and thus it results in
the same suboptimal policy with limited exploration around
the initial states. For dense reward environments, existence
of bonus (c = 0.1) outperforms situation where there is no
bonus (c = 0). However, if the bonus signal is too strong
(c = 1), it will focus too much on exploration while ignor-
ing exploitation.

7.4. Ablation Study: Vanishing Bonus

According to the construction of bonus, our algorithm will
assign small bonuses to state-action pairs that are already
visited. Theoretically, the bonuses of all state-action pairs
will eventually converge to 0 after we fully explore the en-
vironment. In this section, we investigate the trend of the
bonus empirically in the sparse reward environment Moun-
tainCar. Fig. 4 shows the curve of the bonus per timestep
that the planner receives during the evaluation phase in the
real-world environment. Here all hyperparameters are fixed
as in the settings in section 7.1. We discover that the aver-
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Figure 3. Ablation study: Comparison of different bonus coeffi-
cients in sparse reward environment MountainCar (top) and dense
reward environment Walker2D (bottom). The results are averaged
over 4 random seeds. The solid line denotes the mean and the
shaded area denotes one standard deviation. In the first plot, note
that the behaviors when c = 0 and c = 1 are identical thus the
learning curves overlap.

age bonus converges to near 0 quickly, indicating that our
algorithm can finish fully exploring the environment within
the very first few iterations.

8. Conclusion
In this paper, we introduce a new algorithm framework PC-
MLP, which stands for Model Learning and Planning with
Policy Cover for Exploration. We show that the same algo-
rithm framework achieves polynomial sample complexity
on both linear MDP and KNR models. Computation wise,
the algorithm uses a reward bonus and a black-box planner
that optimizes the combination of the ground truth reward
and the reward bonus inside the learned models.

Our algorithm is modular and has great flexibility to in-
tegrate with modern rich function approximators such as
deep neural networks. We provide a practical instantiation
of PC-MLP where we use a deep neural network to model
transition dynamics and uses reward bonus based on ran-
dom features either from RFF or from a fully connected
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Figure 4. Decay of bonus per timestep as Deep PC-MPL fully ex-
plores the Mountain Car environment. The results are collected
on the same random seeds as in section 7.1.

layer of a randomly initialized neural network. Our bonus
scheme is simple and is motivated by classic linear ban-
dit theory and recent RL theory on models beyond tabular
MDPs. Extensive empirical results indicate that our algo-
rithm works well on exploration challenging tasks includ-
ing a high-dimensional manipulation task. For a common
continuous control benchmark where the dense reward is
available, our algorithm still provides competitive results.
Further ablation study indicates that even for dense reward
settings, a mild amount of exploration is helpful.

References
Abbasi-Yadkori, Y. and Szepesvári, C. Regret bounds for
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