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Appendix
Roadmap In Section A, we give an algorithm to compute a subspace embedding for the Gaussian kernel using Theo-
rem 4.8. In Section B, we characterize a large class of kernels based on the coefficients in their Taylor expansion, and
develop fast algorithms for different scenarios. In Section C, we apply our results in Section B to the Neural Tangent ker-
nel. In Section D, we use our sketch in conjunction with another sketch to compute a good preconditioner for the Gaussian
kernel. In Section E, we compose our sketch with our sketching matrices to solve Kernel Ridge Regression.

Notation We use Õ(f) to denote f poly(log f) and use Ω̃(f) to denote f/poly(log f).

For an integer n, let [n] denote the set {1, 2, · · · , n}. For two scalars a and b, we say a ≈ε b if (1− ε)b ≤ a ≤ (1+ ε)b. We
say a square matrix A is positive semidefinite (PSD) if ∀x, x>Ax ≥ 0. For two PSD matrices A and B, we define A ≈ε B
if (1− ε)B � A � (1 + ε)B. For a matrix A, we use ‖A‖F = (

∑
i,j A

2
i,j)

1/2 to denote its Frobenius norm and use ‖A‖op

to denote its operator (spectral) norm. For a square matrix A, we use tr[A] to denote the trace of A. For a square matrix A,
we use λmin(A), λmax(A) to denote its smallest and largest eigenvalues, respectively. For a rectangular matrix A, we use
σmin(A), σmax(A) to denote its smallest and largest singular values.

A. Gaussian Kernel
We apply Algorithm 1 to compute a subspace embedding to the Gaussian kernel matrix G ∈ Rn×n defined over n data
points of dimension d, denoted by X ∈ Rd×n. Our method has the advantage that when d is large and the matrix X is
dense, its leading factor depends nearly linearly on nd, which makes it useful for certain biological and NLP tasks.

We remark that our construction of a sketch for the Gaussian kernel and its corresponding analysis is inspired by (Ahle
et al., 2020), and is thus similar to the proof of Theorem 5 in their paper. For completeness, we include a proof here.

Theorem A.1 (Gaussian Kernel, formal version of Theorem 6.1). Let r ∈ R+ and X ∈ Rd×n be such that ‖xi‖2 ≤ r for
all i ∈ [n], where xi is the i-th column of X . Suppose G ∈ Rn×n is the Gaussian kernel matrix given in Definition 2.14.
For any accuracy parameter ε ∈ (0, 1) and for any failure probability δ ∈ (0, 1), there exists an algorithm running in time:

O(ε−2n2q3 · log3(nd/εδ) + nd log(nd/εδ))

and outputting a matrix Wg(X) ∈ Rm×n such that

Pr [Wg(X)>Wg(X) ≈ε G] ≥ 1− δ

where m = Ω(ε−2nq3 log3(nd/εδ)) and q = Θ(r2 + log(n/ε)).

Proof. By definition of the Gaussian kernel matrix Gi,j = exp(−‖xi − xj‖22/2), we can rewrite it as G = DKD, where
D is an n× n diagonal matrix with ith diagonal entry equal to exp(−‖xi‖22/2) and K ∈ Rn×n is a positive definite kernel
matrix defined as Ki,j = exp(x>i xj). Note the Taylor series expansion for kernel K gives

K =

∞∑

l=0

(X⊗l)>X⊗l

l!
.

Let q = C · (r2 + log(n/ε)) for a sufficiently large constant C, and let Q =
∑q
l=0

(X⊗l)>X⊗l

l! be the first q terms of K.
Then by the triangle inequality we have:

‖K −Q‖op ≤
∑

l>q

∥∥∥∥
(X⊗l)>X⊗l

l!

∥∥∥∥
op

≤
∑

l>q

∥∥∥∥
(X⊗l)>X⊗l

l!

∥∥∥∥
F

≤
∑

l>q

n · r2l

l!

≤ ε/2.
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Then Q is a positive definite kernel matrix and ‖D‖op ≤ 1. Therefore, in order to get a subspace embedding for G it is
sufficient to satisfy the following with probability 1− δ:

(1− ε/2) ·DQD �Wg(X)>Wg(X) � (1 + ε/2) ·DQD.

For each term (X⊗l)>X⊗l in Q, we run Algorithm 1 to approximate X⊗l. Let Zl ∈ Rml×n be the resulting matrix
Z(S, T,X), where

ml = Ω(ε−2nl2 · log2(nd/εδ) · log(n/δ)).

Then by Theorem 5.1, we get

(1− ε/2)(X⊗lD)>X⊗lD � (ΠlX⊗lD)>ΠlX⊗lD � (1 + ε/2)(X⊗lD)>X⊗lD (4)

with probability at least 1− δ
q+1 . Moreover, Zl can be computed in time

O(ε−2n2l2 · log2(nd/εδ) · log(n/δ)).

Our algorithm will simply compute Zl from l = 0 to q, normalize each Zl by 1√
l!

, and then multiply by D. More precisely,
the approximation Wg(X) will be

Wg(X) =
( q⊕

l=0

Zl√
l!

)
D

where we use A ⊕ B to denote the matrix
[
A
B

]
if A and B have the same number of columns. Notice Wg(X) ∈ Rm×n.

The following holds for Wg(X)>Wg(X):

Wg(X)>Wg(X) = D
( q∑

l=0

Z>l Zl
l!

)
D

=

q∑

l=0

(ZlD)>ZlD
l!

.

By combining terms in (4) and using a union bound over all 0 ≤ l ≤ q, we obtain that with probability at least 1 − δ, we
have the following:

(1− ε/2) ·DQD �Wg(X)>Wg(X) � (1 + ε/2) ·DQD.

Thus, we conclude that

(1− ε) ·G �Wg(X)>Wg(X) � (1 + ε) ·G.

Note the target dimension of Wg is

m = m0 +m1 + · · ·+mq

= Ω(ε−2nq3 · log2(nd/εδ) · log(n/δ)).

Also, by Theorem 5.1, the time to compute Wg(X) is

t = t0 + t1 + · · ·+ tq

= O(ε−2n2q3 · log2(nd/εδ) · log(n/δ)).

Notice we will have to pay an additive nd log(nd/εδ) due to line 2 of Algorithm 1, when applying the SRHT to X .
However, we only need to perform this operation once for the term with the highest degree, or the terms with lower degree
that can be formed by combining nodes computed with the highest degree. Thus, the final runtime is

O(ε−2n2q3 · log2(nd/εδ) · log(n/δ) + nd log(nd/εδ)).
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B. General p-Convergent Sequences
We consider general p-convergent kernels defined below in Definition B.1. We apply our proposed Algorithm 1 to compute
a subspace embedding with a fast running time.

B.1. General Theorem for p > 1

In this section, we state a general theorem for p > 1. The proof is similar to the proof for Theorem A.1. We start by
restating the definition of a p-convergent kernel.

Definition B.1 (p-convergent kernel matrix, formal version of Definition 6.2). Given an input matrix X ∈ Rd×n, we say
the kernel matrix K ∈ Rn×n is p-convergent if its corresponding Taylor expansion series can be written as follows:

K =
∞∑

l=0

Cl · (X⊗l)>X⊗l,

where the positive coefficients Cl > 0 are a function of l, and Cl satisfies

Cl = (l + 1)−Θ(p).

Theorem B.2 (Sketch for p-convergent Kernels, formal version of Theorem 6.3). Let r ∈ R+ and p > 1 be an integer, and
let X ∈ Rd×n be such that ‖xi‖2 ≤ r for all i ∈ [n], where xi is the i-th column of X . Suppose that K is a p-convergent
kernel matrix. For any p > 1, we choose m = Ω(ε−2nq3 log3(nd/εδ)) and q = Θ(r2 + (n/ε)1/p). There exists an
algorithm which computes a matrix Wg(X) ∈ Rm×n in time

O(ε−2n2q3 · log3(nd/εδ) + nd · log(nd/εδ))

such that

Pr [Wg(X)>Wg(X) ≈ε G] ≥ 1− δ.

Proof. Similar to the Gaussian kernel, here we use the first q terms to approximate the kernel matrix K.

Let q = C · (r2 + (n/ε)1/p) for a sufficiently large constant C, and let Q =
∑q
l=0 Cl(X

⊗l)>X⊗l be the first q terms of
K. By the triangle inequality, we have

‖K −Q‖op ≤
∑

l>q

Cl
∥∥(X⊗l)>X⊗l

∥∥
op

≤
∑

l>q

Cl
∥∥(X⊗l)>X⊗l

∥∥
F

≤
∑

l>q

Cl · n · r2l

≤ ε/2.

The proof is identical to the proof of Theorem A.1, with the target dimension of Wg being m = m0 + m1 + · · · + mq =
Ω(ε−2nq3 log(nd/δε) log(n/δ)).

Similar to Theorem A.1, we have to pay an extra nd log(nd/εδ) term to apply the SRHT to X , so the final running time is

t0 + t1 + · · ·+ tq + nd log(nd/εδ) = O(ε−2n2q2 log(nd/δε) log(n/δ) + nd log(nd/εδ)).

Remark B.3. Recall our setting is when d = poly(n), so if p ≥ 3, Theorem B.2 gives a running time of Õ(n3/ε2 + nd),
which is better than the classical result of O(n2d) as long as d > n/ε2. However, if p ∈ (1, 3), Theorem B.2 gives a worse
dependence on n, which can be further optimized.
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B.2. Sampling Scheme for 1 < p < 3

We next describe a novel sampling scheme if p ∈ (2, 3), with a better dependence on n compared to Theorem B.2. We first
state some probability tools.

Theorem B.4 (Matrix Bernstein Inequality(Tropp, 2015)). Let S1, . . . , Sn be independent, zero-mean random matrices
with common size d1 × d2, and assume each one is uniformly bounded:

E[Sk] = 0, ‖Sk‖op ≤ L, k ∈ [n]

Let Z =
∑n
k=1 Sk, and let Var[Z] = max{‖E[Z>Z]‖op, ‖E[ZZ>]‖op}. Then for all t > 0,

Pr [‖Z‖op ≥ t] ≤ (d1 + d2) · exp

( −t2/2
Var[Z] + Lt/3

)
.

Theorem B.5 (Sampling Scheme for 2 < p < 3). Let p > 1 be an integer and X ∈ Rd×n be such that ‖xi‖2 = 1 for all
i ∈ [n], where xi is the i-th column of X , suppose K is a p-convergent kernel matrix. For any p ∈ (2, 3), there exists an
algorithm which computes a matrix Wg(X) with n columns in expected running time

O((n/ε)2+6/(1+2p) · poly(log(nd/εδ)) + nd log(nd/εδ))

such that

Pr [Wg(X)>Wg(X) ≈ε G] ≥ 1− δ.

Proof. Let q be the degree used in Theorem B.2 where q = Θ((n/ε)1/p), and let s be some positive integer smaller than
q. We will consider the following scheme:

• For the first s terms in the Taylor expansion, we approximate each term directly using Theorem B.2.

• For each of the next q − s terms, we sample proportional to their coefficient Cl, taking only s samples in total.

Correctness proof We will show that

s = Θ((n/ε)2/(1+2p) · poly(log(nd/εδ)))

samples suffice. Let P be the sum of the first s terms in the Taylor expansion of K, and let R be the remaining q− s terms.
Our goal is to have ‖R‖op ≤ ε‖K‖op. We first calculate ‖R‖op:

‖R‖op ≤
q∑

l=s+1

Cl · n

=

q∑

l=s+1

1

lp
· n

≤ n

sp
.

Notice that if ‖K‖op is large, then it suffices to use the first s terms. Specifically, if ‖K‖op ≥ n
ε s
−p, then we are done.

Otherwise, suppose ‖K‖op ≤ n
ε s
−p. We will invoke Theorem B.4 to do the sampling. Let T =

∑q
l=s+1

1
lp and pi = Ci

T .
Define the random variable Si as follows: with probability pl, we sample R − Cl

pl
(X⊗l)>X⊗l for l = s + 1, . . . , q. First

notice that Si is unbiased:

E[Si] = R−
q∑

i=s+1

pi
Ci
pi

(X⊗i)>X⊗i = 0.
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Using the triangle inequality, we have

‖Si‖op ≤ T · ‖(X⊗i)>X⊗i‖op + ‖R‖op

≤ ns−p + ns−p

= 2ns−p.

We now consider the operator norm of the expectation of S>i Si:

‖E[S>i Si]‖op =
∥∥∥C

2
i

pi
(X⊗i)>X⊗i(X⊗i)>X⊗i +R>R− Ci

pi
(X⊗i)>X⊗iR− Ci

pi
R(X⊗i)>X⊗i

∥∥∥
op

≤ ‖CiT (X⊗i)>X⊗i(X⊗i)>X⊗i‖op + ‖R>R‖op + T · (‖(X⊗i)>X⊗iR‖op + ‖R(X⊗i)>X⊗i‖op)

≤ CiTn2 + (ns−p)2 + 2Tn · ns−p

= 4n2s−2p.

Let Z =
∑m
i=1 Si. Since each sample is sampled independently, we have

‖E[Z>Z]‖op =
∥∥∥E
[ s∑

i=1

S>i Si
]∥∥∥

op

≤
s∑

i=1

‖E[S>i Si]‖op

≤ 4mn2s−2p.

Let t = mε‖K‖op. Applying Theorem B.4, we get that

Pr [‖Z‖op ≥ mε‖K‖op] ≤ 2n · exp

(
−m2ε2‖K‖2op/2

4mn2s−2p + 2mε‖K‖opns−p/3

)
.

Picking m = Θ(ε−2n2s−2p log(n/δ)), and then averaging over m samples, we get that

Pr

[∥∥∥ 1

m

m∑

i=1

Si

∥∥∥
op
≥ ε‖K‖op

]
≤ δ, (5)

where we use the fact that the operator norm of K is at least 1, by our choice of s. We now compute the expected running
time of this algorithm.

Runtime part 1: Computing the first s terms For the first s terms, we can apply the same reasoning as in Theorem B.2
to get a running time of O(ε−2n2s3 poly(log(nd/εδ)) + nd log(nd/εδ)).

Runtime part 2: Sampling the next s terms For the sampling part, we consider the expected degree D of the sample
we will be working with:

D =

q∑

l=s+1

pl · l

=

∑q
l=s+1 l

1−p
∑q
l=s+1 l

−p

≤ s1−p

s−p − q−p

= s+
s · q−p

s−p − q−p

= s+
s

( sq )p − 1

= Õ((n/ε)2/(1+2p)).
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Now we are ready to compute the expected running time of the sampling phase:

m ·D2n2/ε2 = (n/ε)2+6/(1+2p) · poly(log(nd/εδ)).

Additionally, we need to apply the SRHT to X at most twice, once for the initial phase, and once for the sampling phase,
so the final running time is

(n/ε)2+6/(1+2p) · poly(log(nd/εδ)) + nd log(nd/εδ).

When p ∈ (1, 2], we use the largest degree q as an upper bound for analyzing our running time.

Corollary B.6 (Sampling Scheme for 1 < p ≤ 2). Let p > 1 be an integer and X ∈ Rd×n be such that ‖xi‖2 = 1 for all
i ∈ [n], where xi is the i-th column of X . Suppose K is a p-convergent kernel matrix. If p ∈ (1, 2], then there exists an
algorithm which computes a matrix Wg(X) with n columns in time

ε−(2+6/(3+2p))n2+6(1+1/p)/(3+2p) · poly(log(nd/εδ)) + nd log(nd/εδ)

such that

Pr [Wg(X)>Wg(X) ≈ε G] ≥ 1− δ.

Remark B.7. In addition, using that p ∈ (1, 2], the first part of our running time can be upper bounded by

ε−3.2n4.4 · poly(log(nd/εδ)).

Proof. The proof is almost identical to the proof of Theorem B.5. The only difference is when considering the expected
degree D, we use q as an upper bound. The number of terms s we approximate in the initial phase will be

Θ̃
(n(2+2/p)/(3+2p)

ε2/(3+2p)

)
.

The final runtime will be

ε−2n2 poly log(nd/εδ)s3 = (n2+3(2+2/p)/(3+2p)/ε2+6/(3+2p)) poly log(nd/εδ) + nd log(nd/εδ).

Simplifying the Exponent For the exponent of ε, we have

(2 + 6/(3 + 2p)) = 4− 4p

3 + 2p︸ ︷︷ ︸
f1(p)

.

For any p ∈ (1, 2], we have

4− f1(p) ∈
[
2 +

6

7
, 3 +

1

5

)
.

For the exponent on n, we have

2 + 6(1 + 1/p)/(3 + 2p) = 2 +
6p+ 6

2p2 + 3p

= 5− 6p2 + 3p− 6

2p2 + 3p︸ ︷︷ ︸
f2(p)

.

For any p ∈ (1, 2], we have

5− f2(p) ∈
[
3 +

2

7
, 4 +

2

5

)
.
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C. Properties of the Neural Tangent Kernel
We discuss an application of our sampling algorithm for p ∈ (1, 2] (Corollary B.6) to the Neural Tangent Kernel (NTK).
We will first formally define the NTK, then consider its Taylor expansion, and then use a p-convergent kernel to bound it.

C.1. Taylor Expansion of NTK

In this section, we give the Taylor expansion of the NTK, by first examining its corresponding function in a single variable,
and then extend it to the matrix case.

Consider a simple two-layer (an alternative name is one-hidden-layer) ReLU network with input layer initialized to stan-
dard Gaussians, activation function ReLU, and output layer initialized to uniform and independent Rademacher ({−1, 1})
random variables. Suppose we fix the output layer. Then the neural network can be characterized by a function

f(W,x) =
1√
m

m∑

r=1

arσ(w>r x)

where W ∈ Rd×m, and wr ∈ Rd denotes the r-th column of W , for each r ∈ [m].

The above formulation is standard for convergence analysis of neural networks (Du et al., 2019; Song & Yang, 2019; Brand
et al., 2021; Huang et al., 2021).

The NTK ((Jacot et al., 2018)) is

K(x, z) = E
[〈∂f(W,x)

∂W
,
∂f(W, z)

∂W

〉]
.

For the sake of simplicity, assume all |ar| = 1, ∀r ∈ [m], and consider an individual summand, which gives rise to

K(x, z) =

∫

w∼N(0,I)

σ′(w>x)σ′(w>z)x>z dw.

If w ∈ Rd is chosen uniformly on a sphere, then we will get the following closed-form for this kernel (Cho & Saul, 2009;
Xie et al., 2017):

K(x, z) =
(1

2
− arccosx>z

2π

)
· x>z.

Fact C.1. Let function f : R→ R be defined as f(x) := ( 1
2 − arccos x

2π ) · x. Then the Taylor expansion of f is

f(x) =
x

4
+

( ∞∑

n=0

(2n)!

22n(n!)2

x2n+2

(2n+ 1)(2π)

)

=
x

4

( ∞∑

n=0

(
2n

n

)
1

22n

x2n+2

(2n+ 1)(2π)

)
.

Fact C.2. The Taylor expansion of the NTK is

K =
X>X

4

∞∑

l=0

(
2l

l

)
1

22l

(X⊗2l+2)>X⊗2l+2

(2l + 1)2π
.

C.2. Approximating the NTK

In this section, we will use a p-convergent kernel to bound the NTK, then apply Corollary B.6 to approximate it.
Corollary C.3 (Fast Subspace Embedding for the NTK). Let X ∈ Rd×n where ‖xi‖2 = 1 for all i ∈ [n], where xi is the
ith column of X . Suppose K ∈ Rn×n is the NTK matrix. Then there exists an algorithm which computes a matrix Wg(X)
in time

ε−3n11/3 · poly(log(nd/εδ)) + nd log(nd/εδ)

such that

Pr
[
Wg(X)>Wg(X) ≈ε K

]
≥ 1− δ.
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Proof. Let Cl denote the coefficient of the lth term in the Taylor expansion of the NTK:

Cl =

(
2l

l

)
1

22l

1

(2l + 1)2π
.

The term
(

2l
l

)
is the central binomial coefficient. We will use the following bound on it:

4l√
4l
≤
(

2l

l

)
≤ 4l√

3l + 1
.

This gives upper and lower bounds on Cl:

• Upper bound:

Cl ≤
4l√

3l + 1

1

4l
1

(2l + 1)2π

=
1√

3l + 1(2l + 1)2π
.

• Lower bound:

Cl ≥
1√

4l(2l + 1)2π
.

Thus, Cl = Θ( 1
l1.5 ), and we can use a 1.5-convergent kernel for our approximation. Using Corollary B.6 with p = 1.5, we

obtain an ε-approximation in time

ε−3n11/3 · poly(log(nd/εδ)) + nd log(nd/εδ).

D. Preconditioning to Solve a Kernel Linear System
In this section, we illustrate how to construct a preconditioner for a kernel linear system. Specifically, we provide an
algorithm to solve a Gaussian kernel linear system. Let G = Z>Z be the Gaussian kernel. By Theorem A.1, we can
compute an approximation to G, denoted Wg(X)>Wg(X). In (Brand et al., 2021) (see Algorithm 2 and Section 4.1
there), Brand, Peng, Song and Weinstein show that if we compute the QR decomposition of Wg(X) = QR−1, where Q
has orthonormal columns and R ∈ Rn×n, then R is a good preconditioner for Z, i.e., ZR has constant condition number.
However, in our setup where d is large, it is not feasible to compute Z directly, which takes O(n2d) time. Instead, we
notice that Wg(X) is fast to compute and has only an Õ(n/ε2) number of rows. Our algorithm will sketch Wg(X), and
then use gradient descent to solve the optimization problem

min
x∈Rn
‖Wg(X)>Wg(X)x− y‖2.

In our result, we follow a similar approach as in (Brand et al., 2021) and the proof is similar to the proof of Lemma 4.2 in
their paper. The main novelty of our framework is that we use a spectral approximation to the kernel matrix and analyze
the error and runtime under our approximation. For completeness, we include a proof in this setting.

Theorem D.1 (Sketching as a Preconditioner, formal version of Theorem 6.6). Let G ∈ Rn×n be the Gaussian kernel
matrix for X ∈ Rd×n. Write G = Z>Z, and let κ denote the condition number of Z. If we assume for all i ∈ [n] that
‖xi‖2 ≤ 1, then Algorithm 2, with probability at least 1− δ, computes an x̂ satisfying the following:

‖Gx̂− y‖2 ≤ ε‖y‖2.

Moreover, x̂ can be computed in time

ε−2n2 log(κ/ε) · poly(log(nd/εδ)) + nω + nd log(nd/εδ),

where ω is the matrix multiplication exponent.
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Algorithm 2 Fast Regression for the Gaussian Kernel

1: procedure PRECONDITIONEDGRADIENTDESCENT(X, y) . Theorem D.1
2: Let m = O(n log2(nd/εδ) log(n/δ)/ε2)
3: Let Wg(X) ∈ Rm×n be the approximate Gaussian kernel in Theorem A.1
4: Let S ∈ Rl/ε20×m be an SRHT matrix. Compute SWg(X), where l = Ω (n log(mn/ε0δ) log(n/δ))
5: Compute R such that SWg(X)R has orthonormal columns via a QR decomposition . R ∈ Rn×n
6: z0 ← 0n ∈ Rn
7: while ‖Wg(X)>Wg(X)Rzt − y‖2 ≥ ε do
8: zt+1 ← zt − (R>Wg(X)>Wg(X)R)>(R>Wg(X)>Wg(X)Rzt −R>y)
9: end while

10: return Rzt
11: end procedure

Before the proof, we define some notation and corresponding facts specifically about a PSD matrix.
Fact D.2 (Inequality for condition numbers). Let A,B be conforming square matrices. Then the following inequality
holds:

κ(B) ≤ κ(AB)κ(A),

where κ(A) = σmax(A)
σmin(A) is the condition number of A.

We will make use of Lemma B.2 in (Brand et al., 2021).
Lemma D.3 (Lemma B.2 in (Brand et al., 2021)). Consider the regression problem:

min
x∈Rn
‖Bx− y‖22.

Suppose B is a PSD matrix for which 3
4 ≤ ‖Bx‖2 ≤ 5

4 holds for all ‖x‖2 = 1. Using gradient descent for t iterations, we
obtain

‖B(xt − x∗)‖2 ≤ ct‖B(x0 − x∗)‖2,

where x0 is our initial guess, x∗ is the optimal solution, and c ∈ (0, 0.9].

Proof of Theorem D.1. Throughout the proof, we will set ε̂ = ε/4. By Theorem A.1, we can compute an ε-approximation
to Z and Wg(X) in time

O(ε−2n2 · poly(log(nd/εδ)) + nd log(nd/εδ)).

If we solve the problem:

min
x∈Rn
‖Wg(X)>Wg(X)x− y‖2 (6)

with solution x̂, then we have

‖Wg(X)>Wg(X)x̂− y‖2 ≤ (1 + ε̂) min
x∈Rn

‖Z>Zx− y‖2.

This means the optimal solution for the sketched problem gives an ε̂-approximation to the optimal solution to the original
problem. We will now show that Algorithm 2 computes the desired solution. By Theorem 2.11, with probability at least
1− δ, for any x ∈ Rn, we have

‖SWg(X)x‖2 = (1 + ε0)‖Wg(X)x‖2.

Suppose R is the n× n matrix computed via a QR decomposition, so that SWg(X)R has orthonormal columns. Then for
any ‖x‖2 = 1, we have

‖Wg(X)Rx‖2 = (1 + ε0)‖SWg(x)Rx‖2 = 1 + ε0.
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Hence,

‖R>Wg(X)>Wg(X)Rx‖2 ≤ (1 + ε0)2.

Now, pick ε0 = 0.1 and solve the following regression problem:

min
z∈Rn
‖R>Wg(X)>Wg(X)Rz −R>y‖2. (7)

Notice that Algorithm 2 implements gradient descent. Using Lemma D.3, after t = log(1/ε̂) iterations, we have

‖R>Wg(X)>Wg(X)R(zt − z∗)‖2 ≤ ε̂‖R>Wg(X)>Wg(X)R(z0 − z∗)‖2, (8)

where z∗ = (R>Wg(X)>Wg(X)R)−1R>y is the optimal solution to Equation (7). We will show the following for
xt = Rzt:

‖Wg(X)>Wg(X)xt − y‖2 ≤ κε̂‖y‖2.

Recalling that z0 = 0, plugging into Eq. (8) we get

‖R>Wg(X)>Wg(X)xt −R>y‖2 ≤ ε̂‖R>y‖2 ≤ ε̂ · σmax(R>)‖y‖2.

On the other hand,

‖R>Wg(X)>Wg(X)xt −R>y‖2 = ‖R>(Wg(X)>Wg(X)xt − y)‖2 ≥ σmin(R>)‖Wg(X)>Wg(X)xt − y‖2.

Putting everything together, we get

‖W>g Wgxt − y‖2 ≤ ε̂κ(R>)‖y‖2
≤ ε̂κ(R)‖y‖2
≤ ε̂κ(Wg(X)R)κ(Wg(X))‖y‖2
≤ 2ε̂κ(Wg(X))‖y‖2

≤ 2ε̂κ
1 + ε̂

1− ε̂‖y‖2
≤ 2κε̂‖y‖2.

The second inequality uses that R is a square matrix, the third inequality uses Fact D.2, and the second-to-last inequality
uses that we have a (1± ε̂)-subspace embedding. This means by setting the number of iterations to t = log(κ/ε), we obtain

‖Wg(X)>Wg(X)xt − y‖2 ≤ 2ε̂‖y‖2.

Now, recall that for any x, y ∈ Rn, we have

‖Wg(X)>Wg(X)x− y‖2 ≤ (1 + ε̂)‖Z>Zx− y‖2.

As a consequence, we get

‖Z>Zxt − y‖2 ≤ (1 + ε̂)‖Wg(X)>Wg(X)xt − y‖2
≤ (1 + ε̂)2ε̂‖y‖2
≤ ε‖y‖2.

Now we analyze the runtime.

• Computing Wg(X), by Theorem A.1, takes time

ε−2n2 · poly(log(nd/εδ)) + nd log(nd/εδ).
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• Applying S to Wg(X), using the FFT algorithm, takes time

ε−2n2 · poly(log(nd/εδ)).

• A QR decomposition algorithm, due to (Demmel et al., 2007), can be computed in time nω .

The cost of each iteration is bounded by the cost of taking a matrix-vector product, which is at most Õ(n2/ε2), and there
are O(log(κ/ε)) iterations in total. Thus, we obtain a final runtime of

ε−2n2 · poly(log(nd/εδ)) · log(κ/ε) + nω + nd log(nd/εδ).

E. Kernel Ridge Regression
In this section, we show how to compose our sketch with other sketches whose dimensions depend on the statistical
dimension of K instead of n. Before proceeding, we introduce the notion of the statistical dimension.

Definition E.1 (Statistical Dimension). Given λ ≥ 0, for every positive semi-definite matrix K ∈ Rn×n, we define the
λ-statistical dimension of K to be

sλ(K) := tr[K(K + λIn)−1].

Solving ridge regression with runtime depending on thhe statistical dimension is done in a number of works, for exam-
ple (Rahimi & Recht, 2007; Alaoui & Mahoney, 2015; Avron et al., 2017c;a; Musco & Musco, 2017).

We state and prove our main result in this section below.

Theorem E.2 (Kernel Ridge Regression, formal version of Theorem 6.9). Let ε ∈ (0, 1), p > 1 be an integer, and
X ∈ Rd×n. If K is a degree-p polynomial kernel with statistical dimension sλ(K) with λ < ε−2λmax(K), then we can
compute Z ∈ Rt×n such that Z>Z is a 1± ε spectral approximation to K in Õ(ε−2p2n2 + nd) time and t = Õ(ε−2p2n).

Moreover, there exists a matrix S with m = Õ(ε−1sλ(K)) rows such that if x∗ is the optimal solution to ‖S(Z>Zx −
y)‖22 + λ‖Zx‖22, then

‖Kx∗ − y‖22 + λ‖X⊗px∗‖22 ≤ (1 + ε) min
x∈Rn

‖Kx− y‖22 + λ‖X⊗px‖22.

Finally, The time to solve above KRR is Õ(ε−2p2n(n+m2) + nω).

Before starting the proof, we introduce a key lemma regarding using the SRHT to approximate the solution of KRR.

Lemma E.3 (Corollary 15 of (Avron et al., 2017a)). Let A ∈ Rn×t and ε ∈ (0, 1). Suppose λ < ε−2σ2
max(A). Suppose

m = Ω(ε−1(sλ(A) + log(1/ε)) log(sλ(A)/ε))

and S ∈ Rm×n is a SRHT matrix (Definition 2.7) and let x̂ = arg minx∈Rt ‖S(Ax− b)‖22 +λ‖x‖22. Then with probability
at least 0.99, we have

‖Ax̂− b‖22 + λ‖x̂‖22 ≤ (1 + ε) min
x∈Rt

‖Ax− b‖22 + λ‖x‖22.

Proof of Theorem E.2. Throughout the proof, we assume K has full rank and set S to be a SRHT matrix with m =
Õ(ε−1sλ(K)) rows. We also use A to denote Z>Z.

The proof consists of 3 parts:

• Part 1: Provide a construction of matrix Z;

• Part 2: Provide a sketching matrix S with the solution guarantee;
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• Part 3: Provide a runtime analysis for solving KRR.

Note that part 1 can be solved using Theorem 5.1. As a side note, since Z>Z is a 1 ± ε approximation to K, with high
probability it also has full rank. Consequently, Z has full rank as well.

To show part 2, we will show the following:

• The optimal solution to ‖S(Z>Zx− y)‖22 + λ‖Zx‖22 is a (1± ε) approximation to the optimum of ‖Z>Zx− y‖22 +
λ‖Zx‖22;

• The optimum of ‖Z>Zx− b‖22 + λ‖Zx‖22 is a (1± ε) approximation to the optimum of ‖Kx− y‖22 + λ‖X⊗px‖22.

From ‖S(Z>Zx − y)‖22 + λ‖Zx‖22 to ‖Z>Zx − y‖22 + λ‖Zx‖22 Recall that Z has full rank. Therefore, we can set
z = Zx and the sketched problem becomes

‖S(Z>z − y)‖22 + λ‖z‖22,

which can be solved using Lemma E.3. The only thing we need to justify is that the statistical dimension of A gives a good
approximation to the statistical dimension of K. Note that

sλ(A) =
n∑

i=1

λi(A)

λi(A) + λ

≤
n∑

i=1

(1 + ε)λi(K)

(1− ε)λi(K) + λ

≤
n∑

i=1

(1 + ε)λi(K)

(1− ε)(λi(K) + λ)

=
1 + ε

1− ε · sλ(K)

≤ (1 + 3ε) · sλ(K).

Thus, the dimension O(ε−1sλ(K)) = O(ε−1sλ(A)), which means we can invoke Lemma E.3.

From ‖Z>Zx− y‖22 + λ‖Zx‖22 to ‖Kx− y‖22 + λ‖X⊗px‖22 To prove this part, we define matrix Â and K̂:

Â :=

[
A√
λZ

]
, K̂ :=

[
K√
λX⊗p

]
.

Similar to the first part, it suffices to show that for any x ∈ Rn, we have

‖Âx‖2 ≤ (1 + ε)‖K̂x‖2.

We start by computing the LHS:

‖Âx‖22 = ‖Ax‖22 + λx>Z>Zx

≤ (1 + ε)‖Kx‖22 + (1 + ε)λ‖X⊗px‖22.

This completes our proof for part 2.

For the final part, note that applying the sketch takes Õ(ε−2p2n2) time. To solve the regression problem, we instead solve:

min
z∈Rt

‖SZ>z − Sy‖22 + λ‖z‖22.

Since Z has full rank, we know the argument z realizing the minimum is the x∗ we are looking for. To output an x, we can
simply solve the linear system Zx = z, which takes Õ(nt+nω) time. Finally, solving the above regression problem takes
Õ(m2t) time (see (Saunders et al., 1998)). This concludes our runtime analysis.


