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Abstract

Structured nonsmooth convex finite-sum opti-
mization appears in many machine learning ap-
plications, including support vector machines
and least absolute deviation. For the primal-
dual formulation of this problem, we propose
a novel algorithm called Variance Reduction
via Primal-Dual Accelerated Dual Averaging
(VRPDA?). In the nonsmooth and general con-
vex setting, VRPDA? has the overall complex-
ity O(ndlog min{1/e,n} + d/e) in terms of the
primal-dual gap, where n denotes the number of
samples, d the dimension of the primal variables,
and e the desired accuracy. In the nonsmooth and
strongly convex setting, the overall complexity of
VRPDA? becomes O (nd log min{1/e,n}+d//€)
in terms of both the primal-dual gap and the
distance between iterate and optimal solution.
Both these results for VRPDA? improve signifi-
cantly on state-of-the-art complexity estimates—
which are O(ndlog min{1/e,n} + y/nd/e) for
the nonsmooth and general convex setting and
O(ndlog min{1/e,n} + \/nd/\/€) for the nons-
mooth and strongly convex setting—with a sim-
pler and more straightforward algorithm and anal-
ysis. Moreover, both complexities are better than
lower bounds for general convex finite-sum opti-
mization, because our approach makes use of addi-
tional, commonly occurring structure. Numerical
experiments reveal competitive performance of
VRPDAZ compared to state-of-the-art approaches.

1. Introduction

We consider large-scale regularized nonsmooth convex em-
pirical risk minimization (ERM) of linear predictors in ma-
chine learning. Let b; € R%, i = 1,2,...,n, be sample
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vectors with n typically large; g, : R - R, i =1,2,... n,
be possibly nonsmooth convex loss functions associated
with the linear predictor (b;, x); and ¢ : R? — R be an
extended-real-valued, o-strongly convex (¢ > 0) and pos-
sibly nonsmooth regularizer that admits an efficiently com-
putable proximal operator. The problem we study is

min f() i= gle)+(e) = 1 > gi(bT ) +(2), P)

xcRd

where g(x) := 13"  g;(bI'x). Instances of the non-
smooth ERM problem (P) include ¢;-norm and ¢5-norm
regularized support vector machines (SVM) and least abso-
lute deviation. For practicality of our approach, we require
in addition that the convex conjugates of the functions g;,
defined by g (y:) := sup,, (ziy: — gi(2:)), admit efficiently
computable proximal operators. (The examples mentioned
above have this property.) From the statistical perspective,
nonsmoothness in the loss function is essential for obtaining
a model that is both tractable and robust. But from the opti-
mization viewpoint, nonsmooth optimization problems are
intrinsically more difficult to solve. On one hand, the lack of
smoothness in g precludes the use of black-box first-order
information to obtain efficient methods. On the other hand,
the use of structured composite optimization methods that
rely on the proximal operator of g is out of question here too,
because the proximal operator of the sum 1 >~ | g, (b x)
may not be efficiently computable w.r.t. , even when the
proximal operators of the individual functions g;(-) are.

Driven by applications in machine learning, computational
statistics, signal processing, and operations research, the
nonsmooth problem (P) and its variants have been studied
for more than two decades. There have been two main lines
of work: deterministic algorithms that exploit the underly-
ing simple primal-dual structure to improve efficiency (i.e.,
dependence on the accuracy parameter €) and randomized
algorithms that exploit the finite-sum structure to improve
scalability (i.e., dependence on the number of samples n).

Exploiting the primal-dual structure. A naive approach
for solving (P) would be subgradient descent, which requires
access to subgradients of g(x) and ¢(x). To find a solution
x with f(x) — f(x*) < e, where x* is an optimal solution
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of (P) and € > 0 is the desired accuracy, the subgradient
method requires O(1/¢€2) iterations for the nonsmooth con-
vex setting. This complexity is high, but it is also the best
possible if we are only allowed to access “black-box” in-
formation of function value and subgradient. To obtain
improved complexity bounds, we must consider approaches
that exploit structure in (P). To begin, we note that (P)
admits an explicit and simple primal-dual reformulation:

min {f(z) = max L(z,y)},

L(z,y) := (Bz,y) — 9" (y) + {(z),

where B = L[by,bo,....b,]7, g*(y) = 30 g5 (i)
with the convex conjugate functions g¢;(-) satisfying
g9i(b] ) = sup, {yi(b;,x) — g;(y;)}. The nonsmooth
loss g(x) in (P) is thereby decoupled into a bilinear term
(Bx,y) and a separable function g*(y) that admits an effi-
ciently computable proximal operator. Due to the possible
nonsmoothness of g(x), we can assume only that L(x, y) is
concave w.r.t. y—but not strongly concave. Therefore, Prob-
lem (PD) is o-strongly convex-(general) concave (o > 0).

(PD)

By adding a strongly convex regularizer to the dual variable
of (PD), Nesterov (2005b) optimized a smoothed variant
of (P) using acceleration, thus improving the complexity
bound from O(1/€2) to O(1/¢). Later, Nemirovski and Nes-
terov, respectively, showed that extragradient methods such
as mirror-prox (Nemirovski, 2004) and dual extrapolation
(Nesterov, 2007) can obtain the same O(1/€) complexity
bound for (PD) directly, without the use of smoothing or
Nesterov’s acceleration. (Extragradient methods perform
updates twice per iteration, for both primal and dual vari-
ables.) Chambolle & Pock (2011) introduced an (extrapo-
lated) primal-dual hybrid gradient (PDHG) method to obtain
the same O(1/¢) complexity, using an extrapolation step on
either the primal or dual variable rather than an extragradient
step. Thus, PDHG needs to update primal and dual variables
just once per iteration. All three kinds of methods have been
extensively studied from different perspectives (Nesterov,
2005a; Chen et al., 2017; Tran-Dinh et al., 2018; Song et al.,
2020b; Diakonikolas et al., 2020). For large n, the focus
has been on randomized variants with low per-iteration cost
(Zhang & Lin, 2015; Alacaoglu et al., 2017; Tan et al., 2018;
Chambolle et al., 2018; Carmon et al., 2019; Lei et al., 2019;
Devraj & Chen, 2019; Alacaoglu et al., 2020).

Exploiting the finite-sum structure. The deterministic
methods discussed above have per-iteration cost O(nd),
which can be prohibitively high for large n. There has been
much work on randomized methods whose per-iteration cost
is independent of n. To be efficient, the iteration count of
such methods cannot increase too much over the determinis-
tic methods. A major development in the past decade of re-
search has been the use of variance reduction in randomized
optimization algorithms, which reduces the per-iteration

cost and improves the overall complexity. For the variant
of Problem (P) in which g(x) is smooth, there exists a vast
literature on developing efficient finite-sum solvers; see
for example Roux et al. (2012); Johnson & Zhang (2013);
Lin et al. (2014); Zhang & Lin (2015); Allen-Zhu (2017);
Zhou et al. (2018); Lan et al. (2019); Song et al. (2020a).
The Variance Reduction via Accelerated Dual Averaging
(VRADA ) algorithm of Song et al. (2020a) matches all three
lower bounds from Woodworth & Srebro (2016); Hannah
et al. (2018) for the smooth and (general/ill-conditioned
strongly/well-conditioned strongly) convex settings, using
a simple, unified algorithm description and convergence
analysis. As discussed in Song et al. (2020a), the efficiency,
simplicity, and unification of VRADA are due to a novel
initialization strategy and to randomizing accelerated dual
averaging rather than accelerated mirror descent (as was
done in Allen-Zhu (2017)). These results provide the main
motivation for our current work.

When the loss function is nonsmooth, classical variance
reduction approaches such as SVRG and SAGA (Johnson
& Zhang, 2013; Defazio et al., 2014) are no longer ap-
plicable. Allen-Zhu & Hazan (2016); Allen-Zhu (2017)
propose to smoothen and regularize (P) and then apply ex-
isting finite-sum solvers, such as Katyusha. As shown by
Allen-Zhu (2017), in the nonsmooth and general convex
setting, the resulting overall complexity is improved from
O0(™4) to O(ndlogmin{,n} + @); in the nonsmooth
and strongly convex setting, it is improved from O(’f/—‘é)

to O(ndlogmin{1,n} + \/\;ng) Both of these improved
complexity results match the lower bounds of Woodworth
& Srebro (2016) for general nonsmooth finite-sums when e
is small. However, the smoothing and regularization require
tuning of additional parameters, which complicates the al-
gorithm implementation. Meanwhile, it is not clear whether
the complexity can be further improved to take advantage
of the additional ERM structure of (P).

For the nonsmooth ERM problem (P) considered here,
and its primal-dual formulation, the literature is much
scarcer (Dang & Lan, 2014; Alacaoglu et al., 2017; Cham-
bolle et al., 2018; Carmon et al., 2019; Latafat et al., 2019;
Fercoq & Bianchi, 2019; Alacaoglu et al., 2020). All ex-
isting methods target (PD) directly and focus on extending
the aforementioned deterministic algorithms to this case.
Because sampling one element of the finite sum from (P) is
reduced to sampling one dual coordinate in (PD), all these
methods can be viewed as coordinate variants of the de-
terministic counterparts. For convenience, we explicitly
rewrite (PD) in the following finite-sum primal-dual form:
min max L(z,y)
1" (FS-PD)
Ll@,y) =~ D (ilbiz) = g; (yi) + L(=).

=1
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Table 1. Overall complexity and per-iteration cost for solving (FS-PD) in the o-strongly convex-general concave setting (o > 0). (“—
indicates that the corresponding result does not exist or is unknown.)

>

Aleorithm General Convex Strongly Convex Strongly Convex Per-Iteration
g (Primal-Dual Gap) (Primal-Dual Gap) (Distance to Solution) Cost
RPD n3/24 n3/24d -
Dang & Lan (2014) O( e ) Ve ) O(d)
SMART-CD nd
Alacaoglu et al. (2017) O(%¢) - — O(d)
Carmon et al. (2019) | O(nd + Yllmtdlostnd) ) — — O(n +d)
SPDHG nd nd N
Chambolle et al. (2018) O(%) — o(2%) O(d)
PURE-CD n2d - —
Alacaoglu et al. (2020) O( e ) O(d)
P)
VRPDA . : d . d
(This Paper) O(ndlogmin{,n} + ¢) | O(ndlog min{,n} + \/;) O(ndlogmin{,n} + a\/E) O(d)

! It is only applicable when € is small enough (see Chambolle et al. (2018, Theorem 5.1)).

Existing approaches. Table 1 compares VRPDA? to ex-
isting randomized algorithms for solving (FS-PD) in terms
of the overall complexity and per-iteration cost under the
setting of uniform sampling and general (i.e., not necessar-
ily sparse) data matrix. The algorithms RPD, SMART-CD,
SPDHG, and PURE-CD all attain O(d) per-iteration cost, but
have overall complexity no better than that of the determin-
istic algorithms in both the nonsmooth and general/strongly
convex settings. Meanwhile, the algorithms of Carmon et al.
(2019) perform full-coordinate updates with O(n + d) per-
iteration cost and improve the dependence on the dimension
dwhenn > d. However, the overall dependence on the dom-
inant term 7 is still not improved, which raises the question
of whether it is even possible to simultaneously achieve the
low O(d) per-iteration cost and reduce the overall complex-
ity compared to the deterministic algorithms. Addressing
this question is the main contribution of our work.

Our contributions. We propose the VRPDA? algorithm
for (FS-PD) in the o-strongly convex-general concave set-
ting (o > 0), which corresponds to the nonsmooth and
o-strongly convex setting of (P) (¢ > 0). For both 0 = 0
and o > 0, VRPDA? has O(d) per-iteration cost and signifi-
cantly improves the best-known overall complexity results
in a unified and simplified way. As shown in Table 1, to find
an e-accurate solution in terms of the primal-dual gap, the
overall complexity of VRPDA? is

if o =0,

O(ndlog (min{!,n}) + 4),
if o >0,

O(ndlog (min{1,n}) + \/%),

which is significantly better than any of the existing results
for (FS-PD). In particular, we only need O(ndlogn) over-
all cost to attain an e-accurate solution with € = Q(#g(n))
Meanwhile, when ¢ is sufficiently small compared to 1/n,
so that the second term in the bound becomes dominant, the
overall complexity (O(2) for o = 0 and O(\/%) foro > 0)

is independent of 7, thus showing a ©(n) improvement com-
pared to the deterministic algorithms. To the best of our
knowledge, even for smooth g;’s, the improvement of exist-
ing algorithms is at most © (/) and is attained by acceler-
ated variance reduction methods such as Katyusha (Allen-
Zhu, 2017) and VRADA (Song et al., 2020a).

Comparison to lower bounds. Our results may seem to
contradict the iteration complexity lower bounds for com-
posite objectives, which are Q(n + @) for nonsmooth and
general convex objectives and Q(n + \/g ) for nonsmooth
and o-strongly convex objectives (Woodworth & Srebro,
2016). In Woodworth & Srebro (2016, Section 5.1), the
hard instance for proving the lower bounds has the form
f(@) = L3 | fi(x)—but each f; is a sum of k + 1
“simple” terms, each having the form of our g;’s. The com-
plexity in Woodworth & Srebro (2016) for this hard instance
is enabled by hiding the individual vectors corresponding
to each simple term, an approach that is typical for oracle
lower bounds. In their example, k = @(%), so the total

number of simple terms is nk = @(@), which leads to the
second term in the lower bound. (The first Q(n) term in this
lower bound comes from setting € = O(ﬁ).) Applying
our upper bound for iteration complexity to this hard case,
we replace n by nk = ©(*2%) to obtain O(@ log(¥2))—

higher than the Woodwortﬁ & Srebro (2016) lower l;ound
would be if we were to replace n by nk. Thus, our results

do not contradict these well known lower bounds.

Remarkably, our upper bounds show that use of the finite-
sum primal-dual formulation (FS-PD) can lead not only to
improvements in efficiency (dependence on ¢€), as in Nes-
terov (2005b), but also scalability (dependence on n). As the
ERM problem (P) is one of the main motivations for convex
finite-sum solvers, it would be interesting to characterize
the complexity of the problem class (P) from the aspect of
oracle lower bounds and determine whether VRPDA? attains
optimal oracle complexity. (We conjecture that it does, at
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least for small values of ¢€.) Since the primary focus of the
current paper is on algorithms, we leave the study of lower
bounds for future research.

Our techniques. Our VRPDA? algorithm is founded on a
new deterministic algorithm Primal-Dual Accelerated Dual
Averaging (PDA2) for (PD). Similar to PDHG (Chambolle &
Pock, 2011), PDAZ is a primal-dual method with extrapola-
tion on the primal or dual variable. However, unlike PDHG,
which is based on mirror-descent-type updates (a.k.a. agile
updates (Allen-Zhu & Orecchia, 2017)), PDA? performs up-
dates of dual averaging-style (Nesterov, 2015) (a.k.a. lazy
mirror-descent updates (Hazan et al., 2016)).

Our analysis is based on the classical estimate sequence
technique, but with a novel design of the estimate sequences
that requires careful coupling of primal and dual portions of
the gap; see Section 3 for a further discussion. The resulting
argument allows us to use a unified parameter setting and
convergence analysis for PDA? in all the (general/strongly)
convex-(general/strongly) concave settings. Thus, by build-
ing on PDA? rather than PDHG, the design and analysis of
VRPDA? is unified over the different settings and also signif-
icantly simplified. Moreover, the dual averaging framework
allows us to use a novel initialization strategy inspired by
the VRADA algorithm (Song et al., 2020a), which is key
to cancelling the randomized error of order n in the main
loop and obtaining our improved results from Table 1. It is
worth noting that although PDA? can be used in all the (gen-
eral/strongly) convex-(general/strongly) concave settings,
VRPDA? is applicable only to the specific (general/strongly)
convex-general concave settings that correspond to the non-
smooth and (general/strongly) convex settings of (P). Study
of VRPDA? in the (general/strongly) convex-strongly con-
cave settings is deferred to future research.

2. Notation and Preliminaries

Throughout the paper, we use || - || to denote the Euclidean
norm. In the case of matrices B, || B|| is the standard opera-
tor norm defined by || B|| := maxgcpa, ||| <1 [|BZ|-

In the following, we provide standard definitions and proper-
ties that will be used in our analysis. We start by stating the
definition of strongly convex functions that captures both
strong and general convexity, allowing us to treat both cases
in a unified manner for significant portions of the analysis.
We use R = R U {+00} to denote the extended real line.

Definition 1. Given o > 0, we say that a function f : R —
R is o-strongly convex, if Ve, & € R, and all o € (0,1)

[ =)z +az) < (1-a)f(z) + af(2)

g N
— §a(1 —a)|z - wH2

When o = 0, we say that f is (general) convex.

When f is subdifferentiable at « and g¢(x) € Of(x) is any
subgradient of f at «, where 0f(z) denotes the subdiffer-
ential set (the set of all subgradients) of f at x, then strong
convexity implies that for all € R?, we have

(@) 2 f(@)+ (gs(2). & — @) + 7 ||& — a|”.

Since we work with general nonsmooth convex functions f,
we require that their proximal operators, defined as solutions

: 1 112
to problems of the form mingcga { f(x) + 5-||x — &|*}
are efficiently solvable for any 7 > 0 and any & € R%.

Problem definition. As discussed in the introduction, our
focus is on Problem (PD) under the following assumption.

Assumption 1. g*(y) is proper, Ls.c., and ~y-strongly con-
vex (v > 0); U(x) is proper, Ls.c., and o-strongly convex
(o > 0); the proximal operators of g* and € can be com-
puted efficiently; and | B|| = R for some R € (0, c0).

Observe that since g* and ¢ are assumed only to be proper,
L.s.c., and (strongly) convex, they may contain indicators
of closed convex sets in their description. Thus, certain
constrained optimization problems are included in the prob-
lem class described by Assumption 1. We use & and ) to
denote the domains of ¢ and g*, respectively, defined by
X =dom(¢) = {x : {(x) < o0}, Y = dom(g*) = {y :
g*(y) < co}. When X, are bounded, we use Dy, Dy
to denote their diameters: Dy = maxXg yex || — u
Dy = maxy vey ||y — v].

)

Note that Assumption 1 does not enforce a finite-sum struc-
ture of g* (and g). Thus, for the results that utilize variance
reduction, we will make a further assumption.

Assumption 2. ¢*(y) = %Z?:1 97 (yi), where each
97 (y;) is convex and has an efficiently computable prox-
imal operator. Further, ||b;|| < R/, foralli € {1,...,n}.

Recall that B = L[by,by,...,b,])7. Observe that R =
" 1/2
1Bl < L(Si Ibal?) < LS bl < R

Observe further that, under Assumption 2, g*(y) is separa-
ble over its coordinates. As a consequence, the domain )
of g* can be expressed as the Cartesian product of dom(g;").
This structure is crucial for variance reduction, as the algo-
rithm in this case relies on performing coordinate descent
updates over the dual variables y.

Primal-dual gap. Given x € R?, the primal value of the
problem (PD) is P(x) = maxy,err L(x,v). Similarly, the
dual value (PD) is defined by D(y) = ming,cpa L(u,y).
Given a primal-dual pair (x,y) € R? x R"™, primal-dual
gap is then defined by Gap(x,y) = P(z) — D(y) =
MaX(y, v)crdxrr Gap™?(x,y), where we define

Gap™?(z,y) = L(z,v) — L(u,y). (1)
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Observe that, by definition of P(z) and D(y), the max-
imum of Gap™®(x,y) for fixed (x,y) is attained when
(u,v) € X x ), so we can also write Gap(z,y) =

MaX(y,v)exXxy Gapuw (SC, y)

For our analysis, it is useful to work with the relaxed gap
Gap™"(x,y). In particular, to bound the primal-dual gap
Gap(z, y) for a candidate solution pair (x, y) constructed
by the algorithm, we first bound Gap®"” (x, y) for arbitrary
(u,v) € X x Y. The bound on Gap(x,y) then follows
by taking the supremum of Gap™’(x,y) over (u,v) €
X x Y. In general, Gap(x, y) can be bounded by a finite
quantity only when X, ) are compact (Nesterov, 2005b;
Ouyang & Xu, 2019). If either of X', ) is unbounded, to
provide meaningful results and similar to Chambolle &
Pock (2011), we assume that an optimal primal-dual pair
(x*, y*) for which Gap(x*, y*) = 0 exists, and bound the
primal-dual gap in a ball around (x*, y*).

Auxiliary results. Additional auxiliary results on growth
of sequences that are needed when establishing convergence
rates in our results are provided in Appendix C.

3. Primal-Dual Accelerated Dual Averaging

In this section, we provide the PDA? algorithm for solving
Problem (PD) under Assumption 1. The results in this
section provide the basis for our results in Section 4 for the
finite-sum primal-dual setting.

PDA? is described in Algorithm 1. Observe that the points
u, v in the definitions of estimate sequences ¢ (), ¥ (y)
do not play a role in the definitions of x, yx, as the cor-
responding arg mins are independent of w and v. They
appear in the definitions of ¢y (), 1 (y) only for the con-
venience of the convergence analysis; the algorithm itself
can be stated without them.

We now outline the main technical ideas in the PDA? algo-
rithm. To bound the relaxed notion of the primal-dual gap
Gap™" (&, yx) discussed in Section 2, we use estimate se-
quences ¢ (x) and 1k (y) defined in the algorithm. Unlike
the classical estimate sequences used, for example, in Nes-
terov (2005b), these estimate sequences do not directly esti-
mate the values of the primal and dual, but instead contain
additional bilinear terms, which are crucial for forming an
intricate coupling argument between the primal and the dual
that leads to the desired convergence bounds. In particular,
the bilinear term in the definition of 1, is defined w.r.t. an
extrapolated point ;. This extrapolated point is not
guaranteed to lie in the domain of /, but because this point
appears only in bilinear terms, we never need to evaluate
either ¢ or its subgradient at ;. Instead, the extrapolated
point plays a role in cancelling error terms that appear when
relating the estimate sequences to Gap™* (Zg, U )-

Our main technical result for this section concerning the

Algorithm 1 Primal-Dual Accelerated Dual Averaging

(PDA?)

1: Input:  (xo,yo) € X XV, (u,v) € X x Y,0 >

0,vy>0,|B||=R>0,K.

2: ag = AO =0.

3: ;g =T _1 ER ,yQGRn.

4 ¢o() = 3l - —zoll? vo() = 311 —yoll*.
5:fork=1,2,. Kdo

6: a = \/1+0Ak\;R1+’YAk 1) AR = Ap_1 +ay.

7: ar (ZL']C,1 —iL’k,Q).

8 oy = argmingp.{¥r(y) = Yr-1(y) +

ar((—=BZr-1,y —v) +g*(y))}-

9 x = argminweRd{(bk(:c) = ¢p—1(x) + ap({z —
u, BTy;) + ((x))}.

10: end for

~ 1 K ~
11: return Y = szzl aryp, T =

1 K
A Dok AkTk-

convergence of PDA? is summarized in the following theo-
rem. The proof of this result and supporting technical results
are provided in Appendix A.

Theorem 1. Under Assumption 1, for Algorithm I, we have,
V(u,v) € X x YVand k > 1,

O R ot T
24 ’

Gap™

~ 1 k ~ 1 k
where Ty, = - 301 Qi%i, Yo = 7 D GilYi-

Further, if (x*,y*) is a primal-dual solution to (PD), then

1+7Ak * (|12
—— v — ¥

2 (2)
< leo — 2|1 + [lyo — y* 1.

(1 + o Ap) |l — 2*|* +

In both cases, the growth of Ay can be bounded below as

max {kr, (1 + :/fi)kl,

(1% = kol +max {3.5VR, 1})

Ay Z%
9fR
9\[1% <[

where [-]+ = max{-,0}, kg =

k— k0]++max{35f 1})}

IVQ\}%R—I’ and k/O = [QJER]

Remark 1. As 0 > 0 and v > 0, Theorem 1 guarantees
that all iterates of PDAZ remain within a bounded set, due to
Eq. (2). In particular, x3, € B(x*,70), yr € B(y*,v/2ro),

where ro = /|0 — z*|> + ||y0—y & andB(z 1) de-
notes the Euclidean ball of radius r, centered at z. Moreover,

by rearranging Eq (2) we can conclude that |x* — x| <
2T02
= 1+’YAk

1+0’Ak
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Remark 2. Observe that when the domains of g* and ¢
are bounded (i.e., when Dy < oo, Dy < oo, and, in
particular, in the setting of constrained optimization over
compact sets), Theorem I implies the following bound on the
primal-dual gap Gap(&y, gr) < %}?3’2. This bound
can be shown to be optimal, using results from Ouyang & Xu
(2019). For unbounded domains of g* and ¢, it is generally
not possible to have any finite bound on Gap(x,y) unless
(z,y) = (x*,y*) (for a concrete example, see, e.g., Di-
akonikolas (2020)). In such a case, it is common to restrict
u, v to bounded sets that include x*, y*, such as B(x*,r¢),
B(y*,v/2ro) from Remark 1 (Chambolle & Pock, 2011).

Remark 3. To bound the function value gap f (&) — f(x*)
for Problem (P) using Theorem 1, we need only that Dy, is

- ro? 2
bounded, leading to the bound f(Z)— f(x*) < %L,

where ro = +/||xo — x*||2 + |[yo — y*|| as in Remark I,
since for u € B(x*, 1) we have that ||u — x| < 2r¢. To
see this, note that, as the iterates x; of PDAZ are guaranteed
to remain in B(x*, o) (by Remark 1), there is no difference
between applying this algorithm to f or to f + Iz« ry),
where I (- ) is the indicator function of B(x*, o). This
allows us to restrict w € B(x*, o) when bounding f (&) —
f(x*) by Gap™? (&, g ). Note that for typical instances
of nonsmooth ERM problems, the domain Y of g* is com-
pact. Further, if g* is strongly convex (v > 0), then the set
YV = {argmax, cg. (Bz,y) — 9" (y) : © € B(z*,0)}
is guaranteed to be compact. This claim follows from
standard results, as in this case arg max, cg. (Bx,y) —
g*(y) = Vyg(Bx) (by the standard Fenchel-Young in-
equality, see, e.g., Rockafellar & Wets (2009, Proposition
11.3)) and g is %—smooth. Thus, sup,, ,cy llv — yll =

SUPgx, weB(x*,ro) ||Vg(Bw) - vg(BU)H < %TO'

4. Variance Reduction via Primal-Dual
Accelerated Dual Averaging

We now study the finite-sum form (FS-PD) of (PD), making
use of the properties of the finite-sum terms described in
Assumption 2. In Algorithm 2, we describe VRPDA? which
is a randomized coordinate variant of the PDA? algorithm
from Section 3. By extending the unified nature of PDAZ,
VRPDA? provides a unified and simplified treatment for
both the general convex-general concave (o = 0) setting
and the strongly convex-general concave setting.

To provide an algorithm with complexity better than the de-
terministic counterpart PDAZ, we combine the deterministic
initialization strategy of full primal-dual update in Steps 4-6
with randomized primal-dual updates in the main loop—a
strategy inspired by the recent paper of Song et al. (2020a).
The use of the factor n during initialization, in Step 7, helps
to cancel an error term of order O(n) in the analysis.

The main loop (Steps 8-15) randomizes the main loop of

PDAZ by introducing sampling in Step 10 and adding an
auxiliary variable z, that is updated with O(d) cost in Step
13. (z; is initialized in Step 5.) In Step 11, we update
the estimate sequence 5 by adding a term involving only
the jr component of the finite sum, rather than the entire
sum, as is required in Step 8 of Algorithm 1. As a result,
although we define the estimate sequence for the entire
vector Yy, each update to yj, requires updating only the jy,
coordinate of y;. In Step 12, we use a “variance reduced
gradient” 21 + (Yk,j, — Yk—1.5, )b, to update ¢y, helping
to cancel the error from the randomized update of Step 11.
The update of the sequences {ay}, { A} appears at the end
of the main loop, to accommodate their modified definitions.
The modified update for ay; ensures that aj, cannot have
exponential growth with a rate higher than (1+ 15 ), which
is an intrinsic constraint for sampling with replacement (see
Song et al. (2020a); Hannah et al. (2018)).

Finally, as Algorithm 2 is tailored to the nonsmooth ERM
problem (P), we only return the last iterate xj; or the
weighed average iterate &y on the primal side, even though
we provide guarantees for both primal and dual variables.

Algorithm 2 provides sufficient detail for the convergence
analysis, but its efficient implementation is not immediately
clear, due especially to Step 11. An implementable version
is described in Appendix D, showing that the per-iteration
cost is O(d) and that O(n) additional storage is required.

Our main technical result is summarized in Theorem 2. Its
proof relies on three main technical lemmas that bound the
growth of estimate sequences ¢ (xy) and ¥y (yy) below
and above. Proofs are provided in Appendices B and C.

Theorem 2. Suppose that Assumption 2 holds. Then for any

(u,v) € X x Y, the vectors xr, Yy, k = 2,3,..., K and

the average xj, = % Zle a;x; generated by Algorithm 2

satisfy the following bound for k = 2,3,... K:

(llw — @oll* + [lv — yoll*)
2Ay ’

k—1
Y d i i—(n—1)a; "
where yj, := naryr+3 i, (T,L:k (n-Dait1)yi

RS n
E[Gap™* (&g, gr)] <

Moreover; if (x*,y*) is a primal-dual solution to (PD), then

n, . n+oAr, .
E[ Ty —well + = 2" — el
_ n(llz* — ol + lly* — woll?)
P 2 .
In both cases, Ay, is bounded below as follows:
n—1 1 k
A > max{ ST (1 + p— 1) Tp<iys
(n— 1)2‘7 2
~———(k—k —1)°1
AR'2n ( 0o+ n ) >k,
n(k — KO +n— 1)

2R’ 11’“21‘0}’
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Algorithm 2 Variance Reduction via Primal-Dual Accelerated Dual Averaging (VRPDA? )

1: Input: (xzp,y0) €X' X Y, (u,v) € X xY,0 >0,R > 0,K,n.

2 ¢o() = 5l - —zoll® %0 () = 31 - —yoll*-

3ZCL0:A0:O,ZL1:%H.

4 y1 = argmingegn {Y1(y) := Yo(y) + a1 ((—Bzo,y —v) + g*(y)) }-

5: 21 = BT'yl. 5

6: @1 = arg mingega{¢1(@) := do(@) + a1 ({x — u, 21) + {(x))}.

7o 4y = napy, 1 == nod1,a1 = Ay = nay,ay = ~7a1, Ay = Ay + as.

8 fork=23,...,Kdo

90 ®p1 = X1 + (1 — Tp—2).

10:  Pick j uniformly at random in [n].

11: yp = argmingcgpa {Vr(y) = Yu—1(y) + ar(=b], ®r_1(yj, — vj,.) + 95, (Yi)}-
120 @ = argmingepa{dk(w) = dp—1(@) + ar((T — w, 2u—1 + (Y — Yr—1,5.)bj,.) + £(®))}.
13: Zp = Zp—1+ %(yk,jk - yk—l-,jk)bjk'

14 agy1 = min ((1 + ﬁ)ak, 7V"(Z;f”4k)), Apy1 = A+ apy.

15: end for

—_
o)

. K
D return T or &g 1= - D, G

where 1 denotes the indicator function, K, =

log(n log B, 5 r
{log(n)—glg)g)(n—l) -|7 ko = {log(n)—ldg(ﬁ—l) —I ; and
on(n —1) on(n —1)\2
Bn,a,R’ = AR + \/(4R/ ) +n?
-1
> nmax{l, U(;LiR/)}

Observe that, due to the randomized nature of the algorithm,
the convergence bounds are obtained in expectation w.r.t. the
random choices of coordinates j; over iterations.

Now let us comment on the iteration complexity of VRPDAZ,
given target error € > 0. For concreteness, let D? := |ju —
xo|> + ||v — yol|?, where D? can be bounded using the
same reasoning as in Remarks 2 and 3. To bound the gap by
€, we need Ay > ”QD:. When € > %, then k =
[ log(RRD%)
log(n)—log(n—1)

in this case k < kg. When e < %, then the bound
on k is obtained by ensuring that either of the last two terms

bounding Ay, below in Theorem 2 is bounded below by ”2—’22,

leading to k = O(nlog(By,»,r) + min{ }\%/g, R/6D2 }.

-‘ = O(nlog(fL)) iterations suffice, as

5. Numerical Experiments

We study the performance of VRPDA? using the elastic-net-
regularized support vector machine (SVM) problem, which
corresponds to (P) with g;(b] ) = max{1 — ¢;bl'z,0},
¢i € {1,—1} and l(z) = A|z|1 + $[jx][3. A > 0,0 > 0.
This problem is nonsmooth and general convex if o = 0 or
strongly convex if o > 0. Its primal-dual formulation is

min max
zeR? —1<y;<0,i€[n]

L(z,y),

1 — o
L(z,y) = ~ > i ((eibi, @) — 1) + Azl + Ellmllg-
i=1

We compare VRPDA? with two competitive algorithms
SPDHG (Chambolle et al., 2018) and PURE_CD (Alacaoglu

et al., 2020) on standard a9%9a and MNIST datasets from
the LIBSVM library (LIB).' Both datasets are large, with
n = 32,561, d = 123 for a9a, and n = 60, 000, d = 780
for MNIST. For simplicity, we normalize each data sam-
ple to unit Euclidean norm, so that the Lipschitz con-
stants appearing in the analysis (such as R’ in VRPDA?)
are at most 1. We then scale these Lipschitz constants by
{0.1,0.25,0.5,0.75,1}2. As is standard for ERM, we plot
the function value gap of the primal problem (P) in terms
of the number of passes over the dataset. The plotted func-
tion value gap was evaluated using an estimated value I
of f* = argmin,, f(x). For the plots to depict an accurate
estimate of the function value gap, the true function value
gap f — f* must dominate the error of the estimate f* — f*.
In our numerical experiments, this is achieved by running
the algorithms 30 times as many iterations as are is shown in
the plots, choosing the lowest function value f,;, observed
over this extended run and over all algorithms, and setting
f* = fuin — 0, where § is either 1078 or 1073, depending
on the value of o.

We fix the /;-regularization parameter \ to 10~# and vary
o € {0,107%,107*}, to represent the general convex, ill-

"For each sample of MNTST, we reassign the label as 1 if it is
in {5,6,...,9} and —1 otherwise.

*In our experiments, all the algorithms diverge when the Lips-
chitz constant is set to 0.1.
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Figure 1. Comparison of VRPDA? to SPDHG and PURE_CD run for the elastic net-regularized SVM, on a9a and MNIST datasets. In all
the plots, o is the strong convexity parameter of the regularizer ¢; “last” refers to the last iterate, “average” to the average iterate. For all
problem instances, VRPDA? attains either similar or improved convergence compared to other algorithms.

conditioned strongly convex, and well-conditioned strongly
convex settings, respectively. For all the settings, we provide
the comparison in terms of the average and last iterate’.
As can be observed from Figure 1, the iterate averaging
yields much smoother curves, decreasing monotonically,
and is generally more accurate than the last iterate. This is
expected for the nonsmooth and general convex setting, as
there are no theoretical guarantees for the last iterate, while
for other cases the guarantee for the last iterate is on the
distance to optimum, not the primal gap. As can be seen in
Figure 1, the average iterate of VRPDA? is either competitive
with or improves upon SPDHG and PURE_CD.

As can be observed from Figure 1, there is a noticeable dif-
ference in the performance of all the algorithms when their
function value gap is evaluated at the average iterate versus
the last iterate. For VRPDA? , a dual averaging-style method
that has a sparsity-promoting property (Xiao, 2010), this

3SPDHG and PURE_CD provide no results for the average iterate
in the nonsmooth and strongly convex setting, so we use simple
uniform average for both.

difference comes from the significantly different sparsity of
the average iterate and last iterate. As shown in Figure 2, the
average iterate is less sparse but provides a more accurate
fit, while the last iterate is sparser (and thus more robust)
but less accurate. For SPDHG, the last iterate is signifi-
cantly more accurate than the average iterate in the strongly
convex settings (o € {1078,107}), because simple uni-
form average we use may not be the best choice for the two
settings. Meanwhile, the better performance of SPDHG com-
pared with VRPDA? in terms of the last iterate is due partly
to the fact that it is a mirror descent-style algorithm with
less-sparse last iterate. In our experiments, the PURE_CD al-
gorithm is always worse than VRPDA? and SPDHG, which
is partly consistent with its worse convergence guarantee
as shown in Table 1. However, as PURE_CD is targeted to
sparse datasets, it may have a better runtime performance in
such settings, as shown in Alacaoglu et al. (2020).

Meanwhile, the performance of the average iterate of VR-
PDA? and the last iterate of SPDHG is almost the same (the
figures for the average iterate and the last iterate under the
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Figure 2. Comparison of sparsity for VRPDAZ, SPDHG, and PURE_CD run for the elastic net-regularized SVM problem, on a9a and
MNIST datasets. In all the plots, o is the strong convexity parameter of the regularizer ¢; “last” refers to the last iterate, “average” to the
average iterate. For all problem instances, VRPDA? generally constructs the sparsest solutions out of the three algorithms. (The number of
nonzeros is computed by counting the elements with absolute value larger than 10~7.)

same setting use the same scale), which is surprising in
that VRPDA? has n-times better theoretical guarantees than
SPDHG for small €. The better theoretical guarantee of
VRPDA? comes from the particular initialization strategy
inspired by Song et al. (2020a). Nevertheless, similar to
the experimental results in Song et al. (2020a), no signif-
icant performance gain (or loss) due to this initialization
strategy is observed in practice. Thus, it is of interest to
explore whether the initialization strategy is essential for
improved algorithm performance or if it is needed only for
the theoretical argument to go through.

6. Discussion

We introduced VRPDA?, a variance-reduced primal-dual
accelerated dual averaging algorithm for structured nons-
mooth ERM problems in machine learning. We show that
VRPDA? leverages the separable structure of common ERM
problems to achieves the best known convergence rates on
this class of problems, with good practical performance. It

even improves upon the lower bounds for (general, non-
structured) composite optimization. It remain an open ques-
tion to obtain tighter lower bounds for the problem class to
which VRPDA? applies, possibly certifying its optimality, at
least for small target error €. Another direction is addressing
settings with strongly convex loss functions currently not
addressed by VRPDA2, which may require very different
techniques.
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A. Omitted Proofs from Section 3

We start by proving two auxiliary lemmas that bound the growth of the estimate sequences ¢ (xy) and 1% (y) above and
below, respectively.

Lemma 1. In Algorithm 1, ¥(u,v) € X x Y and k > 1, we have

" 1 1+ 94y

Ve(yr) < Arg"(0) + llv = wol* - —5— v — w]”
1 1+0A

Ol@n) < Apl(u) + gl - zol* — 5 flu— @)

Proof. By the definition of ¢, (y) in Algorithm 1, it follows that, Vk > 1,
. 1
Vr(y) = Z%((-Bfiiq, y—v)+9°(y))+ §||y — ol
i=1

As, by definition, y, = argmin,cg. ¥, (y) (see Algorithm 1; observe that, by definition of ¢, it must be yi, € ), it
follows that there exists g4+ (yx) € 0g* (yx) such that

k

Z“i(_B‘EH + 99+ (Ur)) + (yx — yo) = 0.

Thus, for any v € R™, we have that, Vk > 1,

k
Unlo) = 3 sl BEi 1,y — ) + " (i) + 5l — voll
=1

k
N 1
=" aillga (i) v = i) + 9" (w0)) + (W — v0,v = i) + 5l — ol
i=1

. 1
= Ak({gg" (Wr), v = Yr) + " (Ur)) + Uk — Yo, v — ye) + 5 llye — yol%.

As g* is assumed to be y-strongly convex, we have that (g« (yx),v — yx) + ¢*(yx) < g(v) — %||v — yi||*. Thus, using

that (Y5, — ¥0,v — y&) + 2|y — yol|2 = 3v — yol|? — 3/lv — yu||?, we further have

N vy 1 1
Orl) < Ak (97(@) = 2o = wl?) + 510 = woll* = 5110 — vl

. 1 1 +~Ay
= Ayg"(0) + G0 — ol — I o - g,
as claimed.
Bounding ¢y () can be done using the same sequence of arguments and is thus omitted. O

Lemma 2. In Algorithm I, we have: ¥(u,v) € X x Y and k > 1,

14+ ~AL_ ”
Ye(ye) > k—1(Yr-1) + %”yk — yp—1|]* + an (9% (yx) + (—Bzy, yi — v))

+ar(B(xr — Tr—1),Yr — V) — ap—1(B(Tr—1 — Tp—2),Yp—1 — V)
—ap—1(B(Tr—1 — Th—2), Y — Yr—1),

or(xr) > ¢k71($k71)+1+0714k71

5 @k — @1 |* + ar ((@x — u, B yg) + £(z1)).

Proof. By the definition of ¢y (yy), the fact that y,_; is optimal for 1_1, and the 1 + yAj_;-strong convexity of
Yi—1(Yxr—1), we have the following: Vk > 1,
Vi(yr) = Ye—1(yr) + ax((—BZk—1,yx — v) + 9" (yx))

1+~A,_
> Yr_1(yYrp—1) + et

2 lye — Yr—1® + ac((—BZy_1, yx — v) + g* (yn)). 3)
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On the other hand, by the definition of Z;_;, we also have

(—B&y—_1,yr — v) = (—B(Zp—1 — xk), yr — v) + (—Bxk, Yy — v)

[0
kkl (B(Tr—1 — Th—2),Yx — v) + (—Bxy, yp — v)

= (B(xp — Tp—1),Yr — v) —

Ap_
= (B(axr — Tr-1),Yr — V) — Zkl (B(Tp—1 — Th—2), Yr—1 — V)
Al _
- Zkl (B(Tr—1— Th—2), Y — Yr—1) + (—Bxp, yp — v). 4)

Hence, combining Egs. (3) and (4), we have
1+ A, "
Yr(ye) > Ye—1(yr—1) + %Hyk — yp—1|* + arg* (yr)
+ap(B(xr — xp—1), Yp — V) — ax—1(B(Tp-1 — Tx—2), Yp—1 — V)

—ak—1{B(®Tr—1 — Tk—2),Yx — Yr—1) + ax(—Bxy, yi — v).

Similarly, by the definition of ¢, the (1 + 0 Ay_1)-strong convexity of ¢_1, and &1 = argmin cpa dr_1(x), we have
Vk > 1 that

br(xr) = dr_1(zr) + ar((zr, — u, BYyp) + ((x1))
14+ 0Ar_1

5 & — zp—1||* + ax((zr — uw, BTyg) + £(z)),

> ¢p—1(xp—1) +

completing the proof. [

We are now ready to prove Theorem 1.

Theorem 1. Under Assumption 1, for Algorithm I, we have, ¥V(u,v) € X x Y and k > 1,

_ 2 _ 2
Gapu’v(ik,’gk) < H’LL mOH + H’U yO“

2A; ’
~ 1 k ~ 1 k
where xj, = An Ei:l @i Yk = 7, Z¢:1 aiY;.
Further, if (x*,y*) is a primal-dual solution to (PD), then
1474 2
L+oAp)|ze — ¥ + ——|lyr — y*
( k)l | 5 Yk | )

< llzo — 2" + llyo — y7II.

In both cases, the growth of Ay, can be bounded below as

Ay Zﬁ max{k, (1 + :/fg)k_l,

9\}%1% ([k — kol+ + max {3.5\/§, 1})27
W%R ([k — kpl4 + max {3.5\/§, 1})2},

where | = max{-,0}, ko = fm}, and kf = fg\fﬁ]
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Proof. Applying Lemma 2, we have

Ui (yr) + on(xr) > Yr—1(Yr—1) + dr—1(Tr—1)
+ap(B(xr —xp-1), Yp — V) — ap—1(B(Tp_1 — Tx—2), Yp—1 — v)

1 Ay 1 Ap_
+ Akt wnmk_mk_”p

- k=1 _ 2
+ 5 lye — yu—1l” + 5 5)

—ap_1(B(Tr—1 — Th—2), Yk — Yk—-1)
1

+ [an(g* (yr) + U(zx) — (Bu,yp) + @k, BTv))],.

The terms from the first line in this inequality give a recursive relationship for the sum of estimate sequences 1y, + ¢. The
terms from the second line telescope. Thus, we only need to focus on bounding the terms inside [-]; and [-]2.

Observe that, by the definition (1) of Gap™* (x, y), we have
[2 = ar(Gap™® (xy, yi) + 9" (v) + L(u)). (6)
To bound [-];, observe first that

ap—1{B(®r—1 — Tr—2),Yr — Yr—1) < ap—1||Bl|[|er—1 — Tr—2|||| ¥ — Y1l
< Rag—1l|zp—1 — r—2ll|lYyr — yr-1ll,

where we have used Cauchy-Schwarz inequality, definition of the operator norm, and | B|| < R (which holds by Assump-
tion 1). Applying Young’s inequality, we have for all k£ > 2 that

R%aj 4?2 5 14+~yAr 2
ap—1(B(Tp_1 — Tr—2), Yt — Yp-1) < =———————||Tp_1 — Tp_o||* + ————||yr — Yr—
k 1< ( k—1 k 2) Y — Yk 1> 2(14—’)’141@71)“ k—1 k QH B ||yk Yk 1||
R%ay,_12 9 14+~vAr 2
< ———||®p_1 — Tp_ + — — Yp—
14+ 0A,_ 14+ ~vAg_
= P wns — P+ e — |
1+ 0Ax_ 14+ ~A,_
< #Hfbkq _xk—2||2+%”yk_yk71”2a (N

where the second line is by Ax_1 > Ax_o, Vk, and the third line is by the definition of a;_1 in Algorithm 1. Hence, we
have for k > 2 that

1+0A;_1 1+ 0A,_2

[h 2 ———llmx — @l - SR R ] ®)
For k = 1, we have
1+~A 14+0A
= =5 s = woll? + —5 =1 — o2 = ao(Bl@o — 1), y1 — yo)
1 1
= §||y1 —yo\|2—|—§|\w1 — @ *. )
When we sum [-]; over 1,2,. .., k, we obtain from (8) and (9) that the telescoped sum is bounded below by
1+0A,_ 1+0A 1 1
ek — @ [P = @ — o> + Sy — wol® + 5 &1 — o
2 2 2 2
o 14+0A,_1

1
5 &r — i1 |* + §||y1 — yol % (10)
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Thus, by combining Egs. (5)—(6), telescoping from 1 to k, and using (10), we have

Ui(yYr) + () > Yo(Yo) + do(To) + ar(B(xr — Tr—1), Y — v) — ao(B(xo —x_1), Yo — V)
1+0A,_1

1
1T0Ag—1 _ 2o, Ly
+ 2 zr — @p—1]|" + 2”1/1 yoll

k
+ > ai(Gap™® (@i, ;) + 9" (v) + L(u))
1=1
1+0A,_1

2
Ty — Ll—
2 || k k 1||

= ap(B(xy — Tp—1), Y — v) +

k
+ Y aiGap™® (i, y;) + Ai(g" (v) + £(w)), (11)
1=1

where we have used ¢ () = ¥o(yo) = 0 and g = x_1, which holds by assumption. By rearranging Eq. (11) and using
the bounds on ¢ () and ¥y (y) from Lemma 1, we have

i 1+0Ar
Z%Gapu’v(ivi,yi) < —ar(B(xp — @p—1),Yr —v) — #—ka — x|
i=1
1 14 vAg (12)
+ >l — ol — —E v — g2
2 2
1 1 +O’Ak
+ Sl = @o? = = flu - @

By using the same sequence of arguments leading to Eq. (7), but with v replacing yx_1 and k + 1 replacing k, we have that
the following bound holds for all £ > 1:

1+ 0A 1+ ~Ay
—ap{Blay — wio) i~ v) € o ey — @ e — ol
By combining with Eq. (12), we obtain

. 1 1

D~ aiGap® (i, y:) < 5llu— o + 5llv — vol?

i=1 (13)
1+ 04 9 1474 9

- - a2 - = o - i,

To complete bounding the primal-dual gap, it remains to observe that for any fixed u, v, Gap™?(x, y) is separable and
convex in x, y. Thus, by the definition of j, ¥y and Jensen’s inequality, we have that

[ — o|” + [[v — o
24,

k
o ww :
Gap™?(Zk, Yr) < A7k§ a;Gap™"® (z,y;) < “ -
i=1

To bound ||z — =*||? + ||y — v*||?, note that for (u, v) = (z*, y*) we must have Gap*¥(z,y) > 0, for all (x, y), since
(x*,y*) is a primal-dual solution. Thus, rearranging Eq. (13), we arrive at the claimed bound

1+ vAg

(1t oAg)llm, =22 + ——lye =7 I* < llwo — 2" + llyo — v"[I*.

To complete the proof, it remains to bound the growth of A;. We do this using the relationship Ay — Ax_1 = ap =

\/(HUA’“\’/I;};HVAFI). When either v = 0 or o = 0, the bound follows by applying Lemma 6. If & > 0 and v > 0, then

we have Ay, — Ap_1 = ap > %Ak,l, which leads to

as claimed. O
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B. Omitted Proofs from Section 4

We start by showing the following identity for the initial estimate sequence ¥1(y1) + ¢1(x1).
Lemma 3. For the initialization steps (Lines 2-7 of Algorithm 2), we have, for all (u,v) € X x Y that

n n
Y1(y1) + ¢1(x1) = §||yl —yol* + §H$1 — @o|?
+ a1 (Gap™® (21, y1) + ¢ (v) + £(u) + (x1 — 0, B (y1 — v))).

Proof. By the definition of ¢/ (-) and ¢, (-), we have
~ 1 ~ %
Yi(y1) = §Hy1 —yol|* + a1 ((—Bzo, y1 — v) + g* (y1)),
- 1 }
o1(xq) = §Hw1 —xo||* + @y ({1 — u,BTy1> +4(xq)).
Thus, using the definition (1) of Gap™*, we have:
- o 1 9 1 2
Y1(y1) + d1(z1) = §Hy1 —yoll* + 5||$1 —xo|
+a1(g*(y1) + L(x1) — (Bu,y1) + (1, B v) + (w1 — w0, B" (y1 — v)))
1 1
= 5”91 —yol* + §||w1 — @ol|?
+ a1 (Gap™® (z1,y1) + 9" (v) + L(u) + (x1 — zo, BT (y1 — v))),

We have by definition that ¢, = 7“/317 o1 = n(;)l, and a; = naj, so the result follows when we multiply both sides of this

expression by n. O

The following two lemmas now bound the growth of ¥ (yx) + ¢« () below and above, and are the main technical lemmas
used in proving Theorem 2.

Lemma 4. For all steps of Algorithm 2 with k > 2, we have, ¥(u,v) € X x Y,

k
% % n n
Uk(yr) <Y aigg (vg,) +arg* () + S lv = woll® = S llv — wel®,
1=2
n n+ oA
Ol@n) < Apl(u) + Zllu— ol — 5 u - .

Proof. By the definition of v (y) in Algorithm 2, it follows that, Vk > 2,

k
Ur(y) = Y ai(=b] @i 1(y;, —vj,) + g}, (5,)
i=2 (14)
+ (5 lly = ol + a1 ((~Bzo.y — v) + 9" (®)))
and
k
dr(@) = Y ai((@ =,z + (Ui g, — vio1,5)b;,) + ()
i=2 (15)

+ (Gl = ol + ar (@ — w, BTy + (=) ).

By the first-order optimality condition in the definition of y;, (see Algorithm 2), it follows that there exists g4+ (yx) € 99* (yx)
such that

k
Zai(_bﬁji—l +(95.) (yr,j:))es; +n(yrx — yo) + ar(=Bxo + gg- (yx)) = 0,
=2
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where e;; denotes the j,;th standard basis vector (i.e., a vector whose element j; equals one, while all the remaining elements
are zero) and (g7,)" € 99}, (yx,j;) denotes the §i™ element of g,- (yx)). By rearranging this expression, we obtain

—aBxg — Zaib;‘cfiiqeji = Zaz g] "(Yr.j:)es. — n(Yr — Yo) — a19g- (Yr)- (16)
i=2

By setting y = yy, in (14), then substituting from (16), we obtain
k
= > aill(g5) W) v = vi) + 95, 05.3)) + a1 (g (). v — we) + 9" ()

s

=2
n 2
+ (n(yr — Yo),v — yi) + §||yk — Yol
k

n n
< > ag; () +arg” () + Fllv —yoll* = Tllv — wil®
1=2

where we have used (gg- (Yx), v — Yr) + 9" (yr) < g*(v) (by convexity of g*) and (n(yx —yo), v —Yr) + 5| Yr —yol? =
Sl —yoll® — 5llv -yl

The bound on ¢ (xy) follows from a similar sequence of arguments. By the first-order optimality in the definition of xy,
we have that there exists g¢(x)) € 9¢(xy,) such that

k
D ai(zio1 + Wiy — Yi1,3)bj, + ge(@r)) + n(@r — o) + a1 (B y1 + ge(wy)) = 0,
=2

which rearranges to

k k
> ai(zicr + Wig, — Yi—15)b5) + @B yr = = aige(ar) — n(@k — o) — arge(x).-
i=2 1=2
By using this expression in Eq. (15) with @ = xj, we obtain
k
Sr(@r) = Y ai((ge(@r), v — @) + Lwy)) + ar((ge(r), w — @) + ()
=2
n 2
+{n(@e — o), u — @k) + 5 [l — @0l
k
g n n
< Y o Y 7 o 2 e o 2 ' o 2
< ;az Hu 2*) + a1 (0(w) = Sl = @*) + Sl = 2o = Fllu — 2]
n+oA
= Aplw) + Gl - @oll” = =" [l - @,
where we have used (g¢(xy), w — @) + L(zx) < ((u) — §|lu — z4||? (by o-strong convexity of £) and (n(z), — o), u —
xy) + 2@, — 2o||? = Zllu — o — %|lw — k|| The last line follows from the definition of Ay O

Lemma 5. For all steps of Algorithm 2 with k > 2, taking expectation on all the randomness in the algorithm, we have for
all (u,v) € X x Y that
n *
Byl 2 E[vioa(e-1) + 5 lye — vl + aigj, ()

+ap(B(xr — Tp—1), Y — V) — ap—1(B(Xp—1 — Th—2),Y—1 — V)
—nag—1(B(Tr—1 — Th—2), Yr — Yr—1) + ar(—Bxy, yp — v)

~(n = Dar((B@i-1 — ), ye = yi-1) + (Bu,ye —yi)) .

Elpr(xr)] > E[mfl(wkﬂ)—i—%l%_l

+ar((@n — u, B ) + (n— Dian — u BT (ye — yir) + (0))]-

s — 1|
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Proof. By the definition of 1y, we have

Uk (Ynk) = Ve-1(yk) + ar(=b], Tr—1(yr.j, — vj,) + 95, (Wkji))
= tr_1(Yr—1) + [Vr-1(yx) — Yr_1(yr-1)],
+ [ar(=b], Bk 1 (Yrji — vji) + G5 Wrii))] - (17)

To bound ) (yx,) in expectation and obtain the claimed bound, we need to bound the terms in []; and [-]2. To do so, let F,
be the natural filtration that contains all the randomness up to and including iteration k. In what follows, we will use the
tower property of conditional expectation, which guarantees E[-] = E[E[-|Fx_1]].

To bound [-];, we use the definition of 15, _; from Algorithm 2, and the facts that y;_; is optimal for 151 and that 15 _1 is
the sum of the n-strongly convex function v; with k — 2 additional convex terms. We thus obtain

(1 = re (W) — Yoot (Wre1) > =y — ye1 ]l (18)

To bound [-]2, observe that y, and y—1 only differ over the coordinate jj, which is chosen uniformly at random, independent
of the history. Further, recall that B = %[bl, by, ..., b, , and let B_ . denote the matrix B with its 7™ row replaced by
a zero vector. Then, we have

E[- bﬁjk—l(yk,jk — 0 )| Fi-1] = E[{(—nB&i_1,yr — v) + (nB_j, Tp—1, Y — V)| Fr—1]
=E[(—nBZ_1,yr — V)| Fr—1] + ((n — 1) BTp—1,yr—1 — v),
where the second equality follows from yj being equal to yi;_; over all the coordinates apart from ji, and from j

being chosen uniformly at random. Taking expectations on both sides of the last equality and using (B&j_1,y; — v) =
(BZ—1,Yr — Yr—1) + (B&r—1,Yr—1 — v) and the tower property of conditional expectation, we have

E[- bg;jkfl(yk,jk —v;,)] = E[(~B&y—1,yx — v)] — (n — E[(B&s—1, Y — Y-1)]- (19)

To finish bounding E[ — b &1 (yk.j, — vj,)] (and, consequently, E[[-]2]), we now proceed to bound the terms inside the
expectations in Eq. (19). First, adding an subtracting x;, in the first inner product term and using the definition of &;_1, we
have

(—BZj_1,yr — v) = (—B(Zp—1 — xk), yr — v) — (Bxy, yr — v)

ag_
= (B(xy — Tk—1), Y — V) — %<B(wk71 — Tp_2),Yr — V) — (Bxp,yp — v)

ag—
= (B(@k — @r-1),yp = v) = =~ (Bl@p-1 — @2) yeo1 — 0)
QA —
— S (B(@rt = @i2). e — yeor) — (B g~ ). (20)

On the other hand, using the definition of & _1, we also have

ap—1
@ (B(Tp—1 — Th—2), Yk — Yk—1)

(BZk—1,Yr — Yr—1) = (BTp_1, Yk — Yp—1) +

= (B(xp—1 —u),yr — Yr—1) + (BU, Y — Yr—1)
+ Ap—1
ay

(B(Tr—1— Th-2), Yk — Yr—1)- (21
Thus, combining Egs. (19)-(21) with the definition of [-]2, we have:

]E[H2] = E[akg;k (ylm'k) + ak<B(wk - wk—1)7 Yp — V) — ak71<B(ka71 —Tp_2),Yk—1 — v)
—nag_1(B(xTr_1 — Tp_2),Yr — Yr—1) — ax{(BTr, yp —v) (22)
—(n— 1)ak(<B(wk71 —u),Yr — Y1) + (Bu,yip — yk71>)]'

The bound on 1y (yy) from the statement of the lemma now follows by combining Eq. (17) with Egs. (18) and (22).
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To bound ¢ (), we use similar arguments to those we used above for bounding 1x (yx). In particular, from the definition
of ¢i(xy), and using that ¢p_1(xk_1) is (n + 0 Ap_1)-strongly convex and minimized at x;_1, we have

Or(xr) > dr—1(TR—1) + H%Ak_l

+ ap ((Tr — w, 2eo1 + Wr e — Yr—14,)b5,) + £(xk)).

_ 2
ek — zp—1]] (23)

Since yy, and yi_1 only differ on their j; element, by the definition of zx, we have z; = z;_1 + BT(yk — Yr—1),sobya
recursive argument it follows that z; = BTy, foralli = 1,2, ..., k. Thus, we have

Zi—1 + (kg — Y—1,3,)bj, =BT yr—1 +nB” (y, — yr_1)
=By, + (n—1)B" (y — yr—1),
and consequently
(T — w, Zo—1 + Whje — Yn—1,j2)05.) = (@ — u, B yg) + (n — 1){zp — u, BT (Y, — yr—1)). (24)
To complete the proof, it remains to combine Egs. (23) and (24). O]
Using Lemmas 3-5, we are now ready to prove our main result.

Theorem 2. Suppose that Assumption 2 holds. Then for any (u,v) € X x Y, the vectors xx, yi, k = 2,3, ..., K and the
average Ty = Aik Zle a;x; generated by Algorithm 2 satisfy the following bound for k = 2,3,... , K:

Ju — a0l + v — yol|?)

E[Gap™® (2, yr)] < n(

24, ’
k=10 0 Vs .
where §jj, = "YEtois (ZZ (n=Dawr1)ys
Moreover; if (x*,y*) is a primal-dual solution to (PD), then
n, o, n+ oA,
E|Tly" = wel + 5 2" — el
< ™ = aol® + [ly” — yol*)
< 5 .
In both cases, Ay, is bounded below as follows:
n—1 1 \*
Ay > { 1 ) Tpen,
L > Max ¥ +n—1 k<ko
(n— 1)2(7 2
———(k—k - 11
@y (F R0t n = D ik,
n(k —Ko+n-— 1)
where 1 denotes the indicator function, Ky = [%], ko = [bgl(of)i%] ,and

on(n —1) on(n —1)\2
Bn,o,R’ = AR — + \/<4RI ) +n?

> nmax{l, 0(7217];1)}

Proof. Fix any (u,v) € X x ). By combining the bounds on 1y (yx) and ¢y (xx) from Lemma 5, we have Vk > 2 that
E[(yi) + 0n(@1)] = E [t (yi1) + o1 (@em1)
+ ap(B(xy — Tp—1), Yk — V) — ak—1(B(Tp—1 — T—2), Yr—1 — v) (25)
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where

= D=yl + T a2 o6
—nag—1(B(zr—1 — Tp—2),Yr — Yo—1) + (n — Vag(zy — zp—1, BT (Y — yr-1)):
and
Qr = ar(g}, (Yrj) + Uxr) — (Bu,yi) + (xr, BTv) — (n — 1)(Bu, yr — Y1) 27

Observe that the first line Eq. (25) gives the desired recursive relationship for the sum of estimate sequences, while the
second line telescopes. Thus, we only need to focus on bounding Py, and Q.

To bound P, we start by bounding the inner product terms that appear in it. Recall that y; and y;_; only differ on
coordinate j;. We thus have

1
(B(Tr-1— Th—2), Yk — Yk—1) = Ebﬁ (@r—1 — ®r—2) Yk — Ye—1,j1)

1,1, 7 2« 9
- (@(b;‘k (Th-1 — @x-2))" + 5 ke = Yr—1.1) )

IN

for any o > 0, by Young’s inequality. Further, as, by Assumption 2, maxi<;j<n ||b;|| < R', applying Cauchy-Schwarz
inequality, we have that bﬁ (xp—1 — ®p—2) < R'||xk—1 — Tk—2||, and, hence

12

1/R «
(B(Th—1 — Th—2), Y — Yr—1) < - (g”kaq —zp_o|* + §||yk — ykleQ)' (28)

Similarly, V3 > 0,

1
(B(Tk — Tp—1): Yk — Y—1) = - ( lzr — zp—1]|* + g”yk — yk1|2) : (29)

26
Thus, by combining Egs. (26), (28), and (29), we have that Vo, 5 > 0

n? —anap_1 — B(n —1ay
T |

nin+ocAg_1) — (n—1)arR?/8
2n

P >

ak_1 R/Q
2c

e — @r—1 ] — [E7 T [

,B= %k_, and recalling that by our choice of step sizes in Algorithm 2, aj < Y——Fz5—— nntods1) ,Vk > 2,

Taking o = 2¢1k - T

we can further simplify the bound on Py to
n+ocAp_1

Py > f”xk — x| -

n+ocAp_o

zp_1 — zx_2a|?, (30)
4

which telescopes. Combining the bound on P}, from Eq. (30) with the initial bound on ¢y (yx) + ¢« () from Eq. (25) and
telescoping, we have

B[ (ye) + 6u(yn)] > E[v1(@1) + 61 (1)
+ ap(B(xp — 1),y — v) — a1(B(x1 — o), Y1 — v)

€2y

n+ocAp_1
T — 1||2**||$1*930||2+ZQ1}

We now proceed to bound ]E[Zf:2 Qi]. Observe first that g7, (v ;) = n(g* (yi) — = 2,25, 95 (Yi—1,7))- Thus,

(g5, )] = E[E[2(5 ) — - 3 g5 (1)) [

J]z

= E[ng*(y:) — (n — Vg*(yi1)],
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where F;_ is the natural filtration, containing all randomness up to and including iteration ¢ — 1. Therefore, we can bound

E| Zf:g Q;] as follows:

k k k
E[> Q] =E | ailng’(y) — (n=1)g"(yi-1)) | +E Zaif(fvi)l
k
+E Zai(—n<Bu, vyi) + (n—1)(Bu,y;—1) + (wi,BTU»}
k—1
= E narg" (yx) + Y _(na; — (n = Dazea)g" (ui) = (n — Dazg” (31)]

E
i

+ ]E[ — nag(Bu, yg) + (—na; + (n — 1)a;41){Bu,y;) + (n — 1)az(Bu, y1>}

i

/|
N

k

k
Z aié(aci) + Z a; (wi, BT’U> . (32)
1=2

=2

+E

On the other hand, recall that, by Lemma 3, we have

Gi(y1) + é1(@1) = Sy — yoll* + 5 e — ol
+ a1(g" (y1) + U(x1) — (Bu,y1) + (x1, BTv) + (w1 — o, BT (y1 — v)))
n 2 I 2
= Zllys - wol® + Sz — o
+ (n = 1)az(g"(y1) — (Bu,y1))
+ a1 ({(x1) + (@1, B0) + (@1 — 29, B" (y1 — v))), (33)

where we have used the setting as =

Thus, combining Egs. (31)-(33), we have

n+ocA,_
Elw(yr) + ¢n(yr)] > E |an(B(xr — Tr—1), yr — v) + fkl“wk —xp-1|?

n n
+5lly = 1% + 2z = ao|?
k—1
+narg*(yx) + (na; — (n — V)ai+1)9™ (y;)
=2
k—1
— nay(Bu, yi) — Z na; — (n — 1)a;1)(Bu, yi)
i=2

=1 i=1

k k
+ Z azﬂ(:cz) + Z CL,L'<$13,', BTU>] .
Using convexity of g* and ¢ (to apply Jensen’s inequality) and the definitions of @y, Y, it now follows that

n+ocA,_
Elw(yr) + ¢ (yr)] > E |an(B(xr — xr—1), yr — v) + fkl“wk —xp_1|?

I

+ 2 lys — woll® + 2l — ao)?
22/1 41 0

+ Ar(9" (k) + U(zr) — (Bu, gi) + (T, BTU>)1 : (34)
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. . k-1

Convexity can be used here because, due to our setting of a;, we have na; — (n — 1)a;y1 > 0, na + >, 5 (na; — (n —
k o~

Dait1) = naz + Y ;s a; = Ay, as naz = ay + ag, and &y, Yy, are chosen as

k—1 k
1 1
Y = z‘Tk (nakyk + ;(nai —(n— 1)az‘+1)yi), Ty = /Tk ;aszw

Recalling the definition (1) of Gap™'¥ (x, v) and rearranging Eq. (34), we have

AEIGap™ (31, §)] < E [ (ye) + dr(@i) — Axlg” (v) + ((w))

n+ocAp_1

l&r — 1|
4

—ap(B(xr — Tp—1),Yx — v)

n n
— Sl = ol = Tl — zof?]-

To complete the proof, it remains to apply Lemma 4, and simplify. In particular, as

=2

k k
E[ Y aig;, (vy,) + a19"(0)] = D aig” (v) + a1g” (v) = Avg*(v), (35)
=2
we have

Eln(ye) + ox(ye)] < E| Arg" (0) + 3 o = oll* = 3 o —

n-+ oAy

n
+ Axt(u) + 5w — o2 = P a2
which leads to
. n(||lu — xo||? + ||lv — 2 n n+ocA
AkE[Gap”’v(wk7yk)] <E (H 0” 5 H yO” ) —§||’U— HZ_ T’f”u_wkHZ
n+ocAp_1

—ap{B(xr — Tr—1),Yp — V) |, — xp_1]?

4

n n
— 2y = woll® = Fllar — o]

Finally, we have from Young’s inequality and the definition of ay, that

—ap(B(x — x—1), yx — v) < ap||Bl|||zr — zr—1]|lyx — v
< R'ag||lxy — xp—1[[|lyr — v

R?a? n

< k\|wk—wk71||2+1||v—yk\|2
n+oA_ n

< —— |k — el + 7o — wel?,

4 4
leading to
L n(|lu —xo|* + [[v —wo|?) n n+ oAy
AkE[Gapu,'v(wk’yk)] < E[ (H OH 5 || yOH ) . ZHU i yk||2 . 5 Hu _ fck”Q )

Similarly as in the proof of Theorem 1, it now follows that, V(u,v) € X x ),

(lw — o] + [lv — yol*)

n
E[Gap™® (&, )] <
[Gap™® (Zk, gi)] < oA,

and, as Gapw*’y* (Zk, gr) > 0, we also have

* 2 * 2

2 2
The bound on Ay, follows by applying Lemma 7 (Appendix C). O

n *
E[ly" il +
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C. Growth of Sequences

We start first with a general lemma that is useful for bounding the convergence rate of both PDA? and VRPDAZ.

Lemma 6. Letr { Ay }i>0 be a sequence of nonnegative real numbers such that Ay = 0 and Ay, is defined recursively via
Ap = Ap_1 + /3 + caAg_1, where ¢y > 0, and ¢y > 0. Define Ky = 9%1 Then

2
A, > %z(k—Ko-i-maX{S\/g, 1}) , ifca > 0and k > Ko,
k2
cik, otherwise.

Proof. As, by assumption, co > 0, we have that Ay, > Ay_1 + ¢1, which, combined with Ay = 0, implies Ay, > ¢1k. Thus,
we only need to focus on proving the stated bound in the case that c; > 0 and k > K.

To prove the lemma, let us start by assuming that there exist p > 0,q > 0, and kg € {1,2,...}, such that

A, > pq2, and

) (36)
Ap1 > plk—1—ko+q)7,

for some k£ > ko + 1 (observe that the inequalities are consistent for kK — 1 = kp). Then, by induction on k, we can prove
that A, > p(k — ko + q)?, for some specific p, g, ko. In particular:

A > Ap1+ VA
> pk—1—ko+q)* +Veap(k — 1 ko +q)2
= p(k—ko+a)® —2p(k —ko+q) +p+ /c2p(k — 1 — ko + q)
= plk—ko+9)® = VP(2yP — Vea)(k — ko) + p(1 — 29) + v/eap(—1 + q).

Let co = 9p and ¢ > 1. Then, we have

Ay, p(k — ko +q)* +p(k — ko) + p(1 — 2q) + 3p(—1 + q)
p(k —ko+q)* +p(—1+q)

p(k — ko +q)?,

(A\YARAVARLY]

where we have used k£ > kg + 1.

It remains to show that we can choose p, q, ko that make the definition of A from the statement of the lemma consistent
with the assumption from Eq. (36).

If cg < 9cy1, we have Ay = ¢; > ¢ = p. Thus, to satisfy Eq. (36), we can set kg = Ko = [6—21] =landg=3 C—; On

the other hand, if ¢z > 9¢1, we have A} = ¢; < 2 = p. Thus, by setting kg = Ko = [gZ ] andg=1>3 i—; and using

901

that Ay, > c1k (argued at the beginning of the proof), we have Ay, > % = p. O

We now examine the properties of the sequence {ay };>1 defined in Algorithm 2 and restated here:

_n - 1
T 2RV a2_n—1

nin+oAk_1)
ay )akflv 7

= 1 ]_
ay, ag mm{( + SR

} for k > 3. (37)

n—1

We also examine growth properties of { Ay },>1 defined by Ay, = Zle a;.

k
Proposition 1. Suppose that n > 2. Then there exists an index kg such that Aj, = %=k (1 + ﬁ) forall k < kg, where

2R
k/’ _ IOg BmU,R’
07 |logn —log(n—1) |’

and

on(n—1) on(n —1)\° on—1)
B ) = — PR 2 > m 1. ———2 % .
ot w \/( AR’ B R
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Further,
('fl — 1) loan,gyR/ S ko S 11(7’l — 1) loanJ,R/ =+ 1,

and we can conclude that the dependence of ko on n is kg = Q(nlogn).
Proof. Cases k = 1,2 can be verified by inspection, as A = a1 = 57 = 2=+ (14 —25) and Ay = a3 +az = a1 (1 +

_ 2 /n(n+oA,_
1) =221 (1+ —1;)". Observe that also az = 55 (1 + 7). For k > 2, aslong as a1 (1 + -15) < 771("21;, k1)
for all successive iterates, we have that

—ai (14 ) =g (1 )
Wk = k-1 n—1) 2R n-1)

k
As A, =), a;, we have

n 1 <& 1 \i-1
Ay = (1 7)
k 2R’+2R’Z too1

=2

k
no 1 ((Hnil) *171)
2R 2R'\ 1+ -1

_n—1(1+ 1 )k
2R/ n—1/"

Now let kg be the first iteration for which

1 Vn(n+oAg,)
1 ) o/ 38
o ( thoi)” 2R (38)
Since kg is the first such iteration, we also have (by the argument above) that ax, = ﬁ (1 + ﬁ)ko_l and Ay, =

n—1

k
ST (1 + ﬁ) °. Thus, by using these equalities and squaring both sides in (38), we obtain

ko
n2 1 ( 1 )2(kol) n? + nol= (1 + ﬁ)
14+ >

(n—1)2 (2R)? (2R)?

n—1

After simplifying the last expression, we have

1 \2Zko o(n—1) 1 ko
1) > (1+=5) )
(+n71 >\t e U

ko
and we seek the smallest positive integer k that satisfies this property. By introducing the notation r := (1 + nL) , we

can write this condition as

2 2 a(n—1) o on(n—1) 2
re>n <1+2nR/7‘><:>7‘ —Tr—n >0,

from which we obtain (by solving the quadratic) that r > B,, , r/, where

_1fon(n-1) \/ on(n —1)\2 )
Bnﬁ,R’ = 5 (m + <271%/> + 4n )

which is identical to the definition of B,, , g/ in the statement of the result.

1\
<1 + ) > Bn_gyR/,
n—1 ’

Thus, kg is the smallest integer such that
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or, in other words, ko = [kq |, where kg satisfies

1 o
<1+ ) :BnO'R’v
n_l Ehg)

which yields the main result when we take logs of both sides.

By using log(1 + §) € ((1/1.1)4,6) for 6 € (0,0.21), we have

1 Bna !
ko = — 22 (1,1.1)(n — 1) log Bu,o,e

log (1 + ﬁ)
for n > 2. The final claim is immediate.

Proposition 2. For kg defined in Proposition 1 and n > 2, we have for all k > kg that

L) > V7D

ak(lJrn—l 2R

Thus, we have that
n(n+ oAy)

o , forall k > k.

k41 =

Proof. Suppose for the purpose of contradiction that there is k& > kg such that

1 n(n + cAyg)
ak(1+n_1>> R

1 >§\/m.

1
a’““( g R

It follows from (40) that

vn(n+oAyg)

Y

By squaring both sides of (41) and using (42) and A1 = Ay + ax, we have

2
1 A
(1 s 1> aip? < T 0Air)

- (2r)y
- n \? n(n + cAyg) < n(n+ cAr + oagy1)
n—1 QR)? = (2R')2
o n? 3 n(n + cAyg) < N9kt
(n—1) (2rR)?  — (2R)?
2n—1 G2 < T
n(n—1)%c
< g1 <

and it follows by taking logs of both sides of the last expression that

log ax4+1 < log (QLRJ + log (;;_i) + log (%R/_l))

(39)

(40)

(41)

(42)

(43)
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k?o*l
We now obtain a lower bound on ay,. Since, as noted in the proof of Proposition 1, we have ay, = %R, (1 + ﬁ) R

we have, using the definitions of £y and B,, . g/ in the statement of Proposition 1 that
1 log ( ! )+ (ko — 1) log ()
ogar, = log ( — —1Dlog ( ——
§ Gko & 2R! 0 & n—1

s (57) +holos (575

n
- I 1 BnU /
0g<n_1)+ 0g(Bn,o,r’)

o () 1o ()

N

=X
— — ~—

I

—_—

Now for n > 2, we have

so by substituting in the last expression above, we obtain

2;%/) +log (22111> +log (%le)) “44)

log ak, > log (

By comparing Eq. (43) and Eq. (44), we see that a1 < ax, which (since {a;};>1 is a monotonically increasing sequence)
implies that k + 1 < kg, which contradicts our choice of k. Thus, no such k exists, and our proof is complete. O

Using Proposition 2, we have that for all k£ > kg, Ax+1 = Ak + 7“1(;%%. Thus, we can use Lemma 6 to conclude that

after iteration kg, the growth of Ay, is quadratic. However, to obtain tighter constants, we will derive a slightly tighter bound
in the following proposition.
Proposition 3. Let ko, B, ».r' be defined as in Proposition 1. Then, for all k > ko, Ay > c(k — ko +n — 1)?, where

_ (nfl)Qa
C= @rHTn

Proof. We prove the proposition by induction on ky. Observe that B, ; r/ > “"ég,_l) . Applying Proposition 1, we have

that

n—1 (n—1)*no 9 9
Ako Z TR/Bn’J’R/ Z W = 4671 Z c(n — 1) y
so the claim holds for k = ky. Now assume that the claim holds for £ > kg and consider iteration £ + 1. We have
Vn?2+noA
Apy1 = A+ 7,k
2R
>c(k;—ko—i—n—1)2+7\’27115T(k:—k0+n—1).

Let us argue that *5=7> (k — ko +n — 1) > 2¢(k — ko + n). We note first that

Vnece  no(n—1)/oc (n—1)o n 1 nco
- - - 2 92— (1- =)V
SR 2R 4Rn S8R a1+ ¢

We then have

VI (1) — 2e(k — ko + ) = (W‘QC)(k_k°+”)_W

2R’ 2R’ 2R’
vneo 1 nco
>NV (e _ Ny
Z S pF ko) -

=0,
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where we have used k > k. Hence, we have that:
Agy1 > C(k—ko+n—1)2+20(k‘—ko+ﬂ) ZC(k—ko+n)2+1 > C(k—k0+n)27
establishing the inductive step and proving the claim. [

Proposition 3 is mainly useful when ¢ is not too small. For small or zero values of o, however, we can show that after kg
iterations the growth of Ay, is at least a linear function of k, as follows.

Proposition 4. Let Ky = (%1 n > 2. Then, for all k > K, we have that A, > %.

Proof. Since Ky, < ko, we have by Proposition 1 that Ag, > "(Q"I;,” and ax, > 2. As ap = min{(1 +
1 Yag, \/n(n;;Akm} and 0 > 0, for all & > 3, we have that a, > 5% for all K > Ky + 1, leading to the
claimed bound on Ay. O

We can now combine Propositions 1-4 to obtain a lower bound on Ay, as summarized in the following lemma. Its proof is a
direct consequence of Propositions 1-4, and is thus omitted.

Lemma 7. Let sequences {ay }r>1, {Ak }x>1 be defined by Eq.(37). Then:

n—1 1\ (n—1)%0 9 nlk—Ko+n—1)
A >1nax{ 2R (1+ n—l) Licko, W(k_k0+n_l) Lizho, 2R/ Lizko g
where 1 denotes the indicator function and
logn log By, 5 R
Ky = ko = —
0 {logn—log(n—l)—‘ r [logn—log(n—l) ’

on(n—1) 4R/ 2 on—1)
B = — |1 1 _ > 1, —— .
n,o,R AR + \/ + (0(?1 — 1)) = nmax{ s SR

D. Efficient Implementation of VRPDA? and Other Computational Considerations

We discuss here an equivalent form of Algorithm 2 for which the aspects needed for efficient implementation are treated more
transparently. To implement Algorithm 2, we use the proximal operator prox, ¢ (2o) = arg min, {7 f () + [l — x|}
for a scalar 7 > 0, a convex function f and a given & This implementation version (shown here as Algorithm 3), maintains
several additional vectors that are needed to keep track of coefficients in the “arg min” Steps 11 and 12 of Algorithm 2. In
particular, we maintain a vector p; € R™ that contains the coefficients of the linear term in y in the function ) (-), a vector
), € R" that contains coefficients of g7 (-) in 1x(-), and a vector gy, € R that is the coefficient of the linear term in x in
the function ¢y (n-). Each of these vectors generally must be stored in full, and all are initialized in Step 7 of Algorithm 3.
In Step 11 of Algorithm 3, only one component—the j;, component—of pj and 7 needs to be updated. For 7y, the cost
of update is one scalar addition, whereas for pj, it requires computation of the inner product bﬁ Zy_1, which costs O(d)
scalar operations if b, is dense but potentially much less for sparse B. The update of g (Step 14 of Algorithm 3) requires
addition of scalar multiples of two vectors (z;_1 and b, ), also at a cost of O(d) operations in general. (Note that for the
latter operation, savings are possible if B is sparse, but since zj_1 is generally dense, the overall cost will still be O(d).)
In discussing the original Algorithm 2, we noted that the arg min operation over y in Step 11 resulted in only a single
component (component ji) being different between y;_1 and yi. We make this fact explicit in Step 12 of Algorithm 3,
where we show precisely the prox-operation that needs to be performed to recover the scalar yy, ,. .

To summarize, each iteration of Algorithm 3 requires several vector operations with the (possibly sparse) vector bj;, € R,
several other vector operations of cost O(d), a prox operation involving /(z), and a scalar prox operation involving g, .
There are no operations of cost O(n).

Initialization of Algorithm 3 involves significant costs, including one matrix-vector product each involving B and B7,
one prox operation involving ¢(+), a prox operation involving ¢*(-) (which can be implemented as n scalar prox operations
involving g7, g3, ..., g} in turn), and several vector operations of cost O(d + n). However, this cost is absorbed by the
overall (amortized) computational cost of the algorithm, which adds to O(ndlog(min{n, 1/¢}) + g) for the general convex

case and O(ndlog(min{n, 1/e}) + \/%) for the strongly convex case, as stated in Theorem 2 and in Table 1.
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Algorithm 3 Variance Reduction via Primal-Dual Accelerated Dual Averaging (VRPDA? , Implementation Version)

1: Input: (zo,y0) € X x Y, (u,v) € X x V.
2: a0:A0:07(~11:ﬁ7ﬁ1:—Bw0.
3: Y1 = prox, .. (Yo — @1p1).
4: z1 = BTy1.
5: &1 = prox; ,(To — a121).
6: a1:Alzndl,agzﬁal,Angl—i—ag.
7 p1=aa1P1,q1 = a1z1,71 = ~ap 1.
8: fork=23,...,Kdo
9 Ty =Tg—1+ GI;;1 (Tr—1 — Tp—2).
10:  Pick ji uniformly at random in [n].
) ) P14, i # Jk B {ﬁc—l,h i F Jk
1 pr; = T - T Tk = T
DPk—1, — axb; Tr—1, 1= Ji Th—1; + Ak, &= Jk
14 7 .
12 oy = Yk—1,i # Jk

pIOX%T‘k,jkg;k (Yo, — %pk’jk)ﬂ i=jk

130 qr = qr-1+ ar(Ze-1 + Wkj — Ye-1,5.)b5.)-

14: x = prox%Ake(wo — %qk)

150 2z =21+ %(yk,jk = Yk—1,3,)bj,.-

16:  ajy1 = min ((1 + 1) ay, 7%%)"4’““ = A+ apy1.
17: end for

18: return Ty or Ty = ﬁ Zszl aRTy.
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