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Abstract

In this work, we propose a sketching-based cen-
tral path method for solving linear programmings,
whose running time matches the state of the art
results (Cohen et al., 2019b; Lee et al., 2019).
Our method opens up the iterations of the central
path method and deploys an “iterate and sketch”
approach towards the problem by introducing a
new coordinate-wise embedding technique, which
may be of independent interest. Compare to pre-
vious methods, the work (Cohen et al., 2019b)
enjoys feasibility while being non-oblivious, and
(Lee et al., 2019) is oblivious but infeasible,
and relies on dense sketching matrices such as
subsampled randomized Hadamard/Fourier trans-
form matrices. Our method enjoys the benefits
of being both oblivious and feasible, and can
use sparse sketching matrix (Nelson & Nguyén,
2013) to speed up the online matrix-vector mul-
tiplication. Our framework for solving LP nat-
urally generalizes to a broader class of convex
optimization problems including empirical risk
minimization.

1. Introduction

Linear programming is one of the fundamental models
widely used in both practice and theory. It has been ex-
tensively applied in many fields such as economics (Tintner,
1955; Dorfman et al., 1987), operations research (Delson &
Shahidehpour, 1992), compressed sensing (Donoho, 2006;
Candes et al., 2006), medical studies (Mangasarian et al.,
1990; 1995), adversarial deep learning (Wong & Kolter,
2018; Weng et al., 2018), etc., due to its simple and intuitive
structure. The problem of solving linear programs has been
studied since the 19-th century (Sierksma & Zwols, 2015).
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Consider solving a general linear program in standard form
mingz—p >0 c' @ of size A € R*™ without redundant
constraints. For the case d = Q(n) we considered in this
paper, the state of the art results take a total running time
of O*(n® + n?5-2/2 4 p?*+1/6)! o obtain a solution of
0 accuracy in current matrix multiplication time (Cohen
et al., 2019b; Lee et al., 2019), where w is the exponent of
matrix multiplication whose current value is roughly 2.373
(Williams, 2012; Le Gall, 2014), and « is the dual exponent
of matrix multiplication whose current value is 0.31 (Le Gall
& Urrutia, 2018). The breakthrough work due to Cohen, Lee,
and Song (Cohen et al., 2019b) improves the long standing
running time of O*(n?®) since 1989 (Vaidya, 1989). For
the current w and «, (Cohen et al., 2019b) algorithm takes
O* (n?373) time.

For the current state of the art results, the work (Cohen et al.,
2019b) involves a non-oblivious sampling technique, whose
sampling set and size changes along the iterations. It avoids
the possibilities of implementing expensive calculations in
the preprocessing stage and also makes it harder to extend
to other classical optimization problems. On the other hand,
the work (Lee et al., 2019) only maintains an infeasible
update in each iteration and requires the usage of dense
sketching matrices, which will ruin the potential sparsity
structure of the original linear programs. Thus, a natural
question to ask is:

Is there an oblivious and feasible algorithm for solving
linear programs in fast running time (i.e. current matrix
multiplication time) ?

In this work, we propose a both oblivious and feasible (per
iteration)? method that solves linear programs in the same
running time as the state of the art.

The algorithm we propose is a sketching-based short step
central path method. The classical short step method fol-
lows the central path in the interior of the feasible region. It

decreases the complementarity gap uniformly by roughly a
1

(1- ﬁ) factor in each iteration and takes O*(/n) itera-
'We use notation O* to hide 7°*) and log®™"(1/§) factors.
2In each iteration, we approximate the central path by solving

a linear system. Our approach constructs a randomized oblivious

system equation which can be solved exactly. While previous work

(Cohen et al., 2019b) constructs a non-oblivious one, and (Lee

et al., 2019) doesn’t solve the system exactly (in each iteration).
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tions to converge. This results in O*(y/n) x n = O*(n')

coordinate updates throughout the algorithm (Vaidya, 1989).
Compared to (Cohen et al., 2019b; Lee et al., 2019), our
randomized algorithm improves this amount (in (Vaidya,
1989)) of updates via a different approach. We only update a
O*(y/n)-dimensional subspace in each iteration while keep-
ing the same number of iterations /7 through an Oblivious
Coordinate-wise Embedding (OCE) technique. Thus, our
method updates O*(n) dimensions in total, which is nearly
optimal.

The coordinate-wise embedding we introduce in this work
is a distribution of matrices R € RVsech X" wwith byien << 10
such that, for any inner product ¢g'h between two n-
dimensional vector g,h € R™, with "high” probability
g R" Rh approximates g " h well. In the case of solving
linear programs, we approximate the calculation of matrix-
vector multiplication Ph in each iteration by PR Rh
through OCE, such that the resulting random vector is close
to previous one in each coordinate, i.e., (PR' Rh); ~
(Ph); for all i € [n]. Combining with lazy update and
low-rank update techniques to maintain the query structure
PRT Rh for any input vector h € R", we can ensure the
new random path is still close to the central path throughout
the iterations. Therefore, our method decreases the average
running time per iteration while keeping the same number
of iterations. Furthermore, the sketching matrix R in our
approach can be chosen in an oblivious way since it does
not depend on the algorithm updates. Compare to previous
work (Lee et al., 2019), our approximation form PRTRhA
also helps admit a closed form solution in each iteration
for solving LP. Thus, our approach takes the advantages of
being oblivious and feasible, compared to other state of the
art results (Cohen et al., 2019b; Lee et al., 2019).

We state our main result as follows:

Theorem 1.1 (Main result). Given a linear program
minay—p >0 ¢ x with no redundant constraints. Assume
that for any x > 0 with Az = b, we have ||x||; < R. Then
for any accuracy 6 € (0,1], our LP algorithm outputs a
vector x > 0 such that

'z < min
Az=b,x

Az = blly < & (R||AllL + [[bl|1)

'z +0-|c)|eR and
>0

in expected time
(nw+o(l) 1 p25-a/2to(1) +n2+1/6+o(1)> log(n/9).

Note that w is the exponent of matrix multiplication, « is the
dual exponent of matrix multiplication.

Remark 1.2. For the current value of w ~ 2.38 and o ~
0.31, our running time becomes n*+°) log(n/é).

Our main contributions are summarized as below:

* We propose a new randomized algorithm for solving
linear programs that matches the state of the art running
time (Cohen et al., 2019b; Lee et al., 2019). Compare
to the state of the art works, our approach takes the
advantage of being both oblivious and feasible. Our
approach also applies to a broader range of sparse
random matrices.

* We provide the intuition and rigorous analysis of our
proposed approach by studying the key bottlenecks in
running time of classical central path method.

* We propose a new sketching technique, named as
coordinate-wise embedding, Which is different and
more powerful than Johnson-Lindenstrauss (JL) em-
bedding and subspace embedding when applied to iter-
ative optimization method.

1.1. Related works

Linear programming. Linear programmings have been
studied for nearly a century. One of the first and most
popular LP algorithm is the simplex algorithm (Dantzig,
1947). Despite it works well in practical small size prob-
lems, the simplex algorithm is known to be an exponential
time algorithm in the worst case of Klee-Minty cube (Klee
& Minty, 1972). The first polynomial time algorithm for
solving LP is the ellipsoid method (Khachiyan, 1980) pro-
posed by Khachiyan. Although this algorithm runs in poly-
nomial time in theory, but in practice this algorithm runs
much slower than the simplex algorithm. The interior point
type of methods (Karmarkar, 1984) have both polynomial
running time in theory and fast and stable performance in
practice. In the case of d = £2(n) considered in this work,
Karmarkar’s algorithm (Karmarkar, 1984) takes O* (n3-%)
running time. Then it was improved to O* (n?) in the work
(Renegar, 1988; Vaidya, 1987). In 1989, Vaidya further pro-
posed an algorithm that takes a running of O* (n?®). This
result hasn’t been improved until recent work due to Cohen,
Lee and Song (Cohen et al., 2019b). Apart from the square
LP case d = (n), there are also a series of work devoted to
study the flat LP case d < n, for example (Clarkson, 1995;
Brand et al., 2020; Chowdhury et al., 2020).

Sketching. Classical sketching methodology proposed by
(Clarkson & Woodruff, 2013) is the so-called ”sketch and
solve”. The most standard and well-known applications are
linear regression (Clarkson & Woodruff, 2013; Nelson &
Nguyén, 2013; Andoni et al., 2018; Clarkson et al., 2019;
Song et al., 2019a) and low-rank approximation (Clarkson
& Woodruff, 2013; Nelson & Nguyén, 2013; Boutsidis &
Woodruff, 2014; Clarkson & Woodruff, 2015b;a; Razen-
shteyn et al., 2016; Song et al., 2017; 2019b;c). It further
generalizes to subspace embeddings (Wang & Woodruff,
2019; Li et al., 2020a), positive semi-definite matrices
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(Clarkson & Woodruff, 2017), distance matrices (Indyk
et al., 2019), total least regression (Diao et al., 2019b), quan-
tile regression (Li et al., 2020b), tensor regression (Li et al.,
2017; Diao et al., 2018; 2019a; Song et al., 2021), tensor
decomposition (Song et al., 2019d).

The sketching method we deploy in this work is called
”‘iterate and sketch” (Song, 2019). The major difference
between classical “sketch and solve®, and “iterating and
sketch is: the first one only applied the sketch once at very
beginning to reduce the dimension of problem, while does
not modify the solver; the second one opens up and modifies
the solver by applying sketching techniques iteratively in
each iteration. The idea of “iterate and sketch” has been
applied to a number of problems, e.g. computing John
Ellipsoid (Cohen et al., 2019a), Newton method (Pilanci
& Wainwright, 2016; 2017), tensor decomposition (Wang
et al., 2015; Song et al., 2016), semidefinite programming
(Jiang et al., 2020; Huang et al., 2021), training deep neural
network (Brand et al., 2021).

Empirical risk minimization Empirical risk minimiza-
tion (ERM) problem is a fundamental question in statistical
machine learning. Extensive literature has been devoted to
study this topic (Nesterov, 1983; Vapnik, 1992; Nesterov,
1998; Polyak & Juditsky, 1992; Nemirovski et al., 2009;
Nesterov, 2013; Vapnik, 2013). First-order methods includ-
ing accelerated gradient descent algorithms for ERM are
well-developed and studied (Jin et al., 2018; Johnson &
Zhang, 2013; Nesterov & Stich, 2017; Xiao & Zhang, 2014;
Allen-Zhu, 2018). These rates has a polynomial dependence
on the smoothness/strong convexity parameters of the objec-
tive in order to achieve a logarithmic log(1/¢) dependence
on the error parameter e.

Notations For a positive integer n, we use [n] to denote
set {1,2,---,n}. For vectors =,z € R™ and parameter
e € (0,1), weuse z ~, z todenote (1 —¢€)z; < z; <
(1+€)z;, Vi € [n]. For any scalar ¢, we use a = t to denote
(1—e)t < a; < (1+e€)t, Vi € [n]. Given diagonal matrices
X = diag(z) € R™*", S = diag(s) € R"*", we use & to
denote the diagonal matrix with (£ );; = x;/s;,Vi € [n].

2. Technique overview

In this section, we discuss the key ideas of our approach
based on the classical central path method.

2.1. Short Step Central Path Method

Consider the following standard primal and dual problems
of linear programmings:

b"y (dual)

max

min ¢z (primal) and
ATy+s=c, x,5>0

Azx=b,z>0

where A € R¥*" is full rank with d = O(n). Then (z,y, s)

is an optimal solution if and only if it satisfies the following
optimality conditions (Vanderbei et al., 2015):

Ar=b, x>0

ATy +s=¢ s>0

x;8; = 0 for all 4

(primal feasibility)
(dual feasibility)

(complementary slackness)

The classical interior point method finds an optimal solution
by following the central path in the interior of the feasible
region, which is defined as the tuple (z, y, s, t) that satisfies:

Axr=b, x>0
ATy+5:c,s>O (D)

x;8; =t forall ¢

where ¢ > 0 is called the complementarity gap. It has been
shown we can obtain an initialization point on the central
path with ¢ = 1 according to (Ye et al., 1994). Then in each
iteration, the classical algorithm deceases the complemen-
tarity gap uniformly from ¢ to nt with 7 < 1, and solves
Eq. (1). As t approaches 0, the central path will converge
to an optimal solution. The short step central path method
approximately solves Eq. (1) by the following linear system:

X0s + 80, =0y,
Ab, =0, )
ATS, +6,=0,

where X = diag(z), S = diag(s) and we update the solu-
tionby £ = £ +6,, s = s+J, and y = y + d,. Denote the
actual complementarity gap 1 € R™ defined under Eq. (2)
as i; = x;8; for i € [n]. Then Eq. (2) maintains the feasi-
bility conditions while approximately moving the gap from
to i+ 6,,. As long as the actual complementarity gap p
is always close to the aiming complementarity gap ¢ during
the algorithm, we can assure the actual complementarity
gap o will converge to 0 as ¢ goes to 0, which leads us to an
optimal solution.

To solve the linear system (2), note when A is full-rank, it
has an unique solution explicitly given by:
X 1 S 1
0p = —(U - P)—=d,and 6 = —=P—=4,,
( ) VXS VXS VXS"
3)

where P = /% AT (A%AT)_1 Ay/= is an orthogonal
projection matrix.

The work of (Vaidya, 1989) shows that we can choose 1 to
be roughly 1 — ﬁ, and the algorithm converges in O*(y/n)
iterations. Therefore, the total running time needed of solv-
ing LP by explicit solution Eq. (3) is O*(n~+1/2).
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2.2. Sketching-based Central Path Method

In the following subsections, we discuss our approach of
sketching-based central path method. In Subsection 2.3, we
introduce the coordinate-wise embedding (CE) technique.
We discuss the difference between CE and classical sketch-
ing techniques, such as Johnson-Lindenstrauss (JL) Lemma
and subspace embedding (SE). We also discussed the results
of applying common sketching matrices in CE. In Subsec-
tion 2.4, we explain why our sketching-based central path
method can speed up the computation. In Subsection 2.5,
we explain the reason why our sketch-based central path
method is feasible and oblivious. In Subsection 2.6, we
discuss the projection maintenance needed for the algorithm
updates.

Algorithm 1 Main algorithm (simplified)

1: procedure MAIN(A, b, ¢, dip) > Theorem D.1

2: Modity the linear program and obtain an initial x and s
according to (Ye et al., 1994)

3: > Ensure the initial complementarity gap start with
XTiSi = 1

4: Initialize: sketching size bgeicn = O (y/n), parameters
e = O*(1), projection maintenance datastructure mp

5: t+1 > Initialize the aiming gap ¢

6: while ¢ > 67, /(32n%) do > Stop once the precision is
good

7. Y — (1 — 3\5/5)75 > Decrease the aiming gap by
1 — 1/4/n in each iteration

8: W= xS > Actual gap

9: Op (5= —Das — 5 -tV 7“VV§AA((:/¢:11))H2 >

Here ®x(r) := Y., cosh(Ar;) is the potential function
characterizing the ¢ closeness between actual path © and
actual path ¢. We have @ in the update to help ensure u =g 1

t.
10: (IHGW7 SDGW) <_
STOCHASTICSTEP(mp, &, S, 0,4, bsketch, €) > Algorithm 2
11: (z,8) < (277, s"V), ¢ <tV
12: end while
13: return an approximate solution of the original linear pro-

gram according to (Ye et al., 1994) .
14: end procedure

2.3. Coordinate-wise Embedding

To speed up the classical central path method, we introduce
the coordinate-wise embedding (CE) as follows:

Definition 2.1 ((«, 8, §)-coordinate wise embedding (CE)).
Given parameters o, 3 € R and ¢ € (0,1), we say a ran-
domized matrix R € RVsketer X" with distribution 11 satis-
fies (a, B, 6)-coordinate-wise embedding property if for any
fixed vector g, h € R", we have

TpT _ T
1. R]:]ﬂ[g R'Rh) =g h,
2. B [(g"RTRR)*I < (9"h)* + 7

~I sketch

o
gllZlR13,

Algorithm 2 Sketching-based central path step

1: procedure STOCHASTICSTEP(mp, &, S, 0,, b, €)

2: w <= Z,7 < mp.UPDATE(w) > Projection maintenance

3: Eem\/g,ges‘/% > It guarantees that% = v and
TS =xs

4: repeat

5: Px, Ps < mp.QUERY(—2=4,,) > Projection

XS

maintenance

6: 8s — —2=p. > According to (4

S @ps g ( )
7 Op \/L:pz > According to (4)
XS
. aols—1% 1 —=—17 1
8: until |57 050 < T00Teg and [|[Z7 0z |lee < T00Teg T

9: return (z + 0., s + 0s)
10: end procedure

3. Prllg"RTRh—g h| > lgll2llhll2| <0.

B
\% bsketch

We remark that the (v, 8, §)-coordinate wise embedding we
proposed here is different from the conventional Johnson-
Lindenstrauss Lemma (Johnson & Lindenstrauss, 1984) or
subspace embedding (Sarlés, 2006) in classical literature as
discussed in Section 3.

Several well-known sketching matrices To further con-
cretize our sketching approach, we discuss the following
commonly used sketching matrices and their corresponding
properties when acting as coordinate-wise embedding and
solving LP.

Random Gaussian matrix All entries are sampled from
N (0, 1/bgkereh) independently.

SRHT matrix (Lu et al., 2013) Let R =
V1 /bgeten SHD, where S € RPweX? g a ran-
dom matrix whose rows are by, uniform samples
(without replacement) from the standard basis of R™,
H € R™ " is a normalized Walsh-Hadamard matrix,
and D € R™*" is a diagonal matrix whose diagonal
elements are i.i.d. Rademacher random variables>.

AMS sketch matrix (Alon et al., 1999) Let R; ; = h;(j),
where hi, ho, -, hp,,., are bseren random hash func-
tions picking from a random hash family H = {h :

1 1
[n] - {_ Vbsketch ’ + V bsketch }}

Count-sketch matrix (Charikar et al., 2002) Let
Ry (s),; = o(i) for all i € [n] and other entries to zero,
where h : [n] = [bsketen] and o : [n] — {—1,+1} are
random hash functions.

Sparse embedding matrix (Nelson & Nguyén, 2013)

Let R(j_1)bske&ch/5+h(i7.j)7i O'(i, ])/\/g for all

3In this case, we require log n to be an integer.
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(4,7) € [n] x [s] and all other entries to zero, where
h:[n] x [s] = [Dsketen/s] and o : [n] X [s] — {—1,1}
are random hash functions.

Uniform sampling matrix Let R = /n/byecnSD,
where S € Rbsen X" ig 3 random matrix whose rows
are bgyerch uniform samples (without replacement) from
the standard basis of R™, and D € R™*™ is a diagonal
matrix whose diagonal elements are i.i.d. Rademacher
random variables.

Considering an oblivious regime, where the size of sketch-
ing byketen 18 fixed, we have

Lemma 2.2 (Oblivious coordinate-wise embedding prop-
erties). For above defined sketching matrices, they are of
(«, B, 0)-coordinate wise embedding as in Table 1.

Remark 2.3. The approach in (Cohen et al., 2019b) be-
haves similarly as applying uniform sampling matrix in our
sketching, which doesn’t work in an oblivious setting. There-
fore, (Cohen et al., 2019b) needs to modify the sketching
size in each iteration. In general, to apply the sketching
in an oblivious way, we observe that the sketching matrix
should be relatively dense to better concentrate around its
expectation, so that we can control the extra perturbation
introduced by random sketching in solving linear program-
ming problems.

2.4. Speeding up central path method through OCE

To speed up the classical central path method, we randomize
the calculation of Eq. (3) by

~ X 1
8y = ——(I — P)RTR———6
\Axs( ) VXS
~ 1
5, = —>_PRTR——y), @)

VXS VXS

where the random sketching matrix R € RbsnX™ satisfies
the (v, 3, §)-coordinate wise embedding property with o =
O(1), B8 = O(V/bseten) and any failure probability 6 €
(0,1).

The coordinate-wise embedding properties 2.1 ensures the
randomized Eq. (4) are well concentrated around original
Eq. (3), which implies the new randomized path i, will
still be near the aiming path ¢ during the algorithm updates.
Therefore, given the same decreasing rate of aiming path
t as before, we are able to prove i /.1 t throughout the
iterations. As they converge to zero, we are still able to
obtain an optimal solution in O*(/n) iterations.

In terms of running time, note Eq. (4) actually reduces the
dimension of previous matrix-vector multiplication from n
to bsketcn- Assume we can maintain the sketched projection
matrix PR in an efficient manner, the calculation in Eq. 4)

reduces to (PR") - u for some vector u € R which
is a multiplication between a matrix of size n X bgyeren, and
a vector of size bgerch and costs O(nbgeren) Tunning time.
Choosing bseren to be O*(y/n), we speed up the updates.
We summarize our approach in Algorithm 1, 2. We discuss
how to maintain the projection in Section 2.6.

2.5. Feasible central path equation via sketching

To explain the strength of our approach, we discuss the
feasible and oblivious advantages of our method over past
state of the art results.

The new update rule Eq. (4) can be viewed as an exact
solution of the following linear system:

X6y 4 S0, = 0,
A, =0, ©)
AT, 46, =0,
where
~ 1
6, =VXSR'R———4,. (©6)

VXS

Therefore, our approach can also be viewed as an update of
a subspace of the complementarity gaps in each iteration,
instead of decreasing the complementarity gaps uniformly.

Note in each iteration, our update solves the new linear sys-
tem (5) exactly. Compared to the state of the art approach
(Lee et al., 2019) which constructs a solution that solves
the linear system approximately, the feasibility of our ap-
proach helps us to have simpler analysis and also be able to
use sparse embedding matrix to prevent ruining the potential
sparsity structure of the original linear programs, compared
to the usage of dense sketching matrices in the work (Lee
etal., 2019).

On the other hand, our method is oblivious since the choice
of sketching matrix R € Rb=X" does not depend on the
algorithm updates, which implies we can pick the sketching
matrices at the preprocessing stage. While for the state of
the art approach (Cohen et al., 2019b), its sampling prob-
ability depends on the algorithm updates and needs to be
calculated on-the-fly.

2.6. Projection maintenance

In this section, we discuss our approach to deal with the
second computational bottleneck, i.e., how to maintain the
projection after sketching PRT € R"*bs in an efficient
way, where P € R™*™ is the orthogonal projection matrix
defined in Eq. (3) and R € RP«=*" j5 a random sketching
matrix with appropriate («, 3, §)-coordinate-wise embed-
ding property.
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Sketching matrix o E] LP? (Left) | LP? (Right)
Random Gaussian | O(1) O(log™?(n/d)) Yes Yes
SRHT 0(1) O(log™?(n/d)) Yes Yes
AMS 0o(1) O(log™®(n/9)) Yes Yes
Count-sketch O(1) | O(V/bsketen log(1/8) or O(1/V/6) No No
Sparse embedding | O(1) O(y/bsketen/slog' ®(n/6) No' Yes™
Uniform sampling | O(n) O(n/v/bsketcn) No No

Table 1: Summary for different sketching matrices. *

A sparse embedding sketching matrix can be used in LP algorithm

when it is added on the right and s = Q(log®(n/)). T However when sketching on the left (in (Lee et al., 2019)), additional
algorithmic designs are needed to make the algorithm feasible (see Section F.1 for more discussion), and the error of the

feasibility part cannot be bounded unless s = Q(bsketch )-

Let W diag(w) € R™ denotes the diagonal
matrix with w; x;/s;. Then we have P
VIWAT(AWAT)"TAVW € R™ ™. Therefore, our fi-
nal goal of implementing of Eq. (4) reduces to the task of
maintaining the query structure which outputs:

PR"Rh=(PR")-(R-h)=(PR")-u ()

where © € RVskeen,

To achieve this, we have the similar observation as in (Cohen
et al., 2019b): W doesn’t vary much between two iterations
under the sketching approach, which is shown in the follow-
ing lemma:

Lemma 2.4 (Change of W). Let w; and w;°V denote the
value x;/s; in two consecutive iterations, then we have

Z [lnw*V] — In wi)2 < 64€2,

i=1

n

> (Var[lnw**])* < 1000€”.

i=1
Sfor some 0 < e < 1/(40000 logn).

Above observation motivates us to take the benefit of lazy
update if w; only has little changes since we only need
to maintain the projection approximately. We discuss two
extreme scenarios to illustrate the core ideas: 1) w changes
uniformly across all coordinates and 2) w only changes in
few coordinates.

In the first case, we use the idea of lazy update. Lemma 2.4
implies the changes of w between two iterations are roughly
wiv ~ (14 f)wl Therefore, w;’s will only vary by
more than a constant and possibly ruin our previous o,
closeness after O*(y/n) number of iterations. In this case,
we only need to update the matrix PR " once every O*(,/n)
iterations, while being ”lazy” in any other time. Since the
algorithm finishes in O*(y/n) iterations, it means we only
need to update matrix PR O*(1) many times, whose total
running time is O* (n*).

In the second case, we use the idea of low-rank update.
Instead of updating PR in each iteration, we directly com-
pute PR v using the Woodbury matrix identity. Since
w only changes in few coordinates, we only need to fo-
cus on computing the inverse of small matrix instead of
the original n x n matrix. And computing PR"u in-
stead of PR speeds up the computation because we only
need to do matrix-vector multiplication. As a result, we
can output PR u in O* (nbgeren) time. Recall we choose
bsketeh = O*(n'/?). Therefore, the running time for this
case is O*(n?), which is also within our budget.

For general cases, we combine above techniques together.
Specifically, we save the projection matrices PR in our
data structure. And in each iteration, three possible cases
might happen:

1. Case 1: The current W is close to the one we save
W3¢ in every coordinate. Then we stay lazy and
output PR " u directly;

Case 2: The current W differs from W**¢ only in few
coordinates, while being close in other coordinates.
Then we stay lazy in maintaining the projection PR "
and output PR " u using low-rank updates;

. Case 3: The current W differs a lot from W**'® in many
coordinates. Then we update the projection PR and
calculate PR u exactly;

Note in Case 2, the direct low-rank updates doesn’t output
Q. u exactly since the change of W is usually nearly sparse
instead of exact sparse. To deal with this issue, we construct
a version of W, denoted as V' = diag{vy, - - - , v, }. We can
ensure 0; = ©(w; ) and the update of V will always be exact
sparse. We visualize the above discussion using a chasing
example.

Using such approach, we are able to maintain the query
structure PR " at point V in an efficient way. We sum-
marize our datastructure in Algorithm 8, and the update
and query scheme in Algorithm 9 and 10. We state the
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Figure 1: Visualization of projection maintenance: we model the task as a game of person A chasing person B, where person
A needs to report the approximate location of person B in each round while moving as little as possible. Person A brings a
drone C which can only fly in one direction. The location of Person B represents the exact projection matrix, the location
of Person A represents the projection matrix we store in the datastructure, the location reported in each round represents
the output of our algorithm. In the beginning, they start off at the same location. At round 1, person B moves but is still
close to person A. In this case, person A stays idol and reports its location. This case corresponds to the situation that the
projection changes little in all coordinates, so we use the idea of lazy updates. At round 2, person B moves far away from
A only in one direction. In this case, person A keeps its location and releases drone C to chase person B in the direction
where person B moves a lot. And we report the location of the drone C. This case corresponds to the situation that the
projection only changes a lot in few coordinates, so we use the idea of low-rank updates while keeping lazy on updating the
stored projection matrix. In round 3, person B moves far away from A in all directions. In this case, person A moves to the
location of person B and reports its location. This case corresponds to the situation that the projection changes a lot in many
coordinates, so we update the stored projection matrix.

Algorithm 3 Projection Maintenance Data Structure

1: members

2: w e R" > Target vector
3: v, v €R" > Approximate vector
4: A € RIxn

5: M e R™*™ > Approximate projection matrix
6: Qe Rrxn’L > Sketched version approximate

projection matrix
7. Ry. Ron, - Rp.cRV*n
matrices
8: l S N+, L c N+
9: emp € (0,1/4)
10 a€(0,q]
11: end members

> Sketching

> Tolerance
> Batch Size for Update (n®)

12:

13: procedure INITIALIZE(A, w, €mp, @)

14: W4 W, V4 W, €mp < €mp, A A, a<a

15 M+ AT(AVAT)"1A

16:  Choosing Ry, Ro.---,Rp. € R to be

sketching matrices
17: R+ [R*J,R*’z"' ,R*,L]
18: Q+— MVVRT
19: l+1
20: end procedure

following main result for projection maintenance and refer
to Appendix E for a detailed explanantion:
Theorem 2.5 (Projection maintenance). Given a number

a € (0,)* and sketching matrices R € R™ X" with b €
[0, 1]. We can approximately maintain the projection by

1. UPDATE(w): Output a vector v such that for all i,

(1 - 6mp)i}vi é W S (]- + Gmp){)vb

2. QUERY(h): Output

VVAT(AVAT) YAV V(RT), Ry h for the ¥ out-
putted by the last call to UPDATE.

The data structure takes n>d* =2 time to initialize, each call
of QUERY (h) takes time O* (n'*° + n'*%), and the amor-
tized expected time per call of UPDATE(w) is O* (n®~1/2 4
n27a/2).

Note our approach maintains the projection at point V=
X /S instead of W = X/S, where T; = x;1/0;/w; =01
x; and §; = s;4/w;/V; ~o.1 ;. Equivalently speaking,
instead of solving Eq. (5), we are solving

X0, + 50, =0,

4« is the dual exponent of matrix multiplication, whose current
value is roughly 0.31 (Le Gall & Urrutia, 2018).
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Algorithm 4 UPDATE Algorithm 5 QUERY
1: procedure UPDATE(w) 1: procedure QUERY(h)
2 y;  Inw; —Inw;, Vi € [n] 2: Let S be the indices ¢ such that |Inw; — Inwv;| >
3 1 <— the number of indices ¢ such that |y;| > emp/2. €mp/2.
4 if r < n® then 3: AeV-V
Z: 1])\28VZ<—1)M 4 T VV-yv
new , ) = x-1 -1
° e 5 pm e VV- (M, 5)- Ak +Mg5) ™ (Qg, +
8 else Mg, -T- (R")s1) Ris-h
9 Let 7 : [n] — [n] be a sorting permutation such 6 ps ﬁ (@ LM-T (RT)s1) Ri-h—pm
that [y (iy| > Y (i)l 7 P2 (RT)ss Ris-h — ps
10: while 1.5 - r < n and |y (f1.5.07) > (1 — 8 return (vap;) ;
1/1og n)|Yn(r)| do 9: end procedure
11: r < min([1.5-r],n)
12: end while
13: Un(y < Wr (3) Z €{L.2,ur} tion:
Uiy tE€E{r+1,---,n}
14: manfZ(Alx—l—bl),
15: A + diag(v™™ — v) > A € R and R
Al = r e e
16: T« diag(vo™™ — \/0) where fi is convex func ion on R™ wi ! ”2—37321' n;. Our
17 Let S « ([r]) be the first r indices in the algorithm output the solution in time O*(n*>"3log(n/J)),
permutation where 0 is the precision parameter.
18: Let Mg € R™*" be the r columns from S of
M. 3. Comparison between Coordinate-wise
19: Let Ms,s,As,s € R™" be the r rows and embedding and classical sketching
columns from S of M and A.
20: MY « M — M, - ( A§ls + Mg S)—l . In this section, we discuss our proposed coordinate-wise
(M.5)T ’ ’ ’ embedding (CE) technique. Despite the seemingly similar-
21 - Re-generate R ity, we show that our technique is fundamentally different
22: Q"™ < Q4+ (M ¥ .T)-RT 4+ (M™™ — M) from the classical sketching methods including Johnson-
' VV-RT Lindenstrauss (JL) embedding and subspace embedding
s et (SE).
24: end if
95. v phew 3.1. Sketching guarantee comparison

26: M «— Mmev
27: Q + Q"™

~ v;
28: v, < i
w; otherwise

if [lInw; —Inv;| < emp/2

29: return v
30: end procedure

Ad, = 0, (8)
ATS, 46, =0,

_JxopT 1
where §, = VXSR R\/X:S
And the final running time of our algorithm can be bounded
bt O*(n¥).
Remark 2.6. Our approach for solving LP naturally gener-
alizes to other convex optimization problems of the following
form (Lee et al., 2019), including empirical risk minimiza-

d,, as shown in Algorithm 2.

We compare the coordinate-wise embedding proposed in
Definition 2.1 with the most well-known sketching guar-
antees: Johnson-Lindenstrauss embedding (JL) and sparse
embedding (SE) as an example. We first list out the defini-
tion for JL embedding and SE.

Definition 3.1 (Johnson-Lindenstrauss embedding (JL)
(Johnson & Lindenstrauss, 1984)). Given 0 < ¢ < 1, a
finite point set X in R™ with | X | = m, we say a randomized
matrix R € RY*™ satisfies Johnson-Lindenstrauss property
if (1—e)llgll3 < [|Rgll3 < (X +¢) - [lgll3 for all g € X.
Definition 3.2 (Subspace embedding (SE) (Sarlés, 2006)).
Given 0 < € < 1, a matrix A € R"*%, we say a randomized
matrix R € RP*™ satisfies (1 + €) {y-subspace embedding
for the column space of A if || RAz||3 = (1 + €)||Az||3, for
all z € R4,

We note coordinate-wise embedding only works for a fixed
vector pair g,h € R™, while the Johnson-Lindenstrauss
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Statement Reference

Emb. | /; guarantee | Unb. | Var.

Definition 2.1 This paper

CE for a fixed one | Yes Yes

Definition 3.1

(Johnson & Lindenstrauss, 1984) JL

for a fixed set No No

Definition 3.2 (Sarlés, 2006)

SE for a subspace | No No

Table 2: Summary of the guarantees of different embeddings. The three embeddings give the {5-norm guarantee for different
number of vectors. Coordinate-wise embedding also guarantees the embedding is unbiased, and the variance is bounded.
See Section G for more details. “Emb.” denotes Embedding. “Unb.” denotes Unbiased. “Var.” denotes Variance.

embedding stated below works for a finite set of points.
Further, the subspace embedding property works for all
vectors from the subspace R?.

The key difference lies on the dimension after sketching.
While classical JL embedding and sparse embedding all
map high-dimensional vectors g € R to lower-dimensional
vectors

geR" —» Rge R’

the coordinate-wise embedding does not. Instead,
coordinate-wise embedding de-sketches the sketched vector
and outputs a vector of the original dimension:

geR” - R"-RgeR"

Here, we can view R : R” — R? as the sketching step,
and RT : R® — R™ as the de-sketching step. Coordinate-
wise embedding combines these two steps together and still
output a high-dimensional vector.

Correspondingly, we have different guarantees of JL/sparse
embedding and coordinate-wise embedding for well-known
sketching matrices. As shown in Table 1, coordinate-wise
embedding gives a much looser guarantee for the variance
bound due to the de-sketching step. Given sketching di-
mension b, coordinate-wise embedding only guarantees a
O( % )-factor variance bound while JL/sparse embedding
usually guarantees an (1 + ¢)-factor bound with € < 1.

3.2. Sketch-and-Solve vs. Iterate-and-Sketch

Given the guarantee comparison, we further discuss how
coordinate-wise embedding differ from classical sketching
approaches from a methodology perspective.

As we discussed, classical sketching maps vectors to a
lower dimension while preserve the inner-product structure.
Therefore, classical approaches first sketch the problem to
a lower dimension and use black-box methods to solve the
lower-dimensional problem. The sketching guarantees the
sketched problem will produce an approximate solution to
the original problem. We call such approach sketch-and-
solve”.

Specifically, we consider the least squares problem as an
example. Given A € R"*?, and b € R", we try to solve

min ||Az — bl|o,
z€R4

whose solution is 7* = ATh = (AT A)~1ATb and it takes
O(nd*~! 4+ d*) running time to compute.

To speed it up, in a over-constrained case where n is much
larger than d, the “sketch and solve” approach chooses a
b x n random matrix R from a certain distribution II on
matrices, where b < n. Consider the following algorithm
for least squares regression:

1. Sample a random matrix R ~ II.
2. (Sketch) Compute R - A and R - b.

3. (Solve) Output the exact solution z’ to the regression
problem min,cga ||(RA)z — (RD)||2.

Above approach gives the following guarantee when R to
satisfy SE guarantee.

Theorem 3.3 (SE gives approximate regression, Theo-
rem 21 of (Woodruff, 2014)). When R € RY*" used in
the “sketch and solve” algorithm satisfies the subspace em-
bedding guarantee with parameters €/2 and 6, then with
probability 1 — 6, the output x' satisfies

||Az" — b||2 < (1 + €) min ||Az — b]|2.
z€R4

We remark that classical ’sketch-and-solve” approach re-
quires the problem to have certain inner-produce structure
which limits its power.

On the contrary, coordinate-wise embedding preserves the
vector dimension. It aims to accelerate the matrix-vector or
matrix-matrix multiplication instead of reducing the dimen-
sion of the problem. Therefore, we go inside each iteration
of the algorithm and apply sketching in each step. We call
such approach "iterate-and-sketch”. In the case of solving
linear programs, we note in each step of short central path
method, we only need to obtain an approximate solution
with loose /., guarantees. Hence, applying sketching in
each step will not deteriorate the convergence rate (i.e., the
number of iterations) while accelerate the calculation in each
iteration, which benefits the overall running time complex-
ity. Such approach does not require any specific property of
the problem itself but only requires enough approximation
tolerance of each iteration of the iterative algorithm, which
could apply to a much broader class of problems.
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