
Causal Curiosity

A. Implementation Details for Experiment
Discovery

A.1. Planner

The Experiment Planner consisted of a uniform distribu-
tion planner for a horizon of 6 control signals. The planner
was trained using the Cross Entropy Method Model Pre-
dictive Control (Camacho & Alba, 2013; De Boer et al.,
2005) on the true environment. We sampled 30 plans
per iteration from the distribution initialized to uniform
U(controlLow, controlHigh). Each of the sampled plans
are applied to each of the training environments and the top
10% of the plans are used to update the distribution. The
CEM training required 10 iterations.

A.2. Training Environments

The training environments vary in each experiment. In
Section 4.3, we utilize 3 setups, Mass, SizeMass and
ShapeSizeMass. For Mass, we allow the agent to ac-
cess 5 environments with masses varying from 0.1 kg to 0.5
kg. In SizeMass, the agent has access to 30 environments
with masses varying uniformly from 0.1 to 0.5 kg and sizes
from 0.05 to 0.1 meters. Finally, in ShapeSizeMass, the
agent has access to 60 environments, with masses varying
uniformly from 0.1 to 0.5 kg, sizes from 0.05 to 0.1 meters
and shapes either being cubes or spheres. During experi-
ment discovery, in each environment, the agent has access
to the position of the block in the environment along with
its quaternion orientation.

The total number of causal causal factors of each environ-
ment are rather large in number due to the fact that the
simulator is a complex realistic physics engine. Examples
of the causal factors in the environment include gravity, fric-
tion coefficients between all on interacting surfaces, shapes,
sizes and masses of blocks, control signal frequencies of
the environment. However, we only vary 1 during Mass, 2
during SizeMass and 3 during ShapeSizeMass.

A.3. Curiosity Reward Calculation

We predetermine the minimum description length of the
clustering model L(M) by assuming that the observations
o0:T , obtained by applying experimental behavior a0:T are
produced by a bi-modal generator distribution, where each
mode corresponds to either a low or high (quantized) value
of a causal factor. This also ensures that L(M) is as small
as possible. The planner, eq. (7) solves the following opti-

mization problem:

argmax
a0:T∈AT

[min{d(o0:T ,o
′
0:T ) : o0:T ∈ C1,o

′
0:T ∈ C2}−

max{d(o0:T ,o
′′
0:T ) : o

′′
0:T ,o0:T ∈ C1}−

max{d(o′0:T ,o′′′0:T ) : o′0:T ,o′′′0:T ∈ C2}]
(10)

the distance function d(·, ·) in the space of trajectories is set
to be Soft Dynamic Time Warping (Cuturi & Blondel, 2017).
The trajectory length T is 6 control steps long. The objective
is a modified version of the Silhouette Score (Rousseeuw,
1987).

Intuitively, Objective (10) expresses the ability of a low
complexity model, assumed to be bi-modal, to encode the
state O = o0:T . If multiple causal factors control O, then
the Minimum Description Length of L(O) will be high.
Subsequently, since M is a simple model, the deviation of
O from M will be high i.e. L(O|M) will be high resulting
in a low value of the optimization objective. C1 and C2 cor-
respond to clusters of outcomes which quantize the values
of a causal factor isolated by a0:T . o0:T ,o

′′
0:T ∈ C1 cor-

respond to trajectories of states i.e. observations obtained
by applying a0:T to environments with say, low values of a
causal factor while o′0:T ,o

′′′
0:T ∈ C2 correspond to trajec-

tories of observations i.e. state obtained by applying a0:T to
environments with say, high values of the same causal factor.
Objective (10) attempts to ensure that these clusters are far
apart from each other and are tight i.e. a simple model M
encodes O well.

B. Implementation Details for Transfer
In Section 4.4, we show the utility of learning causal rep-
resentations in 2 separate experimental setups. During
TransferMass, the agent has access to 10 environments
during training, with masses ranging from 0.1 to 0.5 kg. At
test time, the agent is required to perform the place-and-
orient task masses 2 masses - 0.7 kg and 0.75 kg. During
TransferSizeMass, the agent has access to 10 environ-
ments during training, with sizes from either 0.01 or 0.05
m and masses ranging from 0.1 to 0.5 kg. At test time the
agent is asked to perform the task on 2 environments with
masses 0.7 kg and 0.75 kg with sizes = 0.05 m.

We find that testing with large and light blocks increase
the chances of accidental goal completions. Thus, during
test-time, we use environments with high masses for out-
of-distribution testing. The causal representation is con-
catenated to the state of the environment as a contextual
input and supplied to a PPO-Optimized Actor-Critic Policy
i.e., it receives 57 dimensional input for TransferMass,
and a 58 dimensional for TransferSizeMass). The
policy network consists of 2 hidden layers with 256 and
128 units respectively. The experiments are parallelized
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Figure 8. Directed Graphical Model. A Directed Acyclic Graph (DAG) visually represents the causal dependencies of observed and
unobserved variables. In (A), an observed variable X is caused by unobserved causal variables, PAi(X). In (B), describes the scenario
modeled in the paper, where a subset of the unobserved parent causal variables influence the observed variable O. The action sequence
a0:T serves a gating mechanism, allowing or blocking particular edges of the causal graph.

Figure 9. Overview of training. The experiment planner generates a trajectory of actions which is applied to each of the environments
with varying causal factors namely mass, shape and size of blocks. For each environment, an observation trajectory or state Oi ∈ O
is obtained. A simple model with fixed low expressive power is used to approximate the generative model for O. The "information
overflow" L(O|M) is returned as negative reward forcing O to be caused by few causal factors.

on 10 CPUs and implemented using stable baselines (Hill
et al., 2018). The PPO configuration was {"gamma":0.9995,
"n_steps": 5000, "ent_coef": 0, "learning_rate": 0.00025,
"vf_coef": 0.5, "max_grad_norm": 10, "nminibatches":
1000, "noptepochs": 4}

The agent receives a dense reward at each time step dur-
ing the maximizing external reward phase (Figure 1), the
negative of the distance of the block from the goal position
scaled by factor of 1000. The control signal was repeated
10 times to the actuators of the motors on each finger.

C. Implementation Details for Pre-trained
Behaviors

In section 4.2, we study how the acquired experimental
behaviors obtained through Causal Curiosity can be used as
pre-training for a variety of downstream tasks. The Vanilla
CEM depicts the cost of training an experiment planner from
scratch to maximize an external dense reward where the
agent minimizes the distance between the position of a block
in an environment from the goal in the Lifting setup and
imparts a velocity to the block along a particular direction

in the Travel setup.

R(a0:T ) = −
∑
t

dist(goalt − blockt) (11)

The second baseline (Additive Reward) studies the setup
when the agent receives both the curiosity signal and the
external reward and attempts to maximize both. The agent
receives access all the training environments with varying
causal factors and must simultaneously maximize both cu-
riosity and the task reward. The equation below shows the
reward maximized for the Lifting task.

R(a0:T ) =
∑
envs

T∑
t

−dist(goalt − blockt) +

[min{d(o0:T ,o
′
0:T ) : o0:T ∈ C1,o

′
0:T ∈ C2}−

max{d(o0:T ,o
′′
0:T ) : o

′′
0:T ,o0:T ∈ C1}−

max{d(o′0:T ,o′′′0:T ) : o′0:T ,o′′′0:T ∈ C2}]

(12)

The curious agent first acquired the experimental behav-
ior by interacting with multiple environments with varying
causal factors. The lifting skill was obtained during Mass,
when the agent attempted to differentiate between multi-
ple blocks of varying mass. The curious agent trained for
600, 000 time steps on the curiosity reward. The acquired
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behavior was then applied to the downstream lifting task and
fine tuned to external rewards. The Vanilla CEM baseline
had an identical structure to that of the Curious agent, and
received only external reward as in Equation (11). The addi-
tive agent simultaneously optimized both external reward
and the curiosity reward as in Equation (12).

We find that maximizing the curiosity reward in addition to
simultaneously maximizing external rewards results in sub-
optimal performance due to our formulation of the curiosity
reward. To maximize curiosity, the agent must discover
behaviors that divide environments into 2 clusters. Thus in
the context of the experimental setups, this corresponds to
acquiring a lifting/pushing behavior that allows the agent
to lift/impart horizontal velocity to blocks in half of the en-
vironments, while not being able to do so in the remaining
environments. However, the explicit external reward incen-
tivizes the agent to lift/impart horizontal velocity blocks in
all environments. Thus these competing objectives result in
sub-par performance.

D. Intuition for Definition of Causal Factors
We begin with a simple example of a person walking on
earth. This person experiences various physical processes
while interacting in their world, for example gravity, fric-
tion, wind etc. These physical processes affect the outcome
of interactions of the person with their environment. For
example, while jumping on earth, the human experiences
gravity which affects the outcome of their jump, the fact
that they falls back to the ground. Additionally, these phys-
ical processes (or causal mechanisms) are parameterized
by causal factors, for example, acceleration constant due
to gravity g = 9.8m/s2 on earth, or coefficients of friction
between their feet and the ground which assume particular
numerical values.

These causal factors may vary across multiple environments.
For example, the person may walk on sand or on ice, sur-
faces with varying frictional values. Thus the outcome of
running on such surfaces will vary, running on sand will
require significant effort, while running on ice may result in
the person slipping. Thus the coefficient of friction between
the person’s feet and the surface they walk on affects the
outcome of a particular behavior in said environment. In our
definition, hj are causal factors such as friction or gravity
etc. H is the global set containing all such causal factors.

Now we ask the question (which we subsequently answer),
given multiple environments, how would a human char-
acterize each of them depending on the value of a causal
factor? Through experimental behaviors. The human in the
above example would attempt to run in each of the environ-
ments she encountered, be it on sand, on ice, in mud etc.
If they slipped in an environment, she would characterize

Algorithm 2 Inference Loop

Input: Unseen Test Environment env, trained Planner and
Causal Inference Module
Initialize causalRep = [ ]
Initialize training environment set Envs
for k in range(K) do

Reset env
Sample experimental behavior a0:T ∼
CEM(·| causalRep)
Apply a0:T to env
Collect O = o0:T

Use learnt qM (z|O, causalRep) for cluster assign-
ment i.e. zk = qM (z|O, causalRep)
Append zk to causalRep

end for
Learn a policy conditioned on causal factors at ∼
π(·|ot, z0:K) to maximize external reward.

it as slippery. If they didn’t, they would characterize it as
non-slippery. We attempt to equip our agent with similar
logic. The “sequence of actions” (a0:T ) described in our
paper corresponds to the human running. The sequence of
observations (o0:T ) corresponds to the outcome of running
"experiment". o0:T might belong to either of the clusters
of outcomes Ca or Cb corresponding to slipping or not slip-
ping.

E. Scalability Limitation
We utilize the extremely popular One-Factor-at-a-time
(OFAT) general paradigm of scientific investigation, as an
inspiration for our method. In the case of many hundreds
of causal factors, the complexity of this method will scale
exponentially. However, we believe that this would indeed
be the case given a human experimenter attempting to dis-
cover the causation in any system she is studying. Learning
about causation is a computationally expensive affair. We
point the reader towards a wealth of material on the design
of scientific experiments and more specifically the lack of
scalability of OFAT (Fisher, 1936; Hicks, 1964; Czitrom,
1999). Nevertheless, OFAT remains the de facto standard
for scientific investigation.


