
A. Derivations
A.1. Derivation of InfoNCE, INCE

We start from Barber and Agakov’s variational lower bound on MI (Barber & Agakov, 2003). I(x; y) can be bounded as
follows:

I(x; y) = Ep(x,y) log p(y|x)
p(y) Ø Ep(x,y) log q(y|x)

p(y) , (11)

where q is an arbitrary distribution. We show that the InfoNCE bound (Oord et al., 2018) corresponds to a particular
choice for the variational distribution q followed by the application of the Jensen inequality. Specifically, q(y|x) is defined
by independently sampling a set of examples {y1, . . . , yK} from a proposal distribution fi(y) and then choosing y from
{y1, . . . , yK} in proportion to the importance weights wy = eÂ(x,y)q

k
eÂ(x,yk) , where Â is a function that takes x and y and

outputs a scalar. In the context of representation learning, Â is usually a dot product between some representations of x and
y, e.g. f(x)T f(y) (Oord et al., 2018). The unnormalized density of y given a specific set of samples y2:K = {y2, . . . , yK}
and x is:

q(y|x, y2:K) = fi(y) · K · eÂ(x,y)

eÂ(x,y) +
qK

k=2 eÂ(x,yk)
, (12)

where we introduce a factor K which provides “normalization in expectation”. By normalization in expectation, we
mean that taking the expectation of q(y|x, y2:K) with respect to resampling of the alternatives y2:K from fi(y) produces a
normalized density (see Sec. A.1.1 for a derivation):

q̄(y|x) = Efi(y2:K)[q(y|x, y2:K)], (13)

where fi(y2:K) =
rK

k=2 fi(yk). The InfoNCE bound (Oord et al., 2018) is then obtained by setting the proposal distribution
as the marginal distribution, fi(y) © p(y) and applying Jensen’s inequality, giving:

I(x, y) Ø Ep(x,y) log Ep(y2:K )q(y|x, y2:K)
p(y) Ø Ep(x,y)

5
Ep(y2:K ) log p(y) K · wy

p(y)

6

= Ep(x,y)

C
Ep(y2:K ) log K · eÂ(x,y)

eÂ(x,y) +
qK

k=2 eÂ(x,yk)

D

= Ep(x,y1)p(y2:K )

5
log eÂ(x,y)

1
K

qK

k=1 eÂ(x,yk)

6
= INCE(x; y|Â, K) Æ log K, (14)

where the second inequality was obtained using Jensen’s inequality.
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We follow Cremer et al. (2017) to show that q(y|x) = Ey2:K≥fi(y)[q(y|x, y2:K)] is a normalized distribution:

⁄

x
q(y|x) dy =

⁄

y
Ey2:K≥fi(y)

Q

afi(y) eÂ(x,y)

1
K

1qK
k=2 eÂ(x,yk) + eÂ(x,y)

2

R

b dy

=
⁄

y
fi(y)Ey2:K ≥fi(y)

Q

a eÂ(x,y)

1
K

1qK
k=2 eÂ(x,yk) + eÂ(x,y)

2

R

b dy

= Efi(y)Efi(y2:K)

Q

a eÂ(x,y)

1
K

1qK
k=2 eÂ(x,yk) + eÂ(x,y)

2

R

b

= Efi(y1:K )

A
eÂ(x,y)

1
K

qK
k=1 eÂ(x,yk)

B

= K · Efi(y1:K)

A
eÂ(x,y1)

qK
k=1 eÂ(x,yk)

B

=
Kÿ

i=1
Efi(y1:K )

eÂ(x,yi)
qK

k=1 eÂ(x,yk)

= Efi(y1:K)

qK
i=1 eÂ(x,yi)

qK
k=1 eÂ(x,yk)

= 1 (15)

A.2. Proof of Proposition 1

Proposition 1 (Conditional InfoNCE). ICNCE is a lower-bound on I(x; y|xÕ) and verifies the properties below:

ICNCE(x; y|xÕ, „, K) = E
5

log e„(xÕ,x,y1)

1
K

qK
k=1 e„(xÕ,x,yk)

6
, (6)

1. ICNCE Æ I(x; y|xÕ).

2. „ú = arg sup„ ICNCE = log p(y|xÕ,x)
p(y|xÕ) + c(x, xÕ).

3. limKæŒ ICNCE(x; y|xÕ, „ú, K) = I(x; y|xÕ).

Proof. We begin with 1., the derivation is as follows:

I(x; y|xÕ) = Ep(xÕ,x,y) log p(y|xÕ, x)
p(y|xÕ) Ø Ep(xÕ,x,y) log q̄(y|xÕ, x)

p(y|xÕ) (16)

= Ep(xÕ,x,y) log
Ep(y2:K |xÕ)q(y|xÕ, x, y2:K)

p(y|xÕ) (17)

Ø Ep(xÕ,x,y)Ep(y2:K |xÕ) log p(y|xÕ) K · wy

p(y|xÕ) (18)

= Ep(xÕ,x,y)Ep(y2:K |xÕ) log K · e„(xÕ,x,y)
qK

k=1 e„(xÕ,x,yk)
(19)

= Ep(xÕ,x,y)Ep(y2:K |xÕ) log e„(xÕ,x,y)

1
K

qK
k=1 e„(xÕ,x,yk)

(20)

= ICNCE(x; y|xÕ, „, K), (21)

where in Eq. 18 we used Jensen’s inequality and p(y|xÕ) as our proposal distribution for the variational approximation
q̄(y|xÕ, x).



For 2., we rewrite ICNCE by grouping the expectation w.r.t xÕ:

Ep(xÕ)

5
Ep(x,y1|xÕ)p(y2:K |xÕ)

5
log eÂ(xÕ,x,y1)

1
K

qK
k=1 eÂ(xÕ,x,yk)

66
. (22)

Given that both distributions in the inner-most expectation condition on the same xÕ, this term has the same form as INCE

and therefore the optimal solution is „ú
xÕ = log p(y|x,xÕ)

p(y|xÕ) + cxÕ(x) (Ma & Collins, 2018). The optimal „ for ICNCE is thus

obtained by choosing „(xÕ, x, y) = „ú
xÕ for each xÕ, giving „ú = log p(y|x,xÕ)

p(y|xÕ) + c(x, xÕ).

For proving 3., we substitute the optimal critic and take the limit K æ Œ. We have:

lim
KæŒ

Ep(xÕ,x,y1)p(y2:K |xÕ)

5
log

p(y|xÕ,x)
p(y|xÕ)

1
K

1
p(y1|xÕ,x)
p(y1|xÕ) +

qK
k=2

p(yk|xÕ,x)
p(yk|xÕ)

2
6
, (23)

From the Strong Law of Large Numbers, we know that as 1
K≠1

qK≠1
k=1

p(yk|xÕ,x)
p(yk|xÕ) æ Ep(y|xÕ)

p(y|xÕ,x)
p(y|xÕ) = 1, as K æ Œ a.s.,

therefore (relabeling y = y1):

ICNCE ≥KæŒ Ep(xÕ,x,y)

5
log

p(y|xÕ,x)
p(y|xÕ)

1
K

1
p(y|xÕ,x)
p(y|xÕ) + K ≠ 1

2
6

(24)

≥KæŒ Ep(xÕ,x,y)

5
log p(y|xÕ, x)

p(y|xÕ) + log K1
p(y|xÕ,x)
p(y|xÕ) + K ≠ 1

2
6

(25)

≥KæŒ I(x, y|xÕ), (26)

where the last equality is obtained by noting that the second term æ 0.

A.3. Proof for Proposition 2

Proposition 2 (Variational ICNCE). For any variational approximation q›(y|xÕ) in lieu of p(y|xÕ), with p(·|xÕ) π q›(·|xÕ)
for any xÕ

, we have:

IVAR(x, y|xÕ, „, ›, K) = (7)

E
5

log e„(xÕ,x,y1)

1
K

qK
k=1 e„(xÕ,x,yk)

6
≠ E

5
KL (p(y|xÕ) Î q›)

6
,

1. IVAR Æ I(x; y|xÕ).

2. If q›(y|xÕ) = p(y|xÕ), IVAR = ICNCE.

3. limKæŒ sup„ IVAR(x; y|xÕ, „, ›, K) = I(x; y|xÕ).

Proof. For 1., we proceed as follows:

I(x; y|xÕ) Ø Ep(x,y)

5
log q(y|xÕ, x)q›(y|xÕ)

p(y|xÕ)q›(y|xÕ)

6

= Ep(x,y)

5
log q(y|xÕ, x)

q›(y|xÕ)

6
≠ Ep(x) [KL(p(y|xÕ)Îq›(y|xÕ))]

Ø Ep(x,y1)q›(y2:K |xÕ)

C
log e„(xÕ,x,y1)

1
K

qK
k=1 e„(xÕ,x,yk)

D
≠ Ep(x) [KL(p(y|xÕ) Î q›(y|xÕ))] ,

= IVAR(x, y|xÕ, „, ›, K) (27)

where the last step has been obtained as in Eq. 18.



Proving 2. is straightforward by noting that if q› = p, KL(p(y|xÕ)||q›(y|xÕ)) = 0 and the first term corresponds to ICNCE.

Proving 3. goes as follows:

sup
„

Ep(x,xÕ,y1)q›(y2:K |xÕ)

5
log e„(xÕ,x,y1)

1
K

qK
k=1 e„(xÕ,x,yk)

6
≠ Ep(xÕ)

5
KL (p(y|xÕ) Î q›(y|xÕ))

6
(28)

= Ep(xÕ,x,y1)q›(y2:K |xÕ)

5
log p(y1|xÕ, x)

q›(y1|xÕ) ≠ log p(y1|xÕ)
q›(y1|xÕ) ≠ log 1

K

Kÿ

k=1

p(yk|x, xÕ)
q›(yk|xÕ)

6
(29)

= I(x, y|xÕ) ≠ Ep(xÕ,x,y1)q›(y2:K |xÕ)

5
log 1

K

Kÿ

k=1

p(yk|x, xÕ)
q›(yk|xÕ)

6
(30)

æKæŒ I(x, y|xÕ). (31)

This is obtained by noting that (1) for any K and q›, arg sup„ IVAR = log p(y|xÕ,x)
q›(y|x) + c(x, xÕ) (because the KL doesn’t

depend on „) and (2) the second term in the last line goes to 0 for K æ Œ (a straightforward application of the Strong Law
of Large Numbers shows that for samples y2:K drawn from q›(y2:K |xÕ), we have: 1

K

qK
k=2

p(yk|x,xÕ)
q›(yk|xÕ) æKæŒ 1).

A.4. Proofs for IIS

We will be using the following lemma.
Lemma 1. For any xÕ

, x and y, and any sequence „K such that ||„K ≠ „||Œ æKæŒ 0:

lim
KæŒ

Ep(y2:K) log Ke„K(xÕ,x,y)

e„K (xÕ,x,y) + (K ≠ 1)
qK

k=2 wke„K(xÕ,x,yk)
(32)

= lim
KæŒ

Ep(y2:K |xÕ) log Ke„(xÕ,x,y)

e„(xÕ,x,y) +
qK

k=2 e„(xÕ,x,yk)
, (33)

where wk = exp Âú(xÕ,yk)qK

k=2
exp Âú(xÕ,yk)

, for Âú(xÕ, yk) = arg supÂ INCE(xÕ, y|Â, K) = log p(yk|xÕ)
p(yk) .

Proof. We see that almost surely, for y2:K ≥ p(·):

Kÿ

k=2
wke„K(xÕ,x,yk) =

1
K≠1

qK
k=2

p(yk|xÕ)
p(yk) e„K (xÕ,x,yk)

1
K≠1

qK
k=2

p(yk|xÕ)
p(yk)

æKæŒ Ep(y|xÕ)e
„(xÕ,x,y), (34)

where we applied the Strong Law of Large Numbers to the denominator.

For the numerator, we write:

1
K ≠ 1

Kÿ

k=2

p(yk|xÕ)
p(yk) e„K(xÕ,x,yk) = 1

K ≠ 1

Kÿ

k=2

p(yk|xÕ)
p(yk) e„(xÕ,x,yk)

+ 1
K ≠ 1

Kÿ

k=2

p(yk|xÕ)
p(yk) (e„K (xÕ,x,yk) ≠ e„(xÕ,x,yk))

and note that the first term is the standard IS estimator using p(yk) as proposal distribution and tends to Ep(y|xÕ)e
„(xÕ,x,y)

from the Strong Law of Large Numbers, while the second term goes to 0 as „K tends to „ uniformly.

This gives limKæŒ Ep(y2:K) log Ke„K (xÕ,x,y)

e„K (xÕ,x,y)+(K≠1)
qK

k=2
wke„K (xÕ,x,yk) = log e„(xÕ,x,y)

Ep(y|xÕ)e„(xÕ,x,y) .

Following the same logic (without the importance-sampling) demonstrates that:

lim
KæŒ

Ep(y2:K |xÕ) log Ke„(xÕ,x,y)

e„(xÕ,x,y) +
qK

k=2 e„(xÕ,x,yk)
= log e„(xÕ,x,y)

Ep(y|xÕ)e„(xÕ,x,y) ,



which concludes the proof.

Proposition 3 (Importance Sampled ICNCE). Assuming Âú = arg supÂ INCE(xÕ, y) and wk = exp Âú(xÕ,yk)qM

k=2
exp Âú(xÕ,ym)

, we

have the following two properties, where:

IIS(x, y|xÕ, „, K) =

E
C

log e„(xÕ,x,y1)

1
K (e„(xÕ,x,y1) + (K ≠ 1)

qK
k=2 wke„(xÕ,x,yk))

D
, (9)

1. limKæŒ sup„ IIS(x; y|xÕ, „, K) = I(x; y|xÕ),

2. limKæŒ arg sup„ IIS = log p(y|xÕ,x)
p(y|xÕ) + c(x, xÕ).

Proof. By applying Lemma 1 with „K = „, we know that for any „:

lim
KæŒ

IIS(x; y|xÕ, „, K) = lim
KæŒ

Ep(xÕ,x,y)p(y2:K |xÕ) log Ke„(xÕ,x,y)

e„(xÕ,x,y) +
qK

k=2 e„(xÕ,x,yk)
.

In particular, the RHS of the equality corresponds to limKæŒ ICNCE(x, y|xÕ, „, K). That quantity is smaller than I(x, y|xÕ),
with equality for „ = „ú. This guarantees that:

lim
KæŒ

sup
„

IIS(x; y|xÕ, „, K) Ø lim
KæŒ

IIS(x; y|xÕ, „ú, K) = I(x, y|xÕ). (35)

We now prove the reverse inequality. We let 2‘ = limKæŒ sup„ IIS(x; y|xÕ, „, K) ≠ I(x, y|xÕ), and assume towards a
contradiction that ‘ > 0. We know that:

÷K0, ’K Ø K0, sup
„

IIS(x; y|xÕ, „, K) Ø I(x, y|xÕ) + ‘.

Now, ’K Ø K0, let „K be such that:

IIS(x; y|xÕ, „K , K) Ø sup
„

IIS(x; y|xÕ, „, K) ≠ ‘

2 ,

and thus: ’K Ø K0, IIS(x; y|xÕ, „K , K) Ø I(x, y|xÕ) + ‘
2 .

Since „K œ R|X |◊|X |◊|Y|, {„K}KØK0 contains a subsequence that converges to a certain „Œ œ R̄|X |◊|X |◊|Y|. Without loss
of generality, we assume that ’K, ’xÕ, ’x,Ep(y)[„K(xÕ, x, y)] = 0 which implies that Ep(y)[„Œ(xÕ, x, y)] = 0 (similarly to
INCE, IIS is invariant to functions of (xÕ, x) added to „).

In particular, this guarantees that ||„Œ||Œ < Œ. Otherwise, we would have „Œ(xÕ, x, y) = ≠Œ for a given y, which would
then imply IIS(x; y|xÕ, „Œ, K) = ≠Œ and give a contradiction.

We can now apply Lemma 1 to {„K} and „Œ to show that limKæŒ IIS(x; y|xÕ, „K , K) = limKæŒ ICNCE(x, y|xÕ, „Œ, K),
and get a contradiction: the first term is larger than I(x, y|xÕ) + ‘

2 while the second is smaller than I(x, y|xÕ).

A.5. Proof for IBO

Proposition 4 (Boosted Critic Estimation). Assuming Âú = arg supÂ INCE(xÕ, y), the following holds, with:

IBO(x, y|xÕ, „, K) = E
5

log eÂú(xÕ,y1)+„(xÕ,x,y1)

1
K

qK
k=1 eÂú(xÕ,yk)+„(xÕ,x,yk)

6
, (10)

1. IBO Æ I(x, xÕ; y),

2. „ú = arg sup„ IBO = log p(y|xÕ,x)
p(y|xÕ) + c(x, xÕ).



Proof. To prove 1., it suffices to follow the proof for INCE (Sec. A.1). To prove 2., we set ÷(xÕ, x, y) = Âú(xÕ, y) +
„(xÕ, x, y1). Ma & Collins (2018) show that ÷ú(xÕ, x, y) = log p(y|xÕ,x)

p(y) + c÷(xÕ, x), for any K. Knowing that Âú(xÕ, y) =
log p(y|xÕ)

p(y) + cÂ(xÕ) is a constant in the maximization problem, simple algebra shows that „ú(xÕ, x, y) = log p(y|xÕ,x)
p(y|xÕ) +

c(xÕ, x).

A.6. Synthetic Experiments

Here, we provide details for Sec. 5.1. In this experiment, each x, xÕ and y are 20-dimensional. For each dimension, we
sampled (xi, xÕ

i, yi) from a correlated Gaussian with mean 0 and covariance matrix covi. For a given value of MI, mi
= {5, 10, 15, 20}, we sample covariance matrices covi = sample_cov(mii), such that

q
i mii = mi, mii > 0 chosen

at random. We optimize the bounds by stochastic gradient descent (Adam, learning rate 5 · 10≠4). All encoders f are
multi-layer perceptrons with a single hidden layer and ReLU activation. Both hidden and output layer have size 100.

InfoNCE computes:

Ep

C
log ef([x,xÕ])T f(y)

ef([x,xÕ])T f(y) +
qK

k=2 ef([x,xÕ])T f(yk)

D
+ log K, y2:K ≥ p(y),

where the proposal is the marginal distribution p(y), E is chosen to be a dot product between representations, Ep denotes
expectation w.r.t. the known joint distribution p(x, xÕ, y) and is approximated with Monte-Carlo, [x, xÕ] denotes concatenation
and f is a 1-hidden layer MLP.

DEMI computes:

Ep(xÕ,x,y)p(y2:K/2)

C
log ef(xÕ)T f(y)

ef(xÕ)T f(y) +
qK/2

k=2 ef(xÕ)T f(yk)

D
+ (36)

Ep(xÕ,x,y)p(y2:K/2|xÕ)

C
log ef([xÕ,x])T f(y)

ef([xÕ,x])T f(y) +
qK/2

k=2 ef([xÕ,x])T f(yk)

D
+ 2 log K/2

where f(x) is just f([x, 0]) in order to re-use MLP parameters for the two terms. The negative samples of the conditional MI
term come from the conditional distribution p(y|xÕ), which is assumed to be known in this controlled setting. We maximize
both lower bounds with respect to the encoder f . We report pseudo-code for sample_cov in Listing 2, used to generate
3◊3 covariance matrices for a fixed I({x, xÕ}; y) and uniformly sampled – = I(x; y)/I({x, xÕ}; y).

B. Experiments on Dialogue
B.1. DEMI Details

The optimization of the DEMI requires the specification of a critic. Following previous work (Oord et al., 2018; Hjelm et al.,
2019), we implement the critic by a dot product between representations of the past f(x) and those of the future f(y). We
obtain fx, fy by running a forward pass with the GPT2 model on the words from the past and the future separately and by
taking the state of the last layer of the GPT2 corresponding to the last token in the past and the future respectively.

For all DEMI terms, given the past, the model is trained to pick the ground-truth future among a set of N future candidates.
This candidate set includes the ground-truth future and N ≠ 1 negative futures drawn from different proposal distributions.
To compute INCE(x; y), we consider the ground truth future of each sample in the batch as a negative candidate for the other
samples in the same batch. Using this approach, the number of candidates N is equated to the batch size. This ensures that
negative samples are sampled from the marginal distribution p(y). To compute the conditional MI boud ICNCE(x; y|xÕ), we
sample negative futures p(y|xÕ) by conditioning the GPT2 model on the most recent utterance in the past xÕ.

B.2. Dataset

Wizard of Wikipedia (Dinan et al., 2019) consists of 20 365 dialogues where each dialogue in the conversation is about a
specific topic. There are two participants in the conversation: the wizard and the apprentice. The apprentice is a curious
learner who is eager to know more about a particular topic. However, the wizard is a knowledgeable expert who tries to
inform the apprentice about the topic. In our experiments, we used the valid data “unseen valid" that includes topics that do
not overlap with the train data and the test data. Detailed statistics of the dataset are presented in Table 4.



1 def sample_cov(mi):

2 alpha = random.uniform(0.1, 0.9)

3 params = random.normal(0, I6)
4 # use black box optimizer (Nealder-Mead) to determine opt_params

5 opt_param = arg minx residual(params, mi, –)
6 return project_posdef(opt_params)

7
8 def project_posdef(x):

9 # project x œ R6
to a positive definite 3x3 matrix

10 cov = zeros(3, 3)

11 cov[tril_indices(3)] = x

12 cov /= column_norm(cov)

13 return dot(cov, cov.T)

14
15 def analytical_mi(cov):

16 # compute analytical MI of 3 covariate Gaussian variables

17 cov_01 = cov[:2, :2]

18 cov_2 = cov[2:3, 2:3]

19 mi_xp_xpp_y = 0.5 * (log(det(cov_01)) + log(det(cov_2)) - log(det(cov)))

20 cov_1 = cov[1:2, 1:2]

21 cov_23 = cov[1:, 1:]

22 mi_xp_y = 0.5 * (log(det(cov_1)) + log(det(cov_2)) - log(det(cov_23)))

23 return mi_xp_xpp_y, mi_xp_y

24
25 def residual(x, mi, –):
26 # penalize difference between analytical mi and target mi, – mi

27 cov = project_posdef(x)

28 mi_xp_y, mi_xp_y = analytical_mi(cov)

29 return (mi_xp_xpp_y - mi) ** 2 + (mi_xp_y - – * mi) ** 2

Listing 2: Pseudo-code for covariance sampling in the synthetic experiment.
Table 3: A sample dialogue between speaker A and speaker B from the Wizard of Wikipedia dataset. The four rows from
top to bottom are: (1) x: the “past" dialogue up to utterance k (2) y: the ground-truth utterance for the next turn k + 1 (3)
y1:N : future candidates sampled from the “restricted context" future distribution p(y|xÕ). These candidates correspond to
the set of hard negatives that are closely related to the conversation. (4) yÕ

1:N : future candidates sampled randomly from the
dataset. We can see that candidates y1:N are semantically close but incoherent w.r.t to the dialogue history as they were
conditioned solely on the immediate past utterance xÕ. However, we can notice that candidates yÕ

1:N are semantically distant
from x as they were sampled randomly from the data distribution. The highlighted text in green correspond to the topic
of the conversation. Speaker B mentions that they have never done either parachuting or skydiving. B1 corresponds to
the utterance generated based on the restricted context xÕ. The utterance is on-topic but completely contradictory to what
speaker B has said in the past. On the other hand BÕ

1 is randomly sampled from other dialogues. We can observe that the
utterance is clearly irrelevant to the conversation.

x A: I like parachuting or skydiving .
B : I’ve never done either but they sound terrifying, not a fan of heights.

A: But it is interesting game. This first parachute jump in history was made by Andre Jacques.
B: Oh really ? Sounds like a french name, what year did he do it ?
A: It done in October 22 1797. They tested his contraption by leaping from a hydrogen balloon.
B: Was he successful or did he kick the bucket off that stunt?
A: I think its a success. The military developed parachuting tech.

y ≥ p(y|xÕ) Bgt Yeah nowadays they are a lot more stable and well made.

y1:N ≥ p(y|xÕ) B1 : That is great. I’ve been skydiving for days now . How is it ?
B2: Oh I have never flown but I’m glad to know.
B3: I’ve been dying for it since I was a kid.
B4: Yes, that is why NASA had an advanced mechanics tech for months.
B5: I went parachuting last Sunday and enjoyed it.

yÕ
1:N ≥ p(y) BÕ

1 : I think science fiction is an amazing genre for anything
BÕ

2: Can you imagine the world without internet access ?
BÕ

3: I am just finishing my university course and I will be a qualified pharmacist.
BÕ

4: I don’t know how to be romantic. I have trouble expressing emotional attraction.
BÕ

5: I think Krav Maga is a martial art sport. That ’s the reason I picked it .



Table 4: Statistics of the Wizard of Wikipedia dataset

# Train # Valid # Test
Number of utterances 166 787 8806 8782
Number of dialogues 18 430 967 968
Number of topics 1247 300 58
Average turns per dialog 9 9 9

Table 5: Results for perplexity, sequence-level metric, token-level metrics, BLEU and diversity metrics on the test data of the
Wizard of Wikipedia dataset. Results demonstrate that the proposed InfoNCE and DEMI bounds achieve lower perplexity,
reduce next-token repetition and increase the number of unique next-tokens compared to the baselines GPT2, GPT2-MMI
and TransferTransfo. Note that our results are not directly comparable with Li et al. (2020) as their model is trained from
scratch on a not publicly available Reddit-based corpus.

Model ppl seq-rep-avg rep wrep uniq dist-1 dist-2 BLEU Entropy-4
GPT2 19.24 0.064 0.130 0.132 7393 0.064 0.392 0.775 0.095
TransferTransfo 19.33 0.078 0.134 0.132 7735 0.058 0.386 0.752 0.084
GPT2-MMI 19.35 0.070 0.129 0.135 7623 0.052 0.384 0.740 0.092
InfoNCE 18.88 0.065 0.126 0.131 8432 0.065 0.390 0.799 0.107
DEMI 18.66 0.050 0.120 0.128 8666 0.070 0.405 0.810 0.108
Ground Truth – 0.052 0.095 – 9236 0.069 0.416 – 0.110

B.3. Experimental Setup

Given memory constraints, all the proposed models are trained with a batch size of 5 per GPU, considering up to three
utterances for the future and five utterances in the past. All the models are trained on 2 NVIDIA V100s. The models
early-stop in the 4th epoch. We use the Adam optimizer with a learning rate of 6.25 ◊ 10−5, which we linearly decay to
zero during training. Dropout is set to 10% on all layers. InfoNCE/DEMI terms are weighted with a factor 0.1 in the loss
function. We varied the factor from 0.1 to 1 and 0.1 was chosen based on the best results on the validation set. During
inference, we use nucleus sampling (Holtzman et al., 2020) with p = 0.9 for all models.

B.4. Additional Automated metrics

Repetition The word repetition metrics aim at testing the model’s performance in generating responses while avoiding
artificial repetitions. We employ the repetition metrics presented in Welleck et al. (2020): seq-rep-n, rep, wrep and uniq.
These metrics are defined based on the amount of repetitions in the generations. seq-rep-n measures the portion of duplicate
n-grams in a generated sequence:

seq-rep-n = 1 ≠ |unique n-grams(w1:N )|
|n-grams| (37)

where w1:N is the generated utterance. We report seq-rep-avg which averages over n œ {2, 3, 4, 5, 6}. rep measures the
fraction of tokens that occur in previous tokens, uniq counts the number of unique tokens on the validation set. Please refer
to (Welleck et al., 2020; Li et al., 2020) for more information about these metrics.

Distinct-n The metric is derived from Li et al. (2016). It is defined as the number of unique n-grams, normalized by the
total number of n-grams of tested sentences.

Entropy-n We employ the entropy metric from Zhang et al. (2018) which aims to fix the problem of frequency difference
of n-grams in Distinct-n by reflecting how evenly the empirical n-gram distribution is for each given sentence.

Results on the test set and the valid set are presented in Table 5 and Table 6 respectively.



Table 6: Results for perplexity, sequence-level metric, token-level metrics, BLEU and diversity metrics on the valid data of
the Wizard of Wikipedia dataset.

Model ppl seq-rep-avg rep wrep uniq dist-1 dist-2 BLEU Entropy-4
GPT2 19.21 0.066 0.136 0.134 7259 0.083 0.432 0.780 0.106
TransferTransfo 19.32 0.074 0.134 0.133 7223 0.082 0.431 0.750 0.106
GPT2-MMI 19.30 0.065 0.126 0.130 7351 0.082 0.425 0.650 0.106
InfoNCE 18.85 0.065 0.126 0.126 7300 0.091 0.046 0.800 0.107
DEMI 18.70 0.054 0.130 0.120 7375 0.077 0.047 0.820 0.108
Ground Truth – 0.052 0.095 – 9236 0.069 0.416 – 0.110

Table 7: Selected responses to the same context from different methods fine-tuned on the Wizard of Wikipedia datasets.

Context Generated Responses
A: I recently took up archery and I think I love it . Do

you know anything about Archery ?
B: Archery is a sport / skill of using a bow to propel

arrows.
A: And a great sport it is . Do you know where

archery originated from ?

DEMI: Archery originated from ancient Mesopotamia, and is actually prac-
ticed internationally in over 200 countries.

InfoNCE: I am not sure but many traditions and principles arose during the
Mesolithic and Paleolithic era.

TransferTransfo : Yep , you just use it for skill and using it to shoot arrows.
GPT2: I don’t know, but I know that the old French called it archer’s art.

A: What is your motivation?
B: That’s a tough question. I ’d say my own progress.

I like seeing how much I improve with something.
You ?

A: I am retired now. Are you familiar with the work
of Mehr and Meyer, well known psychologists ?

B: They said that " Motivation is a word that is part
of the popular culture as few other psychological
concepts are . " Do you agree with what they said
?

DEMI: Yes, definitely! You should check out Mark Twain’s famous motiva-
tional book ! There are theories that point out how important it
is to meditate.

InfoNCE: They said that in psychology research, theories and evidence, par-
ticipants who enjoyed continuous experience could be more
likely to be successful.

TransferTransfo: Absolutely, I disagree. Are you an author or a commenta-
tor?

GPT2: That’s awesome. So , what types of differences exist between “good "
motivation and bad?



DEMI_wins DEMI_CI baseline_wins baseline_CI pairwise_CI p
Baseline

GPT2 0.48726 (0.44, 0.53] 0.28662 (0.25, 0.32] (0.13, 0.27] * <0.001
GPT2-MMI 0.65833 (0.6, 0.71] 0.16250 (0.12, 0.21] (0.4, 0.58] * <0.001
TransferTransfo 0.46888 (0.43, 0.51] 0.30043 (0.26, 0.34] (0.09, 0.24] * <0.001
InfoNCE 0.41711 (0.38, 0.46] 0.36748 (0.33, 0.41] (-0.03, 0.13] 0.0905
gold_response 0.22679 (0.19, 0.26] 0.54325 (0.5, 0.59] (-0.39, -0.25] * <0.001

Table 8: Which response is more relevant?
DEMI_wins DEMI_CI baseline_wins baseline_CI pairwise_CI p

Baseline

GPT2 0.45084 (0.41, 0.49] 0.32636 (0.29, 0.37] (0.05, 0.2] * <0.001
GPT2-MMI 0.61734 (0.56, 0.67] 0.18393 (0.14, 0.23] (0.34, 0.53] * <0.001
TransferTransfo 0.43617 (0.4, 0.48] 0.35000 (0.31, 0.39] (0.01, 0.16] * 0.0028
InfoNCE 0.44630 (0.41, 0.49] 0.34515 (0.31, 0.38] (0.03, 0.17] * <0.001
gold_response 0.22164 (0.19, 0.26] 0.56608 (0.52, 0.61] (-0.41, -0.28] * <0.001

Table 9: Which response is more humanlike?
DEMI_wins DEMI_CI baseline_wins baseline_CI pairwise_CI p

Baseline

GPT2 0.56157 (0.52, 0.6] 0.21444 (0.18, 0.25] (0.28, 0.42] * <0.001
GPT2-MMI 0.68750 (0.63, 0.74] 0.12292 (0.09, 0.16] (0.48, 0.65] * <0.001
TransferTransfo 0.51931 (0.48, 0.56] 0.24571 (0.21, 0.28] (0.21, 0.34] * <0.001
InfoNCE 0.41288 (0.37, 0.45] 0.33580 (0.3, 0.38] (0.0, 0.15] * 0.0059
gold_response 0.32384 (0.28, 0.36] 0.46624 (0.43, 0.51] (-0.22, -0.07] * <0.001

Table 10: Which response is more interesting?

B.5. Human Evaluation

We closely follow the protocol used in Zhang et al. (2020). Systems were paired and each response pair was presented to
3 judges in random order. Judges expressed their preference on a 3 point Likert scale. We use a majority vote for each
response pair to decide whether a specific baseline, the pivot (DEMI), or neither, performed better. We then bootstrap the set
of majority votes to obtain a 99% confidence interval (CI) on the expected difference between the baseline and DEMI. If
this confidence interval contains 0, the difference is deemed insignificant. We also compute p-values from the confidence
intervals5.

In the following tables, the “pivot” is always the system given by DEMI. Pairings where the pairwise confidence interval is
marked with “*” have a significant difference.

5
https://www.bmj.com/content/343/bmj.d2304


