
K-shot NAS: Learnable Weight-Sharing for NAS with K-shot Supernets

The supplementary materials are organized as follows. In Appendix A, we illustrate the details of the training recipe. In
Appendix B, we provide the implementation details of the evolutionary search. In Appendix C, we illustrate the definition
of rank correlation coefficients and report the corresponding experimental results. We compare our K-shot NAS with an
ensemble of K supernets in Appendix D. We report more visualizations of customized code λ in Appendix E. In Appendix
F, we provide a detailed algorithm flow of iterative training with K-shot NAS. In section G, we report the ablations of
iterative training of K-shot NAS. Finally, we show the visualization of searched architectures in Table 2.

A. Details of Training Recipe
In this section, we present the supernet training and train from scratch details with the proposed K-shot NAS w.r.t. ImageNet
and NAS-Bench-201 datasets. In general, we adopt m = 16, a = 1, τ = 0.3 for all experiments. Besides, we leverage an
iterative training strategy for supernets and simplex-net, and details are illustrated in Algorithm 2.

Supernet training with K-shot NAS. For ImageNet dataset, we follow the same strategy as (You et al., 2020; Guo et al.,
2020b). In detail, we adopt a batch size of 1024; supernets are trained via a SGD optimizer with 0.9 momentum and
Nesterove acceleration. The initial learning rate is set to 0.12 with a cosine annealing strategy, which decays 120 epochs.
For each sampled architecture, we use the same code λ = 1/K for the K-shot supernets within the first 5 epochs to warm
up all supernets. Then we include the proposed simplex-net to learn the customized code λ through an alternate iterative
procedure, which is presented in Algorithm 2. Especially, when training simplex-net while fix supernets, we divide the
image batch into m groups, with each group shares the same architectures. Therefore, the input batch size for simplex-net
will be as m > 1, which promotes a better optimization for simplex-net with Eq.(9). Besides, for NAS-Bench-201 dataset,
we simply follow the same training strategy provided in (Dong & Yang, 2020) for supernet training.

Retraining of searched architectures. To train the searched architectures from scratch, we use the same retraining strategy
as (Guo et al., 2020b) for a fair comparison. In detail, we train the searched architecture from scratch with RMSProp
optimizer and 0.9 momentum; the learning rate is increased from 0 to 0.128 linearly for 5 epochs and then decays 0.03 every
2.4 epochs. Besides, the exponential moving average is adopted with a decay rate set to 0.9999.

Training of K-shot NAS. With Eq.(4), we merge the weights of all supernets θk to θ̃ =
∑K
k=1 λkθk, then the merged

weights θ̃ are optimized as same as One-shot NAS, as formulated in Eq. (7). Therefore, we keep almost the same budgets as
One-shot NAS while training all K supernets simultaneously. The extra gradient calculation cost of θk is small, given a
scalar value λk.

B. Details of Evolutionary Search
Since the search space is enormous (e.g., 524 · 1321 for joint searching operations and channel width with MobileNetV2
search space), to boost the search efficiency, we leverage the multi-objective NSGA-II (Deb et al., 2002) algorithm for
evolutionary search, which is easy to integrate hard FLOPs constraint. We set the population size as 50 and the number
of generations as 20, which amounts to 1000 paths in our method. To perform the search, we randomly select a group of
architectures within the target FLOPs. In each iteration, the top 20 architectures with the highest accuracy are selected as
parents to generate new architectures via mutation and crossover. We evaluate each architecture by the inference with the
weights from K-shot supernets with Eq.(12) and record its accuracy. In each generation, the top 20 architectures with the
highest accuracy are selected as parents to generate new architectures via mutation and crossover. After the search, we only
retrain the architecture with the highest accuracy from scratch and report its performance.

Note that batch normalization (BN) layers are incorporated in most operations (e.g., 3 by 3 inverted residual in MobileNetV2
search space). However, due to the varying channel width, the mean and variance in BN layers are unsuitable for all width.
Therefore, we simply use the mean and variance in batches instead, and we set the batch size to 2048 to induce an accurate
estimation of mean and variance.

C. Details of Rank Correlation Coefficient
C.1. Defination of kendall’s Tau

In section 5.2, we implement the search on NAS-Bench-201 and examine the result with Kendall’s Tau coefficient. We
rank the evaluation results on various validation sets with 15625 architectures and 50,000 samples. Indeed, the Kendall



K-shot NAS: Learnable Weight-Sharing for NAS with K-shot Supernets

Tau correlation is used to evaluate the K-shot supernet’s ranking ability with the pairwise ranking performance. With any
pair (ri, rj) and (si, sj), if we have either both ri > rj and si > sj , or both ri < rj and si < sj , these two pairs are
considered as concordant. Otherwise, it is said to be disconcordant. Therefore, the Kendall Tau can be formally defined
as

Kτ =
ncon − ndiscon

nall
, (18)

where ncon and ndiscon indicates the number of concordant and disconcordant pairs, and nall = C2
n is the total number of

pairs.

Kendall’s Tau for ”The ranking ability for the high-performance architectures” in Section 5.2. To calculate the
Kendall’s Tau between high-performance architectures and others. We need to divide the architectures into a high-
performance group and a low-performance group with the provided true ranks. As a result, for any pair (ahigh, alow) during
calculation of Eq.(18), ahigh and alow are from the high-performance group and the low-performance group, respectively.

C.2. Other rank correlation coefficients

To evaluate the search results of K-shot NAS, we also introduce two more correlation coefficients, i.e., Spearman rho (Pirie,
2004), and Pearson (Nahler & Gerhard, 2009). Spearman rho correlation coefficient is the Pearson correlation coefficient
between random variable r and s, i.e.

ρS =
cov(r, s)

σrσs
, (19)

where cov(·, ·) is the covariance of two variables, and σr and σs are the standard deviations of r and s, respectively. Since
the ranks are integers in our experiments, the Eq.(19) can be fulfilled more efficiently with:

ρS = 1−
6
∑n
i=1(ri − si)2

n(n2 − 1)
, (20)

Where n = 15625 indicates the number of overlapped elements between r and s.

More experiments of ranking correlations of K-shot supernets on NAS-Bench-201. As shown in Table 7, we report
the experiments with more ranking correlations of K-shot supernets for a detailed analysis of our method.

Table 7. The ablations of K-shot NAS w.r.t. more ranking correlations.
Method CIFAR-10 CIFAR-100 ImageNet-16-120

Kendall’s Tau 0.63 0.61 0.56
Spearman rho 0.81 0.80 0.73

Pearson 0.92 0.84 0.76

D. The Comparison between K-shot Supernets and Ensemble of K Supernets
Since our K-shot NAS proposes to learn the customized code for each subnet with K supernets. In this way, one natural
question comes to How does K-shot NAS compare to directly ensemble K supernets, i.e., independently train K times of
supernets and ensemble their results? With this aim, with K supernets and ImageNet dataset, we compare the proposed
K-shot NAS with two baseline methods, i.e., Ensemblemax: we output the result from the supernet with maximum Top-1
probability. Ensembleavg : we average the output result from K different supernets. We compare our methods with these
two baselines in terms of search efficiency and accuracy performance, as shown in Table 8.2 In detail, accuracy performance
benefit from ensemble of K supernets, but it also puts a huge burden on the training cost and GPU usage. Nevertheless, our
proposed K-shot NAS can efficiently boost the search results while introducing a negligible additional computation budget.

2Since the ensemble of K cost much more computation resolutions than our method, we only implement the search with K = 2 for
ensemble method.



K-shot NAS: Learnable Weight-Sharing for NAS with K-shot Supernets

Table 8. The comparison of K-shot supernets and ensemble of K supernets. The 3-th column indicates the training cost (GPU hours) of 1
epoch. The 4-th column reports the GPU usage with the batch size 64 for each GPU.

Number of K method Training cost (h) GPU usage (G) Top-1 (%)
K = 1 one-shot NAS 2.27 8.7 77.12
K = 2 Ensemblemax 4.54 17.5 77.58
K = 2 Ensembleavg 4.55 17.6 77.64
K = 2 K-shot NAS 2.28 8.8 77.56
K = 4 K-shot NAS 2.32 8.9 77.79
K = 8 K-shot NAS 2.37 9.2 77.92

E. More Experiments of Visualization of Customized Code λ
For intuitively understanding, we visualize the proposed customized code λ with 1000 paths searched with Imagenet dataset
with 420M FLOPs budget w.r.t. different number of K. From Figure 8, we show the customized code with K = 2, 3, 4.
Concretely, the customized code distributes evenly within a large range w.r.t. different K, which indicates our method can
customize the code for different architectures and promotes to distinguish their performance accurately.

Weight distribution with K = 2

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 
0

0.1

0.2 weight1
weight2

Weight distribution with K = 3

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 
0

0.1

0.2
weight1
weight2
weight3

Weight distribution with K = 4

0.15 0.2 0.25 0.3 0.35 0.4 
0

0.2
weight1
weight2
weight3
weight4

Figure 8. Histogram of weight distribution with different K of 1000 sub-networks during evolutionary search w.r.t. 420M FLOPs on
ImageNet dataset.

F. Details of Algorithms Flow with the Iterative Training of K-shot NAS
With K-shot NAS, we propose an iterative training method for K-shot supernets and simplex-net. For intuitively under-
standing, we provide a detailed algorithm flow about this process as shown in Algorithm 2.



K-shot NAS: Learnable Weight-Sharing for NAS with K-shot Supernets

Algorithm 2 Iteratively training of K-shot supernets and simplex-net
Input: K-shot supernets with weights Θ, simplex-net π with weights σ, maximum training epochs T .
Init current batch τ = 0;
while τ ≤ T do

if τ % 2 == 0 then
randomly sample an subnets with architecture a;

make one-hot architecture parameters of a;
calculate the customized code λ with architecture parameters;
train K-shot supernets with weights of Θλ ;

else
randomly sample m groups of architectures a;

make a batch (m) of one-hot architecture parameters with a;
calculate the customized code λ with architecture parameters;
calculate regularization term rc with Eq.(16);
forward and backward for updating weights σ of simplex-net π;

end
end
Output: The architecture a∗ searched with Eq.(12).

G. Ablations of Iterative Training of K-shot NAS
Since the batch size of simplex-net is inversely proportional to the batch size of a single architecture for K-shot supernets,
we adopt an iterative training strategy to balance the training of K-shot supernets and simplex-net in our method. To explore
the effectiveness of K-shot NAS, we also implement the search by jointly optimizing K-shot supernets (e.g., K = 8) and
simplex-net w.r.t. different group numbers m as formulated in Eq.(9).

0 5 10 15
m

77.3

77.4

77.5

77.6

77.7

77.8

77.9

78

Ac
cu

ra
cy

Iteratively optimize
Jointly optimize

Figure 9. Top-1 accuracy of searched models on ImageNet dataset by different methods with the increasing of group numbers m.

From Figure 9, our algorithm achieves superior performance with an iteratively training strategy. Concretely, the accuracy
performance benefits from the increase of m when m selected from [1, 2, 4], which is because the increase of batch size m
for simplex-net promotes the optimization of customized code λ. However, after m goes beyond 4, the searched results of
the jointly optimizing method drop gradually, which is because a larger m is not suitable for optimizing K-shot supernets.
For example, by jointly optimizing of K-shot supernets and simplex-net, with the 1024 batch size and m is set to 16, the
weights of supernets are optimized with batch size 1024

16 = 64 for each architecture, which is far from enough to optimize
supernets.



K-shot NAS: Learnable Weight-Sharing for NAS with K-shot Supernets

H. Ablation study of K for Figure 4
The statistical results of K in Figure 4 are reported in Table 9. With K increasing from 1 to 12, the Kendall tau is increased
by 2%∼7% for 3 datasets, which is a significant improvement since K-shot NAS can achieve better performance due to the
more accurate approximation between supernets and true performance.

Table 9. Statistical results of Kendall tau w.r.t. K in Figure 4.
K 1 2 4 8 12

CIFAR-10 55.02 ± 0.27 58.23 ± 0.21 60.96 ± 0.19 62.64 ± 0.17 62.13 ± 0.13
CIFAR-100 56.07 ± 0.18 58.56 ± 0.17 60.03 ± 0.11 60.40 ± 0.13 60.19 ± 0.09

ImageNet-16 53.97 ± 0.20 54.36 ± 0.17 55.91 ± 0.14 56.33 ± 0.12 55.89 ± 0.13

I. Visualization of Searched Architectures
We visualize the searched architectures (i.e., operations and channel width) with our K-shot NAS as Figure 10 and Figure
11. In detail, the searched optimal architectures share similar characteristics as follows:

1. The optimal architecture generally tends to use more 5×5 or 7×7 convolutions with full channel width at the layers
close to the last layer. Significantly, the last layer is always with 7×7 kernel size.

2. The channel width in the layers close to the input and output generally tends to be fully preserved. Besides, we also
obverse that the channel width in the layers with stride 2 also has the full width.

3. If the computation budget is insufficient (i.e., 343M and 145M), more ID operations will be used at the layers close to
the first layer for searching optimal structures.

Notably, we notice that the 412M searched architecture keeps most of its channels for all layers, which may result from two
reasons. First, for operations, we search architectures with different expansion ratios (i.e., 3 or 6), which also determines the
width for layers. Second, 412M FLOPs is a relatively large budget, and it thus promotes more channels in each layer to
boost the performance.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
0

0.2

0.4

0.6

0.8

1
145M
286M
343M
412M

Figure 11. Visualization of channel width searched by K-shot NAS in Table 2.



K-shot NAS: Learnable Weight-Sharing for NAS with K-shot Supernets

MB6_K5_SE

MB3_K3_SE

MB3_K3_SE

MB6_K5_SE

MB6_K3_SE

MB3_K5_SE

MB3_K5_SE

MB3_K5_SE

MB3_K7_SE

MB6_K5_SE

MB6_K3

MB6_K7_SE

MB3_K3

MB6_K7_SE

MB6_K5_SE

MB6_K3_SE

MB6_K5_SE

MB6_K7_SE

MB6_K7_SE

MB6_K7_SE

MB6_K7_SE

(a) K-shot-NAS-A?

MB3_K7_SE

MB6_K5_SE

MB6_K7_SE

MB6_K7_SE

MB3_K5_SE

MB3_K3_SE

MB3_K7_SE

MB3_K3_SE

MB6_K5_SE

MB6_K7_SE

MB6_K5_SE

ID

MB6_K5_SE

MB3_K7_SE

MB6_K3

MB3_K3_SE

MB6_K5_SE

MB3_K5_SE

MB6_K7_SE

MB3_K3_SE

MB6_K3_SE

(b) K-shot-NAS-B?

MB6_K7_SE

ID

ID

MB6_K5_SE

MB3_K5_SE

MB6_K3

MB3_K5_SE

MB3_K7_SE

MB6_K7_SE

MB3_K7_SE

MB3_K3

MB3_K3_SE

MB6_K5_SE

MB3_K7_SE

MB6_K7_SE

MB6_K3_SE

MB6_K7_SE

MB3_K3_SE

MB6_K7_SE

MB3_K7_SE

MB6_K7_SE

(c) K-shot-NAS-C?

ID

MB3_K7_SE

MB6_K5_SE

MB3_K5_SE

MB6_K5_SE

MB3_K3_SE

MB3_K3

MB3_K5_SE

MB3_K5_SE

MB3_K3_SE

MB3_K7_SE

MB3_K3

MB6_K7_SE

MB3_K5_SE

MB3_K3

MB3_K7_SE

MB3_K7_SE

MB6_K7_SE

MB3_K5_SE

MB6_K3_SE

MB6_K7_SE

(d) K-shot-NAS-D?

Figure 10. Visualization of architectures searched by K-shot NAS in Table 2.


