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A. Proofs
A.1. Proof of Lemma 1

Proof. Let (H(z),S(z)) = A2(y(z)) for all z ∈ R and write H(z) = (M1(z), . . . ,MK(z)) and S(z) =
(S1(z), . . . ,SK(z)). By conditioning on the historiesH(z) = H′,

M1(z) =M′1, . . . ,MK(z) =M′K
for all z ∈ R such thatH(z) = H′. This indicates that∣∣∣x>j′kr(y(z), XM′k−1

)
∣∣∣ ≥ ±x>j r(y(z), XM′k−1

) (18)

for all (k, j) ∈ [K]× ([p] \M′k−1) and z ∈ R such that H(z) = H′, where (j′1, . . . , j
′
K) is the sequence of the selected

features when theK-step SFS algorithm is applied to the response vector y′. By further conditioning on the signs S(z) = S ′,
(18) is written as

S ′kx>j′kr(y(z), XM′k−1
) ≥ ±x>j r(y(z), XM′k−1

)

for all (k, j) ∈ [K] × ([p] \ M′k−1) and z ∈ R such that H(z) = H′ and S(z) = S ′. By restricting on a line y(z) =
a+ bz, z ∈ R, the range of z is written as

max
k∈[K],

j∈[p]\M′k−1,
d(k,j)>0

e(k,j)

d(k,j)
≤ z ≤ min

k∈[K],
j∈[p]\M′k−1,
d(k,j)<0

e(k,j)

d(k,j)
. (19)

A.2. The proof of Lemma 2

Proof. For a set of featuresM ⊆ [p] and a response vector y(z) = a + bz, z ∈ R in a line, let us denote the AIC as a
function ofM and z as AIC(M, z). Subsequently, by substituting y = a+bz into (14), it is written as a quadratic function
of z as

AIC(M, z) = (b>AMb)z
2 + 2(a>AMb)z + (a>AMa)

+ 2|M|. (20)

Equation (20) represents the range of z ∈ R such that when y(z) is fed into the algorithm, the same historyH = A2(y′) is
obtained. Let the sequence of the selected models corresponding to the historyH′ = ψ(y′) be

H′ = (M′1, . . . ,M′K),

where K is the number of steps in the history H. Next, the event of the history can be fully characterized by comparing
AICs as follows:

AIC(M′k, z) ≤ AIC(M′k−1 ∪ {j}, z) ∀j ∈ [p] \Mk−1,

AIC(M′k, z) ≤ AIC(M′k−1 \ {j}, z) ∀j ∈Mk−1,

AIC(M′k, z) ≤ AIC(M′k−1, z), (21)

for k = 1, 2, . . . ,K and

AIC(M′K , z) < AIC(M′K ∪ {j}, z) ∀j ∈ [p] \MK ,

AIC(M′K , z) < AIC(M′K \ {j}, z) ∀j ∈MK . (22)

Here, the first and second inequalities in (21) indicate that the selected model at step k has the smallest AIC among all
possible choices, the third inequality in (21) indicates that the AIC of the selected model at step k is smaller than that at the
previous step, and two inequalities (22) indicate that the AIC of the selected model at the final step K cannot be decreased
anymore. Because the AIC is written as a quadratic function of z as in (20) under the fixed historyH′, all these conditions
are written as quadratic inequalities of z. This means that the range of z ∈ R that satisfies these conditions is represented by
a finite set of quadratic inequalities of z ∈ R.
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B. Details of Experiments
We executed the experiments on Intel(R) Xeon(R) CPU E5-2687W v3 @ 3.10GHz.

Comparison methods in the case of Forward SFS. In the case of forward SFS, we remind that A(y) results a set of
selected featuredM when applying forward SFS algorithm A to y. With a slight abuse of notations, let H(y) and S(y)
respectively denote the history and signs obtained when applying algorithm A to y. We compared the following five
methods:

• Homotopy: conditioning on the selected featuresM (minimal conditioning), i.e.,

ηTY | {A(Y ) = A(y), q(Y ) = q(y)}.

• Homotopy-H: additionally conditioning on the historyH, i.e.,

ηTY | {H(Y ) = H(y), q(Y ) = q(y)}.

Here, we note thatH(Y ) = H(y) already includes the event A(Y ) = A(y).

• Homotopy-S: additionally conditioning on the signs, i.e.,

ηTY | {A(Y ) = A(y),S(Y ) = S(y), q(Y ) = q(y)}.

• Polytope (Tibshirani et al., 2016): additionally conditioning on both historyH and signs S, i.e.,

ηTY | {H(Y ) = H(y),S(Y ) = S(y), q(Y ) = q(y)}.

This definition is equivalent to

ηTY | {A2(Y ) = A2(y), q(Y ) = q(y)},

where A2(·) is defined in §3.

• DS: data splitting is the commonly used procedure for the purpose of selection bias correction. In this approach, the
data is randomly divided in two halves — first half used for model selection and the other for inference.

Comparison methods in the case of Forward-Backward SFS. In the case of forward-backward SFS, A(y) results a
set of selected featuredM when applying forward-backward SFS algorithm A to y, and A2(y) results the history. We
compared the following two methods:

• Homotopy: conditioning on the selected featuresM (minimal conditioning), i.e.,

ηTY | {A(Y ) = A(y), q(Y ) = q(y)}.

• Quadratic: additionally conditioning on the historyH (implemented by using quadratic inequality-based conditional
SI in (Loftus & Taylor, 2015)), i.e.,

ηTY | {A2(Y ) = A2(y), q(Y ) = q(y)}.

Definition of TPR. In SI, we only conduct statistical testing when there is at least one hypothesis discovered by the
algorithm. Therefore, the definition of TPR, which can be also called conditional power, is as follows:

TPR =
# detected & rejected

# detected
,

where # detected is the number of truly positive features selected by the algorithm (e.g., SFS) and # rejected is the
number of truly positive features whose null hypothesis is rejected by SI.



More Powerful and General Selective Inference for Stepwise Feature Selection Using Homotopy Method

Demonstration of confidence interval (forward SFS). We generated n = 100 outcomes as yi = x>i β + εi, i = 1, ..., n,
where xi ∼ N (0, Ip) and εi ∼ N (0, 1). We set p = 10, K = 9 and β = [0.25, 0.25, 0.25, 0.25, 0.25, 0, 0, 0, 0, 0]

>. We
note that the number of selected features between the four options of conditional SI methods (Homotopy, Homotopy-H,
Homotopy-S, Polytope) and DS can be different. Therefore, for a fair comparison, we only consider the features that
are selected in both cases. Figure 5 shows the demonstration of CIs for each selected feature. The results are consistent with
Fig. 1 (b).

Figure 5. Demonstration of confidence interval.

C. Experiments on Computational Aspects (Forward SFS)
We demonstrate the computational efficiency of the proposed Homotopy method. We generated n outcomes as yi =
x>i β + εi, i = 1, ..., n, where xi ∼ N (0, Ip) and εi ∼ N (0, 1). We set n = 50 and p = 10. In Figure 6, we show the
results of comparing the computational time between the proposed Homotopy method and the existing method. For the
existing study, if we want to keep high statistical power, we have to enumerate a huge number of all the combinations of
histories and signs 2K ×K!, which is only feasible when the number of selected features is fairly small. We observe in
blue plots in Fig. 6 that the computational cost of existing method is exponentially increasing with the number of selected
features. With the proposed method, we are able to significantly reduce the computational cost while keeping high power.

Figure 6. The result of comparing the computational time between the proposed method and the existing method with an n = 50, p = 10
artificial dataset.

One might wonder how we can circumvent the computational bottleneck of exponentially increasing number of polytopes.
Our experience suggests that, by focusing on the line along the test-statistic in data space, we can skip majority of the



More Powerful and General Selective Inference for Stepwise Feature Selection Using Homotopy Method

Figure 7. The number of polytopes intersecting the line z that we need to consider. The solid lines are shown the sample averages.

polytopes that do not affect the truncated Normal sampling distribution because they do not intersect with this line. In
other words, we can skip majority of combinations of histories and signs that never appear. We show the violin plot of
the actual numbers of intervals of the test statistic z that involves in the construction of truncated sampling distribution in
Figure 7. Here, we set n = 250 and = 50. Regarding Homotopy and Homotopy-S, the number of polytopes linearly
increases when increasing K. This is the reason why our method is highly efficient. In regard to Homotopy-H, the number
of polytopes decreases because the history constraint is too strict when K is increased.

D. Experiments on Robustness (Forward-Backward SFS)
We applied our proposed method to the cases where the noise follows Laplace distribution, skew normal distribution
(skewness coefficient 10), and t20 distribution. We also conducted experiments when σ2 was also estimated from the
data. We generated n outcomes as yi = x>i β + εi, i = 1, ..., n, where p = 5,xi ∼ N(0, Ip), and εi follows Laplace
distribution, skew normal distribution, or t20 distribution with zero mean and standard deviation was set to 1. In the case
of estimated σ2, εi ∼ N(0, 1). We set all elements of β to 0, and set λ = 0.5. For each case, we ran 1,200 trials for each
n ∈ {100, 200, 300, 400}. The FPR results are shown in Figure 8. Although we only demonstrate the results for the case of
forward-backward SFS algorithm, the extension to forward SFS algorithm with similar setting is straightforward.

E. Homotopy-based SI for Cross-Validation (Forward SFS)
In this section, we introduce a method for SI conditional also on the selection of the number of selected features K via cross-
validation. Consider selecting the number of steps K in the SFS method from a given set of candidates K = {K1, . . . ,KL}
where L is the number of candidates. When conducting cross-validation on the observed dataset (X,y), suppose that
V(y) = Kselected ∈ K is the event that Kselected is selected as the best one. The test-statistic for the selected feature j when
applying the SFS method with Kselected steps to (X,y) is then defined as

η>Y |{A(Y ) = A(y),V(Y ) = Kselected, q(Y ) = q(y)}. (23)

We note that A(·) and q(·) depend on Kselected but we omit the dependence for notational simplicity. The conditional data
space in (9) with the event of selecting Kselected is then written as

Y = {y(z) = a+ bz | z ∈ ZCV}, (24)

where ZCV = {z ∈ R | A(y(z)) = A(y),V(y(z)) = Kselected}. The truncation region ZCV can be obtained by the
intersection of the following two sets:

Z1 = {z ∈ R | A(y(z)) = A(y)} and Z2 = {z ∈ R | V(y(z)) = Kselected}.

Since the former Z1 can be obtained by using the method described in §3, the remaining task is to identify the latter Z2.
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Figure 8. The robustness of the proposed method in terms of the FPR control.

For notational simplicity, we consider the case where the dataset (X,y) is divided into training and validation sets, and the
latter is used for selecting Kselected. The following discussion can be easily extended to cross-validation scenario. Let us
re-write

(X,y) =
(
(Xtr Xva)> ∈ Rn×p, (ytr yva)> ∈ Rn

)
.

With a slight abuse of notation, for K ∈ K, letMK(ytr(z)) be the set of selected features by applying K-step SFS method
to (Xtr,ytr(z)). The validation error is then defined as

EK(z) = ‖yva(z)−Xva
MK(ytr(z))β̂K(z)‖22, (25)

where β̂K(z) =
(
Xtr
MK(ytr(z))

>
Xtr
MK(ytr(z))

)−1

Xtr
MK(ytr(z))

>
ytr(z). Then, we can write

Z2 = {z ∈ R | EKselected
(z) ≤ EK(z) for any K ∈ K}.

Since the validation error EK(z) in (25) is a picecewise-quadratic function of z, we have a corresponding picecewise-
quadratic function of z for each K ∈ K. The truncation region Z2 can be identified by the intersection of the intervals of
z in which the validation error EKselected

(z) corresponding to Kselected is minimum among a set of picecewise-quadratic
functions for all the other K ∈ K.

Loftus (2015) already discussed that it is possible to consider cross-validation event into conditional SI framework. However,
his method is highly over-conditioned in the sense that additional conditioning on all intermediate models in the process of
cross-validation is required. Our method described above is minimumly-conditioned SI in the sense that our inference is
conducted based exactly on the conditional sampling distribution of the test-statistic in (23) without any extra conditions.

For the experiments on cross-validation, we demonstrate the TPRs and the CIs between the cases when K = 9 is fixed and
K is selected from the set K1 = {3, 6, 9}, or K2 = {1, 2, . . . , 10} using 5-fold cross-validation. We set p = 10, only the
first elements of β was set to 0.25, and all the rest were set to 0. We show that the TPR tends to decrease when increasing the
size of K in Figure 9. This is due to the fact that when we increase the size of K, we have to condition on more information
which leads to shorter truncation interval and results low TPR. The TPR results are consistent with the CI results shown in
Figure 10. In other words, when increasing the size of K, the lower the TPR is, the longer the length of CI becomes.
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Figure 9. Demonstration of TPR when accounting cross-validation selection event.

Figure 10. Demonstration of CI length when considering cross-validation selection event.




