Learning to Forget by Expiring

A. Appendix
A.1. Additional Method Details

Position = Embedding Relative position embed-
dings (Shaw et al., 2018) make it possible to condition
on the order of inputs by modifying the attention to
at; = Softmax(q, k; + q/ p:_;). However, because this
second term is computed for the whole block in parallel
for efficiency, it can become expensive for a large L even
when the average memory size |C}| is small. Our solution
is to remove position embeddings from older memories
1 < t — K (where K is the block size), which empirically
does not affect performance. The computational complexity
of the position embeddings is then O(K), thus allowing us
to increase the maximum span L. This modification makes
training EXPIRE-SPAN more efficient, but does not improve
accuracy.

Training with Small Initial Spans EXPIRE-SPAN scales
to long attention spans as it quickly learns to expire irrel-
evant content. However, at the beginning of training, the
long span can use large quantities of GPU memory. To
circumvent this, we initialize the bias term b with a negative
value. This prevents large memory usage at the beginning
of training, after which the model quickly learns to expire
and the memory usage is no longer problematic.

A.2. Additional Experimental Results

Efficiency for Instruction Task We include a compari-
son of EXPIRE-SPAN to Adaptive-Span and Compressive
Transformer in Table 5 and show that EXPIRE-SPAN has
stronger performance, is faster, and saves GPU memory.

Wikitext-103 Language Modeling The Wikitext-103
word-level language modeling benchmark (Merity et al.,
2016) consists of a collection of Wikipedia articles and a
fixed vocabulary size of 270K. We set the max attention
span for EXPIRE-SPAN to 8K. We compare EXPIRE-SPAN
to existing work in Table 6 and show that even fairly small
models trained with EXPIRE-SPAN achieve competitive re-
sults. Next, we analyze the performance of EXPIRE-SPAN
on Wikitext-103 as the memory size increases. We compare
to a Transformer-XL model in Figure 10 — even with far
smaller memory, EXPIRE-SPAN performs much better.

Expire-span Performance and Analysis on Enwik8 In
Figure 11, we analyze multiple layers of a trained model
and show that different layers memorize different types of
information. Several layers retain summarizing information
about sentences or sections by increasing the expire-spans
of spaces, new lines, and section titles.

Additionally, we did an ablation by running our large Expire-
Span model without LayerDrop. Its validation performance

20.0 1
—®— Trans-XL
& 1981 A Expire-span
5 A
= 196 1
=
2194 Aaa
g 19.2
A
19.0 A A
T T T T T
200 400 600 800 1000

Memory size

Figure 10. Performance as a function of Memory Size on
Wikitext-103

dropped from 0.98bpb to 1.00bpb.

Importance of Structured Dropout for Regularization
We analyze the importance of structured dropout to regular-
ize the large memory capacity provided by EXPIRE-SPAN.
In an experiment on enwiki8, Figure 12 shows that loss on
a portion of validation data was incredibly large. This part
corresponds to a 66K token long table. We hypothesize that
the model likely never encountered such a table during train-
ing. During validation, this caused all non-table tokens to
expire. Without regularizing the model memory size during
training, the model can easily overfit.

Colliding Objects, An Easy Version We experiment
with an easier version of the Colliding Objects task where
objects do not have colors. The model has to predict either
the last collision, or a mapping of the last 3 collisions. In
contrast to the harder task, there are no color switches and
any collision prediction is valid. As this version is less mem-
ory intensive, the EXPIRE-SPAN model almost solves it with
a shorter maximum span, as shown in Table 7.

A.3. Additional Implementation Details
A.3.1. REINFORCEMENT LEARNING TASKS

We used MazeBase (Sukhbaatar et al., 2015a) to construct
tasks in grid world. Agents can observe its surrounding
3 x 3 area and move in the four cardinal directions. Every
objects and their properties are described by words such as
“agent”,“block”, “blue”, etc. Thus, the input to the model is
a binary tensor of size 3 x 3 x vocabulary-size.

We train 2-layer Transformers with 64 hidden units using
actor-Critic algorithm. We used a BPTT length of 100, and
an entropy cost of 0.0005.

Corridor Task The corridor length is sampled from
U(3,200). All models are trained for 100M steps. We
used RMSProp optimizer with a learning rate of 0.0001 and
a batch size of 64. For the expire-span models, we set the

Learning to Forget by Expiring

Model Performance GPU Memory (GB) Time/Batch (ms)

Compressive Transformer 71% Acc 10 210
Instruction Task Adaptive-Span 64% Acc 14 240

EXPIRE-SPAN 74% Acc 8 90

Table 5. Efficiency of EXPIRE-SPAN. We report peak GPU memory usage and per-batch training time, fixing the batch size. We evaluate

the mean pooling version of the Compressive Transformer.

Layer 6

—

of Sub-Saharan Africa until 1500 A.D.==$===Medieval empires===$There were many great empires in Sub-saharan Africa over the past few millennia. T

L | |

Layer 9

8192

of Sub-Saharan Africa until 1500 A.D.==$===Medieval empires===$There were many great empires in Sub-saharan Africa over the past few millennia. T

o TN W |

| | [P
Expire

of Sub-Saharan Africa until 1500 A.D.==$===Medieval empires===$There were many great empires in Sub-saharan Africa over the past few millennia. T

Figure 11. Per-Layer EXPIRE-SPAN values on Enwik8. We visualize the expire-spans of different layers: layer 6 gives long span to
spaces, layer 9 memorizes special tokens like newlines and section titles, and layer 10 retains named entities in memory.

Model Params Test
DEQ-Trans. (Bai et al., 2019) 110M 23.3
Trans-XL (Dai et al., 2019) 25TM 183
Feedback Trans. (Fan et al., 2020b) 7IM 18.3
Trans.+LayerDrop (Fan et al., 2020a) 423M 17.7
Compressive Trans. (Rae et al., 2020) 277M 17.1
Routing Trans. (Roy et al., 2020) - 15.8
EXPIRE-SPAN 140M 19.6

Table 6. Wikitext-103 Results. We report perplexity on test.

Model Maximum Span Test Error (%)
Transformer-XL 1k 39.1

1k 19.5
EXPIRE-SPAN 2k 9.1

4k 3.2

Table 7. Colliding Objects Results. We report test error.

maximum span L to 200, the loss coefficient « to Se-6, and
the ramp length R to 16.

Multi-Room Portal In this task, there are 50 rooms se-
quentially connected together. Each room is 5 X 5 in size,
and have two doors with different colors. If agent go to
the correct door, it will be teleported to the next room, but
if it is the wrong door, the agent will be teleported back
to the first room and have to start over. Which of the two
doors is correct in each room is randomly decided and fixed
throughout the episode. This information is not visible to
the agent, thus can only be discovered by trial and error
within each episode. The current room number is visible to
the agent.

When the agent successfully transitions from the k-th room
to the next, it receives a reward of 0.1%. The episode ends
if the agent makes two mistakes in the same room, reaches
the last room, or when the number of steps reach 1000. A
reward discount of 0.98 is used. All models are trained
with Adam optimizer with a learning rate of Se-4, and a
batch size of 1024, with gradients are clipped at 0.1. We set
L =100, R = 16 and o =1e-6 for the expire-span models.

A.3.2. INSTRUCTION TASK IN LIGHT

We train 6-layer models with a hidden size of 512 and 8
attention heads. To train, we use the Adam optimizer with
a learning rate of 7e-4 and 8000 warmup updates. We set
the expire-span ramp R to 64 and the expire-span loss « to
2e-6.

A.3.3. COLLISION TASK

At the start of the simulation, each particle samples a Gaus-
sian Normal velocity and position uniform inside a 16 x 16
grid. At each time step the particles’ position is updated by
adding its velocity (unless it would go off the grid, in which
case its velocity is re-sampled). There are 5 different colors,
and a particle can change its color randomly at each step
with 0.05 probability. A collision happens when the two
particles have the same rasterized locations, but it does not
affect the movement.

Given a question specifying two colors, the task is to report
in which of the four quadrants of the grid the last collision
of the specified-colors occurred. To make the task easier to
learn, 40% of the queries will have the matching colors as
the last collision.

The model is given an input sequence of tokens that has
8 entries per timestep. The first 4 are the rounded and
rasterized (z,y) locations of the two particles, and next 2

Learning to Forget by Expiring

Validation Loss

—— baseline
expire-span

Timestep
v

| Long Table of 66K Tokens ———————>

Figure 12. Extreme Overfitting on part of validation occurs without proper regularization.

are tokens representing the colors of the particles. The last
2 entries are “question” tokens that specify the colors of
the collision. The output sequence has a token for each
quadrant. We generate 50M steps for training, which equals
to 400M entries.

Easy Version: The particles have no color in this version.
There are two types of questions, in which the task is to
report either: (i) in which of the four quadrants of the grid
the last collision occurred, or (ii) the label mapping of the
last 3 collisions.

A.3.4. LANGUAGE MODELING DETAILS

Enwik8 Our small model has 12 layers with a hidden
size of 512 and 8 attention heads. To train, we use Adam
optimizer with a learning rate of 7e-4, a batch size of 512, a
block size of 512 and 8000 warmup updates. All models are
trained for 100k updates. The model in Table 2 is further
fine-tuned for another 10k updates with a 10x smaller LR.
The baseline models used for comparison are the same size
model following the same training protocol.

The large EXPIRE-SPAN model Table 2 is a 24-layer model
with a hidden size of 768 and 4096 feedforward units. It is
trained with a learning rate of 4e-4 and 16k warmup steps.
In addition to 0.5 dropout, we also add 0.2 layer-drop. The
EXPIRE-SPAN parameters are L = 32k, a =3e-7, and
R = 128. We used the version of Eq. 6 due to the very long
maximum span.

Character-level PG-19 Besides the maximum span, all
model parameters and training parameters were held con-
stant. Each model had 12 layers, a hidden size of 512, a
feedforward size of 2048, 8 attention heads, and processed
a block of 512 characters at a time. We initialized the
weights using a uniform distribution as described by (Glorot
& Bengio, 2010), used dropout of 0.2, clipped the gradi-
ents at 0.3, warmed up the learning rate linearly for 8000
steps, and used cosine annealing to decay the learning rate
after warmup (Loshchilov & Hutter, 2016). For the EXPIRE-
SPAN models, we used a ramp of R = 128 and an expiration
loss coefficient of o =1e-6 (3e-7) for L = 8k (16k).

Wikitext-103 All models have 8 layers and 1024 hid-
den units (4096 in feedforward layers). In addition to the
dropout of 0.3 applied to attention and ReL.U activation,
outputs from the embedding layer and the last layer had
a dropout of 0.2. We used the adaptive input (Baevski &
Auli, 2019) and the adaptive softmax (Grave et al., 2017)
for reducing the number of parameters within word em-
beddings. The models are trained for 300k updates with
a block size of 256, and gradients are clipped at 0.1. The
other hyperparameters are the same as the small Enwik8
experiments.

