
Supplementary Materials

Wei-Fang Sun1,2 Cheng-Kuang Lee2 Chun-Yi Lee1
1Department of Computer Science, National Tsing Hua University, Taiwan

2NVIDIA AI Technology Center, NVIDIA Corporation

S1 Theorems and Proofs
In this section, we elaborate on the definitions, and provide the proofs of the theorems discussed in the main
manuscript.

Proposition 1. Monotonicity for utility distributions:

Zjt(h,u) = Ψ(Z1(h1, u1), ..., ZK(hK, uK)|s)
= M(Z1(h1, u1), ..., ZK(hK, uK)|s),

where M is a monotonic transformation that satisfies ∂M
∂Qk

≥ 0,∀k ∈ K, is not a sufficient condition for
DIGM, although the equality may hold for special cases of M and [Zk(hk, uk)]k∈K.

Proof. We consider a degenerated case and prove the theorem by contradiction. Consider a case where
there is only a single agent (K = 1), with a single fully observable state and an exponential transformation
M(Z1(h1, u1)|s) = exp(Z1(h1, u1)). The (joint) action space of this case consists of two (joint) actions:
Ujt = U1 = {u∗1, u′1}, where u∗1 is the optimal action (with expected return 2) and u′1 is the suboptimal
action (with expected return 1.5). We define the probability mass function (PMF) of Z1(h1, u

∗
1) to be:

p(z) =

{
1 if z = 2

0 otherwise,

and the PMF of Z1(h1, u
′
1) to be:

p(z) =


0.5 if z = 0

0.5 if z = 3

0 otherwise.

By the definition above, we can calculate the followings:
E[Z1(h1, u

∗
1)] = 1 · 2 = 2

E[Z1(h1, u
′
1)] = 0.5 · 0 + 0.5 · 3 = 1.5

arg maxu1
E[Z1(h1, u1)] = u∗1

E[M(Z1(h1, u
∗
1)|s)] = E[exp(Z1(h1, u

∗
1))] = e2 ≈ 7.39

E[M(Z1(h1, u
′
1)|s)] = E[exp(Z1(h1, u

′
1))] = 0.5 · e0 + 0.5 · e3 ≈ 10.54

arg maxu1
E[M(Z1(h1, u1)|s)] = u′1

1



Assume, to the contrary, that Monotonicity for utility distributions is a sufficient condition for DIGM. By the
definition of DIGM:

arg max
u

E[Zjt(h,u)] =
(
arg maxu1 E[Z1(h1, u1)]

)
⇒ arg max

u1

E[M(Z1(h1, u1)|s)] = arg max
u1

E[Z1(h1, u1)]

⇒ u′1 = u∗1 (⇒⇐ contradiction).

A contradiction occurs since u′1 6= u∗1, showing that Monotonicity is not a sufficient condition for DIGM.
Since there exist a case where DIGM does not hold for K = 1, it certainly does not hold for all K ∈ Z.

Theorem 1. Given a deterministic joint action-value function Qjt, a stochastic joint action-value function
Zjt, and a factorization function Ψ for deterministic utilities:

Qjt(h,u) = Ψ(Q1(h1, u1), ..., QK(hK, uK)|s),

such that [Qk]k∈K satisfy IGM for Qjt under h, the following distributional factorization:

Zjt(h,u) = Ψ(Z1(h1, u1), ..., ZK(hK, uK)|s).

is insufficient to guarantee that [Zk]k∈K satisfy DIGM for Zjt under h.

Proof. A contradiction is provided by Proposition 1.

Theorem 2 (DFAC Theorem). Given a deterministic joint action-value function Qjt, a stochastic joint
action-value function Zjt, and a factorization function Ψ for deterministic utilities:

Qjt(h,u) = Ψ(Q1(h1, u1), ..., QK(hK, uK)|s),

such that [Qk]k∈K satisfy IGM for Qjt under h, by Mean-Shape Decomposition, the following distributional
factorization:

Zjt(h,u) = E[Zjt(h,u)] + (Zjt(h,u)− E[Zjt(h,u)])

= Zmean(h,u) + Zshape(h,u)

= Ψ(Q1(h1, u1), ..., QK(hK, uK)|s)
+ Φ(Z1(h1, u1), ..., ZK(hK, uK)|s).

is sufficient to guarantee that [Zk]k∈K satisfy DIGM for Zjt under h, where Var(Ψ) = 0 and E[Φ] = 0.

2



Proof. By mean-shape decomposition:

arg max
u
{E[Zjt(h,u)]}

= arg max
u
{E[Zmean(h,u) + Zshape(h,u)]}

= arg max
u
{E[Zmean(h,u)] + E[Zshape(h,u)]}

= arg max
u
{E[Ψ(Q1(h1, u1), ..., QK(hK, uK)|s)]

+ E[Φ(Z1(h1, u1), ..., ZK(hK, uK)|s)]}
= arg max

u
{Ψ(Q1(h1, u1), ..., QK(hK, uK)|s) + 0}

= arg max
u
{Ψ(Q1(h1, u1), ..., QK(hK, uK)|s)}

=

 arg maxu1
Q1(h1, u1)
...

arg maxuK
QK(hK, uK)


⇒ arg max

u
E[Zjt(h,u)] =

 arg maxu1
E[Z1(h1, u1)]
...

arg maxuK
E[ZK(hK, uK)]

 .

The equations above show that [Zk]k∈K satisfy DIGM for Zjt under h.

Theorem 3. Given a quantile mixture:

F−1(ω) =

K∑
k=1

βkF
−1
k (ω)

with K components [F−1k ]k∈K and non-negative model parameters [βk]k∈K. There exist a set of random
variables Z = F−1(τ) and [Zk = F−1k (τ)]k∈K corresponding to the quantile functions F−1 and [F−1k ]k∈K,
respectively, where τ is a random variable uniformly distributed on [0, 1], with the following relationship:

Z
D
=
∑
k∈K

βkZk.

Proof. We first prove the case for a quantile mixture with K = 2 components, and then generalize it to all
K ∈ Z. For K = 2, the quantile mixture is simplified as follows:

F−1(τ) = β1F
−1
1 (τ) + β2F

−1
2 (τ)

For notational simplicity, let X = β1Z1, Y = β2Z2, and τ is a latent variable shared among the random
variablesX , Y , and Z. The corresponding CDFs of the random variablesX , Y , and Z are FX , FY , and FZ ,
respectively, with X(τ) = F−1X (τ), Y (τ) = F−1Y (τ), and Z(τ) = F−1Z (τ). Under this notation, the above
equation can be re-written as:

F−1Z (τ) = F−1X (τ) + F−1Y (τ).

3



The goal is to prove that there exist random variables (X,Y, Z) such that the following holds:

Z
D
= X + Y

By the definition of the CDF of X + Y , the following holds:

FX+Y (z),∀z ∈ R
= Pr(X + Y ≤ z),∀z ∈ R
= Pr({τ ∈ [0, 1] : X(τ) + Y (τ) ≤ z}),∀z ∈ R
= Pr({τ ∈ [0, 1] : F−1X (τ) + F−1Y (τ) ≤ z}),∀z ∈ R
= sup{τ ∈ [0, 1] : F−1X (τ) + F−1Y (τ) ≤ z},∀z ∈ R
= inf{τ ∈ [0, 1] : z ≤ F−1X (τ) + F−1Y (τ)},∀z ∈ R
= inf{τ ∈ [0, 1] : z ≤ F−1Z (τ)},∀z ∈ R
= FZ(z),∀z ∈ R.

⇒ Z
D
= X + Y.

The proof for quantile mixtures with two components can be iteratively applied to quantile mixtures with
K ∈ Z components.

S2 Hyperparameters and Settings

S2.1 Stochastic Two Step Game
In the stochastic two step game described in Section 4, each agent is implemented as an IQN with two
hidden layers comprised of 64 units and 512 units, respectively, with a ReLU nonlinearity at the end of
each layer. We optimize the IQNs with N = N′ = 32 quantile samples, where each of them is encoded
into a 64-dimensional intermediate embedding and projected to a 512-dimensional quantile embedding by a
single hidden layer. Each agent performs independent ε-greedy action selection, with full exploration (i.e.,
ε = 1). We set the discount factor γ to 0.99. The replay buffer contains the state-action pairs of the latest 2k
episodes, from which we uniformly sample a batch of size 512 for training. The target network is updated
every 100 episodes. The optimizer is set to Adam, in which its learning rate is set to 1 × 10−4. We train
for 20k timesteps (10k episodes). All agent networks share parameters, and the one-hot encoded agent id
([1 0]T for agent 1 and [0 1]T for agent 2) is concatenated to each agent’s observation. We do not pass the
previous actions taken by the agents as their inputs. Each agent receives the full state as its input. For DMIX,
we use a mixing network with 8 units.

Each state is one-hot encoded. The starting state for the first timestep is State 1 (one-hot: [1 0 0]T ). At
State 1, if Agent 1 selects Action A, the agents transit to State 2A (one-hot: [0 1 0]T ). On the other hand, if
agent 1 selects Action B, the agents transit to State 2B (one-hot: [0 0 1]T ).

S2.2 SMAC
We tuned the hyperparameters of both the baselines and their distributional variants by selecting their hidden
layer sizes from {32, 64, 128, 256, 512} and choose the best ones. The quantile samples of DIQL and DDN

4



Table S1: A summary of the optimal hidden state sizes of the baseline methods and their distributional variants.

Maps IQL VDN QMIX QR-MIX DIQL DDN DMIX

3s5z vs 3s6z 512 128 128 128 256 512 256
6h vs 8z 128 128 256 256 512 512 256
MMM2 256 64 64 128 512 512 256
27m vs 30m 256 64 64 64 512 128 128
corridor 256 128 256 64 512 128 64

Table S2: The detailed settings of the Super Hard maps.

Difficulty Map Player’s Team Enemy’s Team

Super Hard

6h vs 8z 6 Hydralisks 8 Zealots
3s5z vs 3s6z 3 Stalkers & 5 Zealots 3 Stalkers & 6 Zealots
MMM2 7 Marines, 2 Marauders & 1 Medivac 8 Marines, 3 Marauders & 1 Medivac
27m vs 30m 27 Marines 30 Marines
corridor 6 Zealots 24 Zerglings

are simply set to N = N′ = 1, since they do not require the calculation of the expected value during the
optimization process. As for DMIX, the numbers of quantile samples are set to N = N′ = 8 as in [1].
The optimizers follow those used in DQN and IQN. All of the other hyperparameters follow those used in
SMAC. Table S1 lists the hyperparameters adopted for the baselines and their distributional variants. The
StarCraft version we used is 4.10.

References
[1] W. Dabney, G. Ostrovski, D. Silver, and R. Munos. Implicit quantile networks for distributional rein-

forcement learning. In Proc. Int. Conf. on Machine Learning (ICML), pages 1096–1105, Jul. 2018.

5


	Theorems and Proofs
	Hyperparameters and Settings
	Stochastic Two Step Game
	SMAC


