
DFAC Framework: Factorizing the Value Function via
Quantile Mixture for Multi-Agent Distributional Q-Learning

Wei-Fang Sun 1 2 3 Cheng-Kuang Lee 2 Chun-Yi Lee 1

Abstract
In fully cooperative multi-agent reinforcement
learning (MARL) settings, the environments are
highly stochastic due to the partial observabil-
ity of each agent and the continuously chang-
ing policies of the other agents. To address the
above issues, we integrate distributional RL and
value function factorization methods by propos-
ing a Distributional Value Function Factorization
(DFAC) framework to generalize expected value
function factorization methods to their DFAC vari-
ants. DFAC extends the individual utility func-
tions from deterministic variables to random vari-
ables, and models the quantile function of the total
return as a quantile mixture. To validate DFAC,
we demonstrate DFAC’s ability to factorize a sim-
ple two-step matrix game with stochastic rewards
and perform experiments on all Super Hard tasks
of StarCraft Multi-Agent Challenge, showing that
DFAC is able to outperform expected value func-
tion factorization baselines.

1. Introduction
In multi-agent reinforcement learning (MARL), one of the
popular research directions is to enhance the training pro-
cedure of fully cooperative and decentralized agents. Ex-
amples of such agents include a fleet of unmanned aerial
vehicles (UAVs), a group of autonomous cars, etc. This
research direction aims to develop a decentralized and co-
operative behavior policy for each agent, and is especially
difficult for MARL settings without an explicit communi-
cation channel. The most straightforward approach is inde-
pendent Q-learning (IQL) (Tan, 1993), where each agent is
trained independently, with their behavior policies aimed to

1Department of Computer Science, National Tsing Hua
University, Taiwan 2NVIDIA AI Technology Center, NVIDIA
Corporation 3Wei-Fang Sun contributed to the work during
his NVIDIA internship. Correspondence to: Chun-Yi Lee
<cylee@cs.nthu.edu.tw>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

optimize the overall rewards in each episode. Nevertheless,
each agent’s policy may not converge owing to two main
difficulties: (1) non-stationary environments caused by the
changing behaviors of the agents, and (2) spurious reward
signals originated from the actions of the other agents. The
agent’s partial observability of the environment further ex-
acerbates the above issues. Therefore, in the past few years,
a number of MARL researchers turned their attention to
centralized training with decentralized execution (CTDE)
approaches, with an objective to stabilize the training proce-
dure while maintaining the agents’ abilities for decentralized
execution (Oliehoek et al., 2016). Among these CTDE ap-
proaches, value function factorization methods (Sunehag
et al., 2018; Rashid et al., 2018; Son et al., 2019) are espe-
cially promising in terms of their superior performances and
data efficiency (Samvelyan et al., 2019).

Value function factorization methods introduce the assump-
tion of individual-global-max (IGM) (Son et al., 2019),
which assumes that each agent’s optimal actions result in
the optimal joint actions of the entire group. Based on IGM,
the total return of a group of agents can be factorized into
separate utility functions (Guestrin et al., 2001) (or simply
‘utility’ hereafter) for each agent. The utilities allow the
agents to independently derive their own optimal actions
during execution, and deliver promising performance in Star-
Craft Multi-Agent Challenge (SMAC) (Samvelyan et al.,
2019). Unfortunately, current value function factorization
methods only concentrate on estimating the expectations
of the utilities, overlooking the additional information con-
tained in the full return distributions. Such information,
nevertheless, has been demonstrated beneficial for policy
learning in the recent literature (Lyle et al., 2019).

In the past few years, distributional RL has been empiri-
cally shown to enhance value function estimation in various
single-agent RL (SARL) domains (Bellemare et al., 2017;
Dabney et al., 2018b;a; Rowland et al., 2019; Yang et al.,
2019). Instead of estimating a single scalar Q-value, it
approximates the probability distribution of the return by
either a categorical distribution (Bellemare et al., 2017) or a
quantile function (Dabney et al., 2018b;a). Even though the
above methods may be beneficial to the MARL domain due
to the ability to capture uncertainty, it is inherently incompat-

DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning

ible to expected value function factorization methods (e.g.,
value decomposition network (VDN) (Sunehag et al., 2018)
and QMIX (Rashid et al., 2018)). The incompatibility arises
from two aspects: (1) maintaining IGM in a distributional
form, and (2) factorizing the probability distribution of the
total return into individual utilities. As a result, an effective
and efficient approach that is able to solve the incompati-
bility is crucial and necessary for bridging the gap between
value function factorization methods and distributional RL.

In this paper, we propose a Distributional Value Function
Factorization (DFAC) framework, to efficiently integrate
value function factorization methods with distributional RL.
DFAC solves the incompatibility by two techniques: (1)
Mean-Shape Decomposition and (2) Quantile Mixture. The
former allows the generalization of expected value function
factorization methods (e.g., VDN and QMIX) to their DFAC
variants without violating IGM. The latter allows the total
return distribution to be factorized into individual utility dis-
tributions in a computationally efficient manner. To validate
the effectiveness of DFAC, we first demonstrate the abil-
ity of distribution factorization on a two-step matrix game
with stochastic rewards. Then, we perform experiments on
all Super Hard maps in SMAC. The experimental results
show that DFAC offers beneficial impacts on the baseline
methods in all Super Hard maps. In summary, the primary
contribution is the introduction of DFAC for bridging the
gap between distributional RL and value function factoriza-
tion methods efficiently by mean-shape decomposition and
quantile mixture.

2. Background and Related Works
In this section, we introduce the essential background ma-
terial for understanding the contents of this paper. We first
define the problem formulation of cooperative MARL and
CTDE. Next, we describe the conventional formulation of
IGM and the value function factorization methods. Then,
we walk through the concepts of distributional RL, quan-
tile function, as well as quantile regression, which are the
fundamental concepts frequently mentioned in this paper.
After that, we explain the implicit quantile network, a key
approach adopted in this paper for approximating quantiles.
Finally, we bring out the concept of quantile mixture, which
is leveraged by DFAC for factorizing the return distribution.

2.1. Cooperative MARL and CTDE

In this work, we consider a fully cooperative MARL envi-
ronment modeled as a decentralized and partially observable
Markov Decision Process (Dec-POMDP) (Oliehoek &
Amato, 2016) with stocastic rewards, which is described
as a tuple 〈S,K,Ojt,Ujt, P ,O,R, γ〉 and is defined as
follows:

• S is the finite set of global states in the environment,
where s′ ∈ S denotes the next state of the current state
s ∈ S. The state information is optionally available
during training, but not available to the agents during
execution.

• K = {1, ...,K} is the set of K agents. We use k ∈ K
to denote the index of the agent.

• Ojt = Πk∈KOk is the set of joint observations. At each
timestep, a joint observation o = 〈o1, ...oK〉 ∈ Ojt is
received. Each agent k is only able to observe its
individual observation ok ∈ Ok.

• Hjt = Πk∈KHk is the set of joint action-observation
histories. The joint history h = 〈h1, ...hK〉 ∈ Hjt

concatenates all received observations and performed
actions before a certain timestep, where hk ∈ Hk rep-
resents the action-observation history from agent k.

• Ujt = Πk∈KUk is the set of joint actions. At each
timestep, the entire group of the agents take a joint ac-
tion u, where u = 〈u1, ..., uK〉 ∈ Ujt. The individual
action uk ∈ Uk of each agent k is determined based
on its stochastic policy πk(uk|hk) : Hk×Uk → [0, 1],
expressed as uk ∼ πk(·|hk). Similarly, in single agent
scenarios, we use u and u′ to denote the actions of the
agent at state s and s′ under policy π, respectively.

• T = {1, ...,T} represents the set of timesteps with
horizon T, where the index of the current timestep is
denoted as t ∈ T. st, ot, ht, and ut correspond to the
environment information at timestep t.

• The transition function P (s′|s,u) : S × Ujt × S →
[0, 1] specifies the state transition probabilities. Given
s and u, the next state is denoted as s′ ∼ P (·|s,u).

• The observation function O(o|s) : Ojt × S → [0, 1]
specifies the joint observation probabilities. Given s,
the joint observation is represented as o ∼ O(·|s).

• R(r|s,u) : S × Ujt × R → [0, 1] is the joint reward
function shared among all agents. Given s, the team
reward is expressed as r ∼ R(·|s,u).

• γ ∈ R is the discount factor with value within (0, 1].

Under such an MARL formulation, this work concentrates
on CTDE value function factorization methods, where the
agents are trained in a centralized fashion and executed in
a decentralized manner. In other words, the joint observa-
tion history h is available during the learning processes of
individual policies [πk]k∈K. During execution, each agent’s
policy πk only conditions on its observation history hk.

2.2. IGM and Factorizable Tasks

IGM is necessary for value function factorization (Son
et al., 2019). For a joint action-value function Qjt(h,u) :
Hjt × Ujt → R, if there exist K individual utility functions
[Qk(hk, uk) : Hk × Uk → R]k∈K such that the following

DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning

condition holds:

arg max
u

Qjt(h,u) =

 arg maxu1 Q1(h1, u1)
...

arg maxuK
QK(hK, uK)

 , (1)

then [Qk]k∈K are said to satisfy IGM for Qjt under h.
In this case, we also say that Qjt(h,u) is factorized by
[Qk(hk, uk)]k∈K (Son et al., 2019). If Qjt in a given task is
factorizable under all h ∈ Hjt, we say that the task is fac-
torizable. Intuitively, factorizable tasks indicate that there
exists a factorization such that each agent can select the
greedy action according to their individual utilities [Qk]k∈K
independently in a decentralized fashion. This enables the
optimal individual actions to implicitly achieve the optimal
joint action across the K agents. Since there is no individ-
ual reward, the factorized utilities do not estimate expected
returns on their own (Guestrin et al., 2001) and are different
from the value function definition commonly used in SARL.

2.3. Value Function Factorization Methods

Based on IGM, value function factorization methods enable
centralized training for factorizable tasks, while maintaining
the ability for decentralized execution. In this work, we
consider two such methods, VDN and QMIX, which can
solve a subset of factorizable tasks that satisfies Additivity
(Eq. (2)) and Monotonicity (Eq. (3)), respectively, given by:

Qjt(h,u) =

K∑
k=1

Qk(hk, uk), (2)

Qjt(h,u) = M(Q1(h1, u1), ..., QK(hK, uK)|s), (3)

where M is a monotonic function that satisfies ∂M
∂Qk

≥
0,∀k ∈ K, and conditions on the state s if the information
is available during training. Either of these two equation is
a sufficient condition for IGM (Son et al., 2019).

2.4. Distributional RL

For notational simplicity, we consider a degenerated case
with only a single agent, and the environment is fully ob-
servable until the end of Section 2.6. Distributional RL
generalizes classic expected RL methods by capturing the
full return distribution Z(s, u) instead of the expected return
Q(s, u), and outperforms expected RL methods in various
single-agent RL domains (Bellemare et al., 2017; 2019; Dab-
ney et al., 2018b;a; Rowland et al., 2019; Yang et al., 2019).
Moreover, distributional RL enables improvements (Nikolov
et al., 2019; Zhang & Yao, 2019; Mavrin et al., 2019) that
require the information of the full return distribution. We
define the distributional Bellman operator T π as follows:

T πZ(s, u)
D
:= R(s, u) + γZ(s′, u′), (4)

and the distributional Bellman optimality operator T ∗ as:

T ∗Z(s, u)
D
:= R(s, u) + γZ(s′, u′∗), (5)

where u′∗ = arg maxu′ E[Z(s′, u′)] is the optimal action
at state s′, and the expression X D

= Y denotes that random
variable X and Y follow the same distribution. Given some
initial distribution Z0, Z converges to the return distribution
Zπ under π, contracting in terms of p-Wasserstein distance
for all p ∈ [1,∞) by applying T π repeatedly; while Z
alternates between the optimal return distributions in the
set Z∗ := {Zπ∗ : π∗ ∈ Π∗}, under the set of optimal
policies Π∗ by repeatedly applying T ∗ (Bellemare et al.,
2017). The p-Wasserstein distance Wp between the proba-
bility distributions of random variables X , Y is given by:

Wp(X,Y) =

(∫ 1

0

|F−1X (ω)− F−1Y (ω)|pdω
)1/p

, (6)

where (F−1X , F−1Y) are quantile functions of (X,Y).

2.5. Quantile Function and Quantile Regression

The relationship between the cumulative distribution func-
tion (CDF) FX and the quantile function F−1X (the general-
ized inverse CDF) of random variable X is formulated as:

F−1X (ω) = inf{x ∈ R : ω ≤ FX(x)},∀ω ∈ [0, 1]. (7)

The expectation of X expressed in terms of F−1X (ω) is:

E[X] =

∫ 1

0

F−1X (ω) dω. (8)

In (Dabney et al., 2018b), the authors model the value func-
tion as a quantile function F−1(s, u|ω). During optimiza-
tion, a pair-wise sampled temporal difference (TD) error δ
for two quantile samples ω, ω′ ∼ U([0, 1]) is defined as:

δω,ω
′

t = r + γF−1(s′, u′|ω′)− F−1(s, u|ω). (9)

The pair-wise loss ρκω is then defined based on the Huber
quantile regression loss Lκ (Dabney et al., 2018b) with
threshold κ = 1, and is formulated as follows:

ρκω(δω,ω
′
) = |ω − I{δω,ω

′
< 0}|Lκ(δω,ω

′
)

κ
, with (10)

Lκ(δω,ω
′
) =

{
1
2 (δω,ω

′
)2, if |δω,ω′ | ≤ κ

κ(|δω,ω′ | − 1
2κ), otherwise

. (11)

Given N quantile samples [ωi]
N
i=1 to be optimized with

regard to N′ target quantile samples [ωj]
N′

j=1, the total loss
L(s, u, r, s′) is defined as the sum of the pair-wise losses,
and is expressed as the following:

L(s, u, r, s′) =
1

N′

N∑
i=1

N′∑
j=1

ρκωi
(δωi,ω

′
j). (12)

DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning

2.6. Implicit Quantile Network

Implicit quantile network (IQN) (Dabney et al., 2018a) is
relatively light-weight when it is compared to other distribu-
tional RL methods. It approximates the return distribution
Z(s, u) by an implicit quantile function F−1(s, u|ω) =
g(ψ(s), φ(ω))u for some differentiable functions g, ψ, and
φ. Such an architecture is a type of universal value function
approximator (UVFA) (Schaul et al., 2015), which general-
izes its predictions across states s ∈ S and goals ω ∈ [0, 1],
with the goals defined as different quantiles of the return
distribution. In practice, φ first expands the scalar ω to
an n-dimensional vector by [cos(πiω)]n−1i=0 , followed by a
single hidden layer with weights [wij] and biases [bj] to pro-
duce a quantile embedding φ(ω) = [φ(ω)j]

dim(φ(ω))−1
j=0 . The

expression of φ(ω)j can be represented as the following:

φ(ω)j := ReLU(

n−1∑
i=0

cos(πiω)wij + bj), (13)

where n = 64 and dim(φ(ω)) = dim(ψ(s)). Then, φ(ω) is
combined with the state embedding ψ(s) by the element-
wise (Hadamard) product (�), expressed as g := ψ�φ. The
loss of IQN is defined as Eq. (12) by sampling a batch of
N and N′ quantiles from the policy network and the target
network respectively. During execution, the action with
the largest expected return Q(s, u) is chosen. Since IQN
does not model the expected return explicitly, Q(s, u) is
approximated by calculating the mean of the sampled return
through N̂ quantile samples ω̂i ∼ U([0, 1]),∀i ∈ [1, N̂]
based on Eq. (8), expressed as follows:

Q(s, u) =

∫ 1

0

F−1(s, u|ω) dω ≈ 1

N̂

N̂∑
i=1

F−1(s, u|ω̂i).

(14)

2.7. Quantile Mixture

Multiple quantile functions (e.g., IQNs) sharing the same
quantile ω may be combined into a single quantile function
F−1(ω), in a form of quantile mixture expressed as follows:

F−1(ω) =

K∑
k=1

βkF
−1
k (ω), (15)

where [F−1k (ω)]k∈K are quantile functions, and [βk]k∈K
are model parameters (Karvanen, 2006). The condition
for [βk]k∈K is that F−1(ω) must satisfy the properties of
a quantile function. The concept of quantile mixture is
analogous to the mixture of multiple probability density
functions (PDFs), expressed as follows:

f(x) =

K∑
k=1

αkfk(x), (16)

where [fk(x)]k∈K are PDFs,
∑K
k=1 αk = 1, and αk ≥ 0.

3. Methodology
In this section, we walk through the proposed DFAC frame-
work and its derivation procedure. We first discuss a naive
distributional factorization and its limitation in Section 3.1.
Then, we introduce the DFAC framework to address the
limitation, and show that DFAC is able to generalize distri-
butional RL to all factorizable tasks in Section 3.2. After
that, DDN and DMIX are introduced as the DFAC variants
of VDN and QMIX, respectively, in Section 3.4. Finally, a
practical implementation of DFAC based on quantile mix-
ture is presented in Section 3.3. All proofs of the theorems
in this section are provided in the supplementary material.

3.1. Distributional IGM

Since IGM is necessary for value function factorization, a
distributional factorization that satisfies IGM is required for
factorizing stochastic value functions. We first discuss a
naive distributional factorization that simply replaces de-
terministic utilities Q with stochastic utilities Z. Then, we
provide a theorem to show that the naive distributional fac-
torization is insufficient to guarantee the IGM condition.

Definition 1 (Distributional IGM). A finite number of indi-
vidual stochastic utilities [Zk(hk, uk)]k∈K, are said to sat-
isfy Distributional IGM (DIGM) for a stochastic joint action-
value function Zjt(h,u) under h, if [E[Zk(hk, uk)]]k∈K sat-
isfy IGM for E[Zjt(h,u)] under h, represented as:

arg max
u

E[Zjt(h,u)] =

 arg maxu1 E[Z1(h1, u1)]
...

arg maxuK
E[ZK(hK, uK)]

 .

Theorem 1. Given a deterministic joint action-value func-
tion Qjt, a stochastic joint action-value function Zjt, and a
factorization function Ψ for deterministic utilities:

Qjt(h,u) = Ψ(Q1(h1, u1), ..., QK(hK, uK)|s),
such that [Qk]k∈K satisfy IGM for Qjt under h, the follow-
ing distributional factorization:

Zjt(h,u) = Ψ(Z1(h1, u1), ..., ZK(hK, uK)|s).

is insufficient to guarantee that [Zk]k∈K satisfy DIGM for
Zjt under h.

In order to satisfy DIGM for stochastic utilities, an alterna-
tive factorization strategy is necessary.

3.2. The Proposed DFAC Framework

We propose Mean-Shape Decomposition and the DFAC
framework to ensure that DIGM is satisfied for stochastic
utilities.

Definition 2 (Mean-Shape Decomposition). A given ran-

DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning

dom variable Z can be decomposed as follows:

Z = E[Z] + (Z − E[Z])

= Zmean + Zshape ,

where Var(Zmean) = 0 and E[Zshape] = 0.

We propose DFAC to decompose a joint return distribution
Zjt into its deterministic part Zmean (i.e., expected value)
and stochastic part Zshape (i.e., higher moments), which are
approximated by two different functions Ψ and Φ, respec-
tively. The factorization function Ψ is required to precisely
factorize the expectation ofZjt in order to satisfy DIGM. On
the other hand, the shape function Φ is allowed to roughly
factorize the shape of Zjt, since the main objective of mod-
eling the return distribution is to assist non-linear approxi-
mation of the expectation of Zjt (Lyle et al., 2019), rather
than accurately model the shape of Zjt.

Theorem 2 (DFAC Theorem). Given a deterministic joint
action-value function Qjt, a stochastic joint action-value
function Zjt, and a factorization function Ψ for determinis-
tic utilities:

Qjt(h,u) = Ψ(Q1(h1, u1), ..., QK(hK, uK)|s),
such that [Qk]k∈K satisfy IGM for Qjt under h, by Mean-
Shape Decomposition, the following distributional factor-
ization:
Zjt(h,u) = E[Zjt(h,u)] + (Zjt(h,u)− E[Zjt(h,u)])

= Zmean(h,u) + Zshape(h,u)

= Ψ(Q1(h1, u1), ..., QK(hK, uK)|s)
+ Φ(Z1(h1, u1), ..., ZK(hK, uK)|s).

is sufficient to guarantee that [Zk]k∈K satisfy DIGM for Zjt

under h, where Var(Ψ) = 0 and E[Φ] = 0.

Theorem. 2 reveals that the choice of Ψ determines whether
IGM holds, regardless of the choice of Φ, as long as
E[Φ] = 0. Under this setting, any differentiable factor-
ization function of deterministic variables can be extended
to a factorization function of random variables. Such a de-
composition enables approximation of joint distributions for
all factorizable tasks under appropriate choices of Ψ and Φ.

3.3. A Practical Implementation of DFAC

In this section, we provide a practical implementation of
the shape function Φ in DFAC, effectively extending any
differentiable factorization function Ψ (e.g., the additive
function of VDN, the monotonic mixing network of QMIX,
etc.) that satisfies the IGM condition into its DFAC variant.

Theoretically, the sum of random variables appeared in DDN
and DMIX can be described precisely by a joint CDF. How-
ever, the exact derivation of this joint CDF is usually com-
putationally expensive and impractical (Lin et al., 2019). As

a result, DFAC utilizes the property of quantile mixture to
approximate the shape function Φ in O(KN) time.

Theorem 3. Given a quantile mixture:

F−1(ω) =

K∑
k=1

βkF
−1
k (ω)

with K components [F−1k]k∈K and non-negative model pa-
rameters [βk]k∈K. There exist a set of random variables Z
and [Zk]k∈K corresponding to the quantile functions F−1

and [F−1k]k∈K, respectively, with the following relationship:

Z =
∑
k∈K

βkZk.

Based on Theorem 3, the quantile function F−1shape of Zshape

in DFAC can be approximated by the following:

F−1shape(h,u|ω) = F−1state(s|ω)

+
∑
k∈K

βk(s)(F−1k (hk, uk|ω)−Qk(hk, uk)), (17)

where F−1state(s|ω) and [βk(s)]k∈K are respectively
generated by function approximators Λstate(s|ω) and
[Λk(s)]k∈K, satisfying constraints βk(s) ≥ 0,∀k∈ K and∫ 1

0
F−1state(s|ω) dω = 0. The term F−1state models the shape of

an additional state-dependent utility (introduced by QMIX
at the last layer of the mixing network), which extends the
state-dependent bias in QMIX to a full distribution. The
full network architecture of DFAC is illustrated in Fig. 1.

This transformation enables DFAC to decompose the quan-
tile representation of a joint distribution into the quantile
representations of individual utilities. In this work, Φ is
implemented by a large IQN composed of multiple IQNs,
optimized through the loss function defined in Eq. (12).

3.4. DFAC Variant of VDN and QMIX

In order to validate the proposed DFAC framework, we next
discuss the DFAC variants of two representative factoriza-
tion methods: VDN and QMIX. DDN extends VDN to its
DFAC variant, expressed as:

Zjt =
∑
k∈K

Qk +
∑
k∈K

(Zk −Qk), given (18)

Zmean =
∑
k∈KQk, Zshape =

∑
k∈K(Zk − Qk); while

DMIX extends QMIX to its DFAC variant, expressed as:

Zjt = M(Q1, ..., QK|s) +
∑
k∈K

(Zk −Qk), given (19)

Zmean = M(Q1, ..., QK|s), Zshape =
∑
k∈K(Zk −Qk).

Both DDN and DMIX choose F−1state = 0 and [βk = 1]k∈K
for simplicity. Automatically learning the values of F−1state
and [βk]k∈K is proposed as future work.

DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning

⋅

MLP

GRU

MLP

ω

⋅

...

...

Agent 1 Agent K

ω

Factorization
Network

...

Shape
Network

-
-

...

+

(shared weights)

Parameter
Networks

+

⋅

Figure 1: The DFAC framework consists of a factorization network Ψ and a shape network Φ for decomposing the
deterministic part Zmean (i.e., Qjt) and the stochastic part Zshape of the total return distribution Zjt, as described in
Theorem 2. The shape network contains parameter networks Λstate(s;ω) and [Λk(s)]k∈K for generating Zstate(s) and βk(s).

4. A Stochastic Two-Step Game
In the previous expected value function factorization meth-
ods (e.g., VDN, QMIX, etc.), the factorization is achieved
by modeling Qjt and [Qk]k∈K as deterministic variables,
overlooking the information of higher moments in the full
return distributions Zjt and [Zk]k∈K. In order to demon-
strate DFAC’s ability of factorization, we begin with a toy
example modified from (Rashid et al., 2018) to show that
DFAC is able to approximate the true return distributions,
and factorize the mean and variance of the approximated
total return Zjt into utilities [Zk]k∈K. Table 1 illustrates
the flow of a two-step game consisting of two agents and
three states 1, 2A, and 2B, where State 1 serves as the
initial state, and each agent is able to perform an action from
{A,B} in each step. In the first step (i.e., State 1), the
action of agent 1 (i.e., actions A1 or B1) determines which
of the two matrix games (State 2A or State 2B) to
play in the next step, regardless of the action performed by
agent 2 (i.e., actions A2 or B2). For all joint actions per-
formed in the first step, no reward is provided to the agents.
In the second step, both agents choose an action and receive
a global reward according to the payoff matrices depicted
in Table 1, where the global rewards are sampled from a
normal distribution N (µ, σ2) with mean µ and standard
deviation σ. The hyperparameters of the two-step game are
offered in the supplementary material in detail.

Table 2 presents the learned factorization of DMIX for each
state after convergence, where the first rows and the first

columns of the tables correspond to the factorized distri-
butions of the individual utilities (i.e., Z1 and Z2), and the
main content cells of them correspond to the joint return
distributions (i.e., Zjt). From Tables 2(b) and 2(c), it is ob-
served that no matter the true returns are deterministic (i.e.,
State 2A) or stochastic (i.e., State 2B), DMIX is able
to approximate the true returns in Table 1 properly, which
are not achievable by expected value function factorization
methods. The results demonstrate DFAC’s ability to factor-
ize the joint return distribution rather than expected returns.
DMIX’s ability to reconstruct the optimal joint policy in the
two-step game further shows that DMIX can represent the
same set of tasks as QMIX.

To further illustrate DFAC’s capability of factorization,
Figs. 2(a)-2(b) visualize the factorization of the joint ac-
tion 〈B1, B2〉 in State 2A and 〈B1, B2〉 in State 2B,
respectively. As IQN approximates the utilities Z1 and Z2

implicitly, Z1, Z2, and Zjt can only be plotted in terms
of samples. Zjt in Fig. 2(a) shows that DMIX degenerates
to QMIX when approximating deterministic returns (i.e.,
N (7, 0)), while Zjt in Fig. 2(b) exhibits DMIX’s ability to
capture the uncertainty in stochastic returns (i.e., N (8, 29)).

5. Experiment Results on SMAC
In this section, we present the experimental results and dis-
cuss their implications. We start with a brief introduction
to our experimental setup in Section 5.1. Then, we demon-

DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning

Table 1: An illustration of the flow of the stochastic two-
step game. Each agent is able to perform an action from
{A,B} in each step, with a subscript denoting the agent
index. In the first step, action A1 takes the agents from the
initial State 1 to State 2A, while action B1 takes
them to State 2B instead. The transitions from State
1 to State 2A or State 2B yield zero reward. In
the second step, the global rewards are sampled from the
normal distributions defined in the payoff matrices.

State 1

A1
B
1Agent 2

A2 B2

A
ge

nt
1

A1 N (7, 0) N (7, 0)

B1 N (7, 0) N (7, 0)

State 2A

Agent 2

A2 B2

A1 N (0, 2) N (1, 13)

B1 N (1, 13) N (8, 29)

State 2B

(a) 〈B1, B2〉 at State 2A (b) 〈B1, B2〉 at State 2B

Figure 2: (a) and (b) plot the value function factorization of
the joint action 〈B1, B2〉 in State 2A and State 2B.
The black line/curve shows the true return CDFs. The
blue circles and the orange cross marks depict agent 1’s
and agent 2’s learned utility, respectively, while the green
squares indicate the estimated joint return.

Table 2: The learned factorization of DMIX. All of the cells show the sampled mean µ and the sampled variance σ2 with
Bessel’s correction. The main content cells correspond to the joint return distributions for different combinations of states
and actions. The first columns and first rows of these tables correspond to the distributions of the utilities for agents 1 and 2,
respectively. The top-left cells of these tables are the state-dependent utility V . DFAC enables the approximation of the true
joint return distributions in Table 1, and allows them to be factorized into the distributions of the utilities for the agents.

State 1 A2 B2

V
µ = −0.32

σ
2
= 0.00

µ = 2.66

σ
2
= 0.10

µ = 2.65

σ
2
= 0.10

A1

µ = 2.56

σ
2
= 0.08

µ = 6.94

σ
2
= 0.00

µ = 6.92

σ
2
= 0.00

B1

µ = 3.58

σ
2
= 19.11

µ = 7.94

σ
2
= 21.85

µ = 7.92

σ
2
= 21.86

(a) Learned utilities of State 1

State 2A A2 B2

µ = 0.49

σ
2
= 0.00

µ = 1.76

σ
2
= 0.00

µ = 1.75

σ
2
= 0.00

µ = 2.09

σ
2
= 0.00

µ = 7.01

σ
2
= 0.00

µ = 6.99

σ
2
= 0.00

µ = 2.09

σ
2
= 0.00

µ = 7.01

σ
2
= 0.00

µ = 6.99

σ
2
= 0.00

(b) Learned utilities of State 2A

State 2B A2 B2

µ = 0.38

σ
2
= 0.00

µ = −4.55

σ
2
= 0.29

µ = 3.08

σ
2
= 5.87

µ = −3.50

σ
2
= 0.40

µ = −0.05

σ
2
= 1.37

µ = 1.01

σ
2
= 9.30

µ = 3.52

σ
2
= 6.81

µ = 1.24

σ
2
= 9.86

µ = 8.14

σ
2
= 25.30

(c) Learned utilities of State 2B

strate that modeling a full distribution is beneficial to the
performance of independent learners in Section 5.2. Fi-
nally, we compare the performances of the CTDE baseline
methods and their DFAC variants in Section 5.3.

5.1. Experimental Setup

Environment. We verify the DFAC framework in the
SMAC benchmark environments (Samvelyan et al., 2019)
built on the popular real-time strategy game StarCraft II.
Instead of playing the full game, SMAC is developed for
evaluating the effectiveness of MARL micro-management
algorithms. Each environment in SMAC contains two teams.
One team is controlled by a decentralized MARL algorithm,
with the policies of the agents conditioned on their local
observation histories. The other team consists of enemy
units controlled by the built-in game artificial intelligence
based on carefully handcrafted heuristics, which is set to
its highest difficulty equal to seven. The overall objective

is to maximize the win rate for each battle scenario, where
the rewards employed in our experiments follow the default
settings of SMAC. The default settings use shaped rewards
based on the damage dealt, enemy units killed, and whether
the RL agents win the battle. If there is no healing unit in
the enemy team, the maximum return of an episode (i.e.,
the score) is 20; otherwise, it may exceed 20, since enemies
may receive more damages after healing or being healed.

The environments in SMAC are categorized into three dif-
ferent levels of difficulties: Easy, Hard, and Super Hard
scenarios (Samvelyan et al., 2019). In this paper, we fo-
cus on all Super Hard scenarios including (a) 6h vs 8z,
(b) 3s5z vs 3s6z, (c) MMM2, (d) 27m vs 30m, and (e)
corridor, since these scenarios have not been properly
addressed in the previous literature without the use of addi-
tional assumptions such as intrinsic reward signals (Du et al.,
2019), explicit communication channels (Zhang et al., 2019;
Wang et al., 2019), common knowledge shared among the

DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning

(a) 6h vs 8z (b) 3s5z vs 3s6z (c) MMM2 (d) 27m vs 30m (e) corridor

Figure 3: The win rate curves evaluated on the five Super Hard maps in SMAC for different CTDE methods.

Table 3: The median win rate % of five independent test runs.

Map IQL VDN QMIX DIQL DDN DMIX

(a) 0.00 0.00 12.78 0.00 83.92 49.43
(b) 29.83 89.20 67.22 62.22 94.03 91.08
(c) 68.92 89.20 92.44 85.23 97.22 95.11
(d) 2.27 63.12 84.77 6.02 91.48 85.45
(e) 84.87 85.34 37.61 91.62 95.40 90.45
∗Maps (a)-(e) correspond to the maps in Fig. 3.

Table 4: The averaged scores of five independent test runs.

Map IQL VDN QMIX DIQL DDN DMIX

(a) 13.78 15.41 14.37 14.94 19.40 17.14
(b) 16.54 19.75 20.16 17.52 20.94 19.70
(c) 17.50 19.36 19.42 19.21 20.90 19.87
(d) 14.01 18.45 19.41 14.45 19.71 19.43
(e) 19.42 19.47 15.07 19.68 20.00 19.66
∗Maps (a)-(e) correspond to the maps in Fig. 3.

agents (de Witt et al., 2019; Wang et al., 2020), and so on.
Three of these scenarios have their maximum scores higher
than 20. In 3s5z vs 3s6z, the enemy Stalkers have the
ability to regenerate shields; in MMM2, the enemy Medivacs
can heal other units; in corridor, the enemy Zerglings
slowly regenerate their own health.

Hyperparameters. For all of our experimental results, the
training length is set to 8M timesteps, where the agents are
evaluated every 40k timesteps with 32 independent runs.
The curves presented in this section are generated based
on five different random seeds. The solid lines represent
the median win rate, while the shaded areas correspond to
the 25th to 75th percentiles. For a better visualization, the
presented curves are smoothed by a moving average filter
with its window size set to 11. The detailed hyperparameter
setups are provided in the supplementary material.

Baselines. We select IQL, VDN, and QMIX as our baseline
methods, and compare them with their distributional variants
in our experiments. The configurations are optimized so
as to provide the best performance for each of the methods
considered. Since we tuned the hyperparameters of the
baselines, their performances are better than those reported
in (Samvelyan et al., 2019). The hyperparameter searching
process is detailed in the supplementary material.

5.2. Independent Learners

In order to validate our assumption that distributional RL
is beneficial to the MARL domain, we first employ the
simplest training algorithm, IQL, and extend it to its distri-
butional variant, called DIQL. DIQL is simply a modified

IQL that uses IQN as its underlying RL algorithm without
any additional modification or enhancements (Matignon
et al., 2007; Lyu & Amato, 2020).

From Figs. 3(a)-3(e) and Tables 3-4, it is observed that DIQL
is superior to IQL even without utilizing any value function
factorization methods. This validates that distributional RL
has beneficial influences on MARL, when it is compared to
RL approaches based only on expected values.

5.3. Value Function Factorization Methods

In order to inspect the effectiveness and impacts of DFAC on
learning curves, win rates, and scores, we next summarize
the results of the baselines as well as their DFAC variants
on the Super Hard scenarios in Fig. 3(a)-(e) and Table 3-4.

Fig. 3(a)-(e) plot the learning curves of the baselines and
their DFAC variants, with the final win rates presented in
Table 3, and their final scores reported in Table 4. The
win rates indicate how often do the player’s team wins,
while the scores represent how well do the player’s team
performs. Despite the fact that SMAC’s objective is to
maximize the win rate, the true optimization goal of MARL
algorithms is the averaged score. In fact, these two metrics
are not always positively correlated (e.g., VDN and QMIX
in 6h vs 8z and 3s5z vs 3s6z, and QMIX and DMIX
in 3s5z vs 3s6z).

It can be observed that the learning curves of DDN and
DMIX grow faster and achieve higher final win rates than
their corresponding baselines. In the most difficult map:
6h vs 8z, most of the methods fail to learn an effective
policy except for DDN and DMIX. The evaluation results

DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning

also show that DDN and DMIX are capable of performing
consistently well across all Super Hard maps with high win
rates. In addition to the win rates, Table 4 further presents
the final averaged scores achieved by each method, and
provides deeper insights into the advantages of the DFAC
framework by quantifying the performances of the learned
policies of different methods.

The improvements in win rates and scores are due to the ben-
efits offered by distributional RL (Lyle et al., 2019), which
enables the distributional variants to work more effectively
in MARL environments. Moreover, the evaluation results
reveal that DDN performs especially well in most environ-
ments despite its simplicity. Further validations of DDN
and DMIX on our self-designed Ultra Hard scenarios that
are more difficult than Super Hard scenarios can be found
in our GitHub repository (https://github.com/j3soon/dfac),
along with the gameplay recording videos.

6. Conclusion
In this paper, we provided a distributional perspective on
value function factorization methods, and introduced a
framework, called DFAC, for integrating distributional RL
with MARL domains. We first proposed DFAC based on a
mean-shape decomposition procedure to ensure the Distribu-
tional IGM condition holds for all factorizable tasks. Then,
we proposed the use of quantile mixture to implement the
mean-shape decomposition in a computationally friendly
manner. DFAC’s ability to factorize the joint return distribu-
tion into individual utility distributions was demonstrated
by a toy example. In order to validate the effectiveness
of DFAC, we presented experimental results performed on
all Super Hard scenarios in SMAC for a number of MARL
baseline methods as well as their DFAC variants. The results
show that DDN and DMIX outperform VDN and QMIX.
DFAC can be extended to more value function factoriza-
tion methods and offers an interesting research direction for
future endeavors.

7. Acknowledgements
The authors acknowledge the support from NVIDIA Corpo-
ration and NVIDIA AI Technology Center (NVAITC). The
authors thank Kuan-Yu Chang for his helpful critiques of
this research work. The last author would like to thank the
funding support from Ministry of Science and Technology
(MOST) in Taiwan under grant nos. MOST 110-2636-E-
007-010 and MOST 110-2634-F-007-019.

References
Bellemare, M. G., Dabney, W., and Munos, R. A distribu-

tional perspective on reinforcement learning. In Proc. Int.

Conf. on Machine Learning (ICML), pp. 449–458, Jul.
2017.

Bellemare, M. G., Roux, N. L., Castro, P. S., and Moitra, S.
Distributional reinforcement learning with linear function
approximation. arXiv preprint arXiv:1902.03149, 2019.

Dabney, W., Ostrovski, G., Silver, D., and Munos, R.
Implicit quantile networks for distributional reinforce-
ment learning. In Proc. Int. Conf. on Machine Learning
(ICML), pp. 1096–1105, Jul. 2018a.

Dabney, W., Rowland, M., Bellemare, M. G., and Munos,
R. Distributional reinforcement learning with quantile
regression. In Proc. AAAI Conf. on Artificial Intelligence
(AAAI), pp. 2892–2901, Feb. 2018b.

de Witt, C. S., Foerster, J., Farquhar, G., Torr, P., Böhmer,
W., and Whiteson, S. Multi-agent common knowledge re-
inforcement learning. In Advances in Neural Information
Processing Systems, pp. 9924–9935, 2019.

Du, Y., Han, L., Fang, M., Liu, J., Dai, T., and Tao, D. Liir:
Learning individual intrinsic reward in multi-agent rein-
forcement learning. In Advances in Neural Information
Processing Systems, pp. 4405–4416, 2019.

Guestrin, C., Koller, D., and Parr, R. Multiagent planning
with factored mdps. In NIPS, 2001.

Karvanen, J. Estimation of quantile mixtures via l-moments
and trimmed l-moments. Computational Statistics &
Data Analysis, 51:947–959, 11 2006. doi: 10.1016/j.csda.
2005.09.014.

Lin, Z., Zhao, L., Yang, D., Qin, T., Liu, T.-Y., and Yang, G.
Distributional reward decomposition for reinforcement
learning. In Advances in Neural Information Processing
Systems, pp. 6212–6221, 2019.

Lyle, C., Bellemare, M. G., and Castro, P. S. A compara-
tive analysis of expected and distributional reinforcement
learning. In Proc. AAAI Conf. on Artificial Intelligence
(AAAI), pp. 4504–4511, Feb. 2019.

Lyu, X. and Amato, C. Likelihood quantile networks for
coordinating multi-agent reinforcement learning. In Pro-
ceedings of the 19th International Conference on Au-
tonomous Agents and MultiAgent Systems, pp. 798–806,
2020.

Matignon, L., Laurent, G., and Fort-Piat, N. Hysteretic
q-learning : an algorithm for decentralized reinforcement
learning in cooperative multi-agent teams. pp. 64 – 69,
12 2007. doi: 10.1109/IROS.2007.4399095.

Mavrin, B., Yao, H., Kong, L., Wu, K., and Yu, Y. Distri-
butional reinforcement learning for efficient exploration.

https://github.com/j3soon/dfac

DFAC Framework: Factorizing the Value Function via Quantile Mixture for Multi-Agent Distributional Q-Learning

In Proc. Int. Conf. on Machine Learning (ICML), pp.
4424–4434, Jul. 2019.

Nikolov, N., Kirschner, J., Berkenkamp, F., and Krause, A.
Information-directed exploration for deep reinforcement
learning. In Proc. Int. Conf. on Learning Representations
(ICLR), May 2019. URL https://openreview.
net/forum?id=Byx83s09Km.

Oliehoek, F. A. and Amato, C. A Concise Introduction
to Decentralized POMDPs. Springer, 2016. ISBN
3319289276.

Oliehoek, F. A., Amato, C., et al. A concise introduction to
decentralized POMDPs, volume 1. Springer, 2016.

Rashid, T. et al. QMIX: Monotonic value function factorisa-
tion for deep multi-agent reinforcement learning. In Proc.
Int. Conf. on Machine Learning (ICML), pp. 4295–4304,
Jul. 2018.

Rowland, M. et al. Statistics and samples in distributional
reinforcement learning. In Proc. Int. Conf. on Machine
Learning (ICML), pp. 5528–5536, Jul. 2019.

Samvelyan, M. et al. The starcraft multi-agent challenge. In
Proc. Int. Conf. on Autonomous Agents and MultiAgent
Systems (AAMAS), pp. 2186–2188, May 2019.

Schaul, T., Horgan, D., Gregor, K., and Silver, D. Universal
value function approximators. In International conference
on machine learning, pp. 1312–1320, 2015.

Son, K., Kim, D., Kang, W. J., Hostallero, D. E., and Yi, Y.
QTRAN: Learning to factorize with transformation for
cooperative multi-agent reinforcement learning. In Proc.
Int. Conf. on Machine Learning (ICML), pp. 5887–5896,
Jul. 2019.

Sunehag, P. et al. Value-decomposition networks for coop-
erative multi-agent learning based on team reward. In
Proc. Int. Conf. on Autonomous Agents and MultiAgent
Systems (AAMAS), pp. 2085–2087, May 2018.

Tan, M. Multi-agent reinforcement learning: Independent
versus cooperative agents. In Proc. Int. Conf. on Ma-
chine Learning (ICML), pp. 330–337, Jun. 1993. ISBN
1558603077.

Wang, T., Wang, J., Zheng, C., and Zhang, C. Learning
nearly decomposable value functions via communication
minimization. arXiv preprint arXiv:1910.05366, 2019.

Wang, T., Dong, H., Lesser, V., and Zhang, C. Multi-
agent reinforcement learning with emergent roles. arXiv
preprint arXiv:2003.08039, 2020.

Yang, D. et al. Fully parameterized quantile function for
distributional reinforcement learning. In Proc. Conf.
Advances in Neural Information Processing Systems
(NeurIPS), pp. 6190–6199, Dec. 2019.

Zhang, S. and Yao, H. Quota: The quantile option architec-
ture for reinforcement learning. In Proc. AAAI Conf. on
Artificial Intelligence (AAAI), pp. 5797–5804, Feb. 2019.

Zhang, S. Q., Zhang, Q., and Lin, J. Efficient communica-
tion in multi-agent reinforcement learning via variance
based control. In Advances in Neural Information Pro-
cessing Systems, pp. 3230–3239, 2019.

https://openreview.net/forum?id=Byx83s09Km
https://openreview.net/forum?id=Byx83s09Km

