
Scalable Variational Gaussian Processes via Harmonic Kernel Decomposition

A. Kernel Fourier Transform
We have shown that the Fourier series of length T form the harmonic kernel decomposition with T kernels. Intuitively, if
T →∞, we obtain a “continuous” frequency representation of the kernel, which would be akin to a Fourier transform.

Consider the transformation Gs : X → X , s ∈ RJ , corresponding to J-way transformations. We assume the transformation
G is 1-periodic: G0(x) = G1(x) = x, Gs1+s2(x) = Gs1(Gs2(x)),∀s1, s2 ∈ RJ . A kernel is G-invariant if for any
s ∈ RJ , k(Gs(x), Gs(x′)) = k(x,x′).

Given the inputs x,x′, we consider the space of kernel values: k(x, Gs(x′)), s ∈ RJ . For t ∈ RJ , we define the
complex-valued function kt : X × X → C using the Fourier transform,

kt(x,x
′) =

∫
RJ
e−2πis

>tk(x, Gs(x′))ds, (25)

In this way, kt(x,x
′) captures the frequency of t in the function s → k(x, Gs(x′)). Similar to the harmonic kernel

decomposition, we show an alternative representation of the kernel using kt.
Theorem A.1 (Harmonic Kernel Representation).

k(x,x′) =

∫
RJ
kt(x,x

′)dt. (26)

Moreover, kt is a kernel for all t ∈ RJ .

Proof of Theorem A.1. We prove this theorem by the following derivation,∫
RJ
kt(x,x

′)dt =

∫
RJ

∫
RJ
e−2πis

>tk(x, Gs(x′))dsdt =

∫
RJ
k(x, Gs(x′))

∫
RJ
e−2πis

>tdtds

=

∫
RJ
k(x, Gs(x′))δsds = k(x,x′).

where we used the property that the Fourier transform of the constant function is the delta function.

To show that kt is a kernel, we prove the following equality,∫
RJ

∫
RJ
e−2πit

>(s2−s1)k(Gs1(x), Gs2(x′))ds1ds2 =

∫
RJ

∫
RJ
e−2πit

>s2k(x, Gs2(x′))ds1ds2

=

∫
RJ
e−2πit

>s2k(x, Gs2(x′))ds2 = kt(x,x
′).

We demonstrate the Kernel Fourier Transform by considering a stationary kernel on the unit circle. We denote the input
x as the angle, then the kernel admits the form k(x, x′) = κ(x − x′), where κ is a periodic function of period 2π. Let
κ0(t) = κ(t)I[0 ≤ t < 2π], then

k(x, x′) = κ(x− x′) =
∑
n∈Z

κ0(x− x′ − 2πn),

Let Gs(x) = x+ 2πs, we obtain,

kt(x, x
′) =

∑
n∈Z

∫
R
e−2πistκ0(x− x′ − 2πs− 2πn)ds =

1

2π

∑
n∈Z

∫
R
e−i(x−x

′−2πn−w)tκ0(w)dw

= e−it(x−x
′)

[
1

2π

∫
R
eiwtκ0(w)dw

]∑
n∈Z

e2πint = e−it(x−x
′)κ̂0(t)

∑
n∈Z

δ(t− n).

where κ̂0 is the inverse Fourier transform of κ0. Then we have the Fourier series,

k(x, x′) =

∫
R
kt(x, x

′)dt =
∑
n∈Z

κ̂0(n)e
−in(x−x′).
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B. Inter-domain Inducing Points Formulation
We present an inter-domain inducing points interpretation of the harmonic kernel decomposition. An inter-domain inducing
point is a function w : X → C whose inducing variable is defined as,

uw =

∫
f(x)w(x)dx, (27)

We introduce T kinds of inter-domain inducing points. For t = 0, ..., T − 1, given zt ∈ X , the inter-domain inducing point
of the t-th kind is,

wt =

T−1∑
s=0

FHt,sδGs(zt), (28)

uwt =

∫
f(x)wt(x)dx =

T−1∑
s=0

FHt,sf(G
s(zt)), (29)

Therefore, we can generalize the kernel function to include inter-domain inputs,

k(x, wt) = E[f(x)uHwt ] =
T−1∑
s=0

Ft,sk(x, G
s(zt)), (30)

k(wt, w
′
t) = E[uwtuHw′t ] =

T−1∑
s=0

T−1∑
s′=0

FHt,sFt,s′k(G
s(zt), G

s′(z′t)) =

T−1∑
s=0

Ft,sk(zt, G
s(z′t)), (31)

where the last equality is based on Lemma D.1. Furthermore, for 0 ≤ t 6= t′ 6= T − 1,

k(wt, wt′) =

T−1∑
s=0

T−1∑
s′=0

Ft,sF
H
t′,s′k(G

s(zt), G
s′(z′t′)) = 0.

where the last equality is based on Lemma D.2. We observe,

k(x, wt) = kt(x, zt); k(wt, w
′
t) = kt(zt, z

′
t). (32)

Now we find that the proposed inter-domain inducing points formulation is equivalent to the kernel Fourier series.
Furthermore, the equivalence also reinterprets HVGPs as standard SVGPs using inter-domain inducing points while
enforcing block diagonal posterior covariances.

C. More Experiments and Details
C.1. Toy Visualization

HVGPs are based on the decomposed GP formulation and assume independent variational posteriors. Therefore, the
predictions on a target location x? can be decomposed as the combination of independent elements,

N (0,K?? −
T−1∑
t=0

Kt,?uK−1t,uuKt,u?)) +

T−1∑
t=0

N (Kt,?utK
−1
t,ututµt,Kt,?utK

−1
t,ututStK

−1
t,ututKt,?ut)

where we use Kt,· to represent the kernel kt. The first term in the prediction represents the error of the Nyström
approximation, and the remaining terms contain the predictions from all subprocesses.

In this section we conduct a Snelson’s 1D toy experiment to visualize the posterior predictions and each term. We set
T = 2, G(x) = −x,m = 5, which results in HVGP (2× 5). Because the original training inputs are positive, we preprocess
it by subtracting the inputs by the mean. The results are shown in Figure 9. We find that using 2× 5 inducing points fit the
training data well, and generate reasonable predictive uncertainty as well. The predictions for the two GPs correspond to the
symmetric and the antisymmetric fraction, respectively.



Scalable Variational Gaussian Processes via Harmonic Kernel Decomposition

Figure 9. Posterior predictions on the Snelson dataset, where shaded bands correspond to intervals of ±3 standard deviation. The leftmost
posterior prediction plot is the combination of the right three plots, plus the observation variance. We also visualize the associated
inducing points for each plot. We observe that the HVGP predictions are separated as the symmetric fraction and the antisymmetric
fraction.

C.2. Regression Benchmarks

We use the Matérn 3/2 kernel with shared lengthscales across input dimensions. For HVGPs, the transformation G is by
negating over PCA directions. We split the PCA directions into J subsets, then apply negations over which results in a
2J ×M model. We let the j-th subset contain the directions with the jth large, (J + j)th large, ... eigenvalues, so that the
principal subspace is covered well. Except for the year dataset which has a standard train/test split, each dataset is randomly
split into 64% training, 16% validating, 20% testing sets and is averaged over 3 random splits. We initialize the inducing
points using K-means and initialize the kernel lengthscale using the median heuristic. The Gaussian likelihood variance is
initialized at 0.1. For all experiments, we optimize for 30k iterations with the Adam optimizer using learning rate 0.003
and batch size 256. We visualize the results for test RMSEs in Figure 10, and how each criterion evolves along training in
Figure 11.
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Figure 10. Test RMSEs on regression benchmarks. We compare SVGPs using M, 2M inducing points and HVGPs using 8×M, 8× 2M
inducing points, for M = 1000.

C.3. CIFAR-10 Classification

Figure 12. Group Splitting
for the HVGP (4×M ).

1-layer 2-layer 3-layer 4-layer

filter size 5 5, 4 5,4,5 5,4,5,4
stride size 1 1,2 1,2,1 1,1,1,1

channel num - 10 10,10 16,16,16
pooling - - - mean

pooling size - - - 1,2,1
padding SAME SAME SAME SAME

M 384x0, 1K 384x1, 1K 384x2, 1K 384x3, 1K

Table 3. Model Configurations for Deep Convolutional Gaussian processes.

For deep Gaussian processes, we let Ml, hl be the number of inducing points and the number of input units in the l-th layer,
respectively. The variational posterior for the inducing points Ul,Ul ∈ RMl×hl+1 in the l-th layer is usually a multivariate
Gaussian,

q(vec(Ul)) = N (vec(Ml),Σl), (33)

where Ml ∈ RMl×hl+1 ,Σl ∈ R(Mlhl+1)×(Mlhl+1) are the mean and the covariance, respectively. A commonly-used
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Figure 11. How train loss, test rmse, and test nll evolve during training. We compare SVGPs using M, 2M inducing points and HVGPs
using 8×M, 8× 2M inducing points, for M = 1000.

structure for Σl is the block-diagonal covariance (Salimbeni & Deisenroth, 2017) , i.e., assuming independence between
output channels. However, the true posterior is not independent. Moreover, such covariance involves hl+1 covariances
of shape Ml ×Ml, which are both memory intensive and computation intensive. Therefore, following Park et al. (2018),
we use the Kronecker-factored structure for the covariance, i.e., Σl = Σl

o ⊗Σl
i, where Σo ∈ Rhl+1×hl+1 ,Σi ∈ RMl×Ml

correspond to the output covariance and the input covariance, respectively.

Following Shi et al. (2020), all models were optimized using 270k iterations with the Adam optimizer using a learning
rate 0.003 and a batch size 64. We anneal the learning rate by 0.25 every 50k iterations to ensure convergence. Unlike
Shi et al. (2020) which used a zero mean function, we used a convolution mean function whose filter is 1 for the center
pixel and 0 everywhere else, since we observe it with a better performance. We used the robust multi-class classification
likelihood. For lower layers in the deep convolutional GP, we used multi-output GPs for each input patch (Blomqvist et al.,
2019); for the output layer, we used the TICK kernel (Dutordoir et al., 2019). The patch kernels are RBF kernels with
shared lengthscales, whose lengthscales and variances are initialized at 5. The TICK location kernel is a Matérn 3/2 kernel
whose lengthscales and variances are initialized at 1 and 3, respectively. To initialize the inducing filters, we use K-means
samples from min(100 ∗M, 10000) random input patches, while the inputs in all layers are obtained by forwarding the
image through a random Xavier convnet.

For the HVGP (2×M ) we use the negation transformation on the inducing points G(z) = −z. For the HVGP (4×M ), we
also use the negation transformation over two groups that are determined by pixel locations, as shown in Figure 12.
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D. Proofs
D.1. Lemmas

Lemma D.1. For any t = 0, ..., T − 1, x,x′ ∈ X ,

T−1∑
s=0

T−1∑
s′=0

FHt,sFt,s′k(G
s(x), Gs

′
(x′)) =

T−1∑
s=0

Ft,sk(x, G
s(x′)).

Proof. We prove the equality by the expression of F,

1

T 2

T−1∑
s=0

T−1∑
s′=0

e−i
2πt
T (s′−s)k(Gs(x), Gs+(s′−s)(x′)) =

1

T

T−1∑
s0=0

e−i
2πt
T s0k(x, Gs0(x′)),

where we used the kernel invariance to G. Also, since G is T -cyclic, we changed the variable s′ − s to s0 and s0 still ranges
from 0 to T − 1.

Lemma D.2. For any 0 ≤ t1 6= t2 ≤ T − 1, x,x′ ∈ X ,

T−1∑
s1=0

T−1∑
s2=0

FHt1,s1Ft2,s2k(G
s1(x), Gs2(x′)) = 0, (34)

T−1∑
s1=0

T−1∑
s2=0

Ft1,s1F
H
t2,s2k(G

s1(x), Gs2(x′)) = 0, (35)

Proof. Below we prove (34). The proof of (35) follows similarly.

T−1∑
s1=0

T−1∑
s2=0

FHt1,s1Ft2,s2k(G
s1(x), Gs2(x′)) =

T−1∑
s1=0

T−1∑
s2=0

FHt1,s1Ft2,s1+s2k(G
s1(x), Gs1+s2(x′))

=

T−1∑
s2=0

k(x, Gs2(x′))

T−1∑
s1=0

FHt1,s1Ft2,s1+s2 =

T−1∑
s2=0

k(x, Gs2(x′))e−i
2πts2
T

T−1∑
s1=0

FHt1,s1Ft2,s1 = 0.

In the last step,
∑T−1
s1=0 FHt1,s1Ft2,s1 = 0 whenever t1 6= t2. This is because the columns of F form an orthogonal basis over

the set of T -dimensional complex vectors.

Lemma D.3. Under the harmonic formulation, for x ∈ X ,

ft(x) =

T−1∑
s=0

FHt,sf(G
s(x)). (36)

Proof. We consider a marginal distribution on a subset of function values,

p({f(Gs(x))}T−1s=0 , {f0(Gs(x))}
T−1
s=0 , ..., {fT−1(Gs(x))}

T−1
s=0 ),

The distribution can be represented as,

f(Gs(x)) =

T−1∑
t=0

ft(G
s(x)), s = 0, ..., T − 1,

ft(G
0:T−1(x)) ∼ N (0,Kt(G

0:T−1(x), G0:T−1(x))),
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We first investigate the structure of the kernel matrix Kt,

kt(G
j(x), Gj

′
(x)) =

T−1∑
s=0

Ft,sk(G
j(x), Gs+j

′
(x)) =

T−1∑
s=0

Ft,sk(x, G
s+j′−j(x)) =

T−1∑
s=0

Ft,s+j−j′k(x, G
s(x))

= e−
2πit(j−j′)

T

T−1∑
s=0

Ft,sk(x, G
s(x)) = e−

2πit(j−j′)
T kt(x,x),

Therefore, the matrix Kt = [kt(x,x)e
− 2πit(j−j′)

T ]T−1j,j′=0. Let εt ∈ R be a random Gaussian noise, then the random vector of
ft can be written as,

ft(G
0:T−1(x)) = [

√
kt(x,x)e

− 2πitj
T εt]

T−1
j=0 , (37)

Now we can compute the RHS in the lemma,

T−1∑
s=0

FHt,sf(G
s(x)) =

T−1∑
s=0

FHt,s

T−1∑
t′=0

ft′(G
s(x)) =

T−1∑
t′=0

T−1∑
s=0

FHt,sft′(G
s(x)),

If t′ = t,

T−1∑
s=0

FHt,sft(G
s(x)) =

T−1∑
s=0

FHt,s
√
kt(x,x)e

− 2πits
T εt =

√
kt(x,x)εt = ft(x). (38)

If t′ 6= t,

T−1∑
s=0

FHt,sft′(G
s(x)) =

T−1∑
s=0

FHt,s
√
kt′(x,x)e

− 2πit′s
T εt =

√
kt′(x,x)εt

T−1∑
s=0

e
2πi(t−t′)

T = 0. (39)

Therefore,

T−1∑
s=0

FHt,sf(G
s(x)) = ft(x). (40)

Because this holds for all marginal distributions, it holds as well for the function samples from Gaussian processes.

D.2. Proofs for Sec 3

Proof of Proposition 3.3. The equality can be directly proven,

kt(x, G(x
′)) =

T−1∑
s=0

Ft,sk(x, G
s+1(x′)) =

T−1∑
s=0

Ft,s−1k(x, G
s(x′))

=

T−1∑
s=0

1

T
e−i

2πt(s−1)
T k(x, Gs(x′)) = ei

2πt
T kt(x,x

′). (41)

Proof of Theorem 3.5. The equality can be directly proven,

T−1∑
t=0

kt(x,x
′) =

T−1∑
t=0

T−1∑
s=0

1

T
e−i

2πst
T k(x, Gs(x′)) =

1

T

T−1∑
s=0

k(x, Gs(x′))

T−1∑
t=0

e−i
2πst
T =

1

T

T−1∑
s=0

k(x, Gs(x′))Tδs = k(x,x′).

To prove that kt is a kernel, we observe from Lemma D.1 that kt(x,x
′) = FHt,:KFt,:, where K =

[k(Gs1(x), Gs2(x′))]T−1s1,s2=0. Since k is a kernel, we conclude that kt(x,x′) = FHt,:KFt,: is a kernel as well.
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Proof of Lemma 3.6. We firstly prove that, for all t1 6= t2 and x,x′, 〈kt1(·,x), kt2(·,x′)〉Hk = 0. The RKHS inner product
can be computed as,

〈kt1(·,x), kt2(·,x′)〉Hk =

T−1∑
s1=0

T−1∑
s2=0

Ft1,s1F
H
t2,s2k(G

s1(x), Gs2(x′)) = 0, (42)

where the last equality is due to Lemma D.2.

Moreover, if the functions f, g can be written as linear combinations of the corresponding kernels,

f(x) =
∑
s

askt1(x,x
s
t1); g(x) =

∑
s

bskt2(x,x
s
t2)

Following that 〈kt1(·,x), kt2(·,x′)〉Hk for all x,x′, 〈f, g〉Hk = 0 as well.

Based on Moore-Aronszajn Theorem (Aronszajn, 1950; Berlinet & Thomas-Agnan, 2011), the RKHS spaces Hkt1 and
Hkt1 are the set of functions which are pointwise limits of Cauchy sequences in the form fn(x) =

∑
s askt1(x,x

s
t1) and

gn(x) =
∑
s bskt2(x,x

s
t2), respectively. Moreover, based on the Berlinet & Thomas-Agnan (2011, Lemma 5), the inner

product of two pointwisely convergent Cauchy sequences also converges. We conclude that for any f ∈ Hkt1 , g ∈ Hkt2 ,
〈f, g〉Hk = 0.

Proof of Proposition 3.7. Without loss of generality, we only need to prove that,

H1 ∩H2 = {0},

Firstly, 0 ∈ H1, 0 ∈ H2 becauseH1 andH2 are Hilbert spaces. Then we assume another function f 6= 0 and f ∈ H1 ∩H2.
By Lemma 3.6, ‖f‖Hk = 〈f, f〉Hk = 0, which is contradictory to f 6= 0 andHk being a Hilbert space.

Proof of Theorem 3.8. We use Ht to represent the RKHS corresponding to the kernel kt. Given a function f ∈ Hk, we
firstly assume f can be written as a linear combination of the kernel functions,

f(x) =
∑
s

ask(x,x
s),

Based on the kernel sum decomposition, we can rewrite f ,

f(x) =
∑
s

as

T−1∑
t=0

kt(x,x
s) =

T−1∑
t=0

∑
s

askt(x,x
s)︸ ︷︷ ︸

:=ft(x)

,

Because ft is a linear combination of kt, ft ∈ Ht, for t = 0, ..., T − 1. Proposition 3.7 states that the RKHSs Ht1 ,Ht2
are disjoint except the zero function, thus f =

∑T−1
t=0 ft is a unique expansion of f to these RKHSs. Moreover, we can

represent the function f alternatively,

f(x) = 〈f, k(x, ·)〉Hk =

T−1∑
t=0

〈f, kt(x, ·)〉Hk =

T−1∑
t=0

〈
T−1∑
t′=0

ft′ , kt(x, ·)〉Hk =

T−1∑
t=0

〈ft, kt(x, ·)〉Hk ,

where the last equality uses the orthogonality between RKHSs. By using the orthogonality again, we also show that,

〈ft, kt(x, ·)〉Hk = 〈ft,
T1∑
t′=0

kt′(x, ·)〉Hk = 〈ft, k(x, ·)〉Hk = ft(x), (43)

Therefore, f(x) =
∑T−1
t=0 〈f, kt(x, ·)〉Hk uniquely separates f into these RKHSs. More generally, if f is the pointwise

limits of Cauchy sequences of functions in the form of linear combinations of the kernel function. Based on the Berlinet &
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Thomas-Agnan (2011, Lemma 5), the inner product of two pointwisely convergent Cauchy sequences also converges. We
conclude that for any f ∈ Hk,

f(x) =

T−1∑
t=0

〈f, kt(x, ·)〉Hk , (44)

uniquely decomposes the function f into the RKHSsHt, t = 0, ..., T − 1.

Based on Berlinet & Thomas-Agnan (2011, Theorem 5), the squared RKHS norm of f can be written as the sum of squared
RKHS norms,

‖f‖2Hk =

T−1∑
t=0

‖ft‖2Ht .

D.3. Proof of Sec 4

Proof of Theorem 4.1. Under the HVGP formulation, the inducing variable ut = ft(z). From Lemma D.3, we have
ft(z) =

∑T−1
s=0 FHt,sf(G

s(z)).

Under the inter-domain formulation, let wt be the inter-domain inducing point corresponding to z in kt,

wt =

T−1∑
s=0

FHt,sδGs(z),

Then the inducing variable corresponding to wt is,

uwt =

∫
f(x)wt(x)dx =

T−1∑
s=0

FHt,sf(G
s(z)), (45)

Therefore, the two inducing variables are the same,

uwt = ut. (46)

Therefore, the variational posterior under the harmonic formulation can be rewritten in an inter-domain SVGP form,

qinter(f,U) = p(f |U; {wt}T−1t=0 )q(vec(U)), (47)

where U := [u0, ...,uT−1]
> and p is the inter-domain Gaussian process.

Now we connect the inter-domain SVGP to the standard SVGP using {Gt(Z)}T−1t=0 . For the standard SVGP, the inducing
variables are vt = f(Gt(Z)), and V := [v0, ...,vT−1]

> ∈ CT×m. For the inter-domain SVGP, the inducing variables are
ut. As shown in Eq. (45), ut =

∑T−1
s=0 FHt,svs, then we have the equality,

U = FHV, (48)

Because of the bijective linearity,

p(f |U; {wt}T−1t=0 ) = p(f |V; {Gt(Z)}T−1t=0 ), (49)

Furthermore, the variational posterior for V isN (vec(V)|vec(Mv),Sv), which is equivalent to the variational posterior for
U,

q(vec(U)) = N (vec(U)|vec(FHMv), (I⊗ FH)Sv(I⊗ F)).

So the argument has been proved.



Scalable Variational Gaussian Processes via Harmonic Kernel Decomposition

Lemma D.4 (Variational Gaussian Approximations). Let N (µ,S) be a Gaussian variational posterior for a SVGP, then
the optimal S? is in the form of,

S? = Kuu (Kuu + KufΛKfu)
−1

Kuu. (50)

where Λ = diag([λn]
N
n=1) is diagonal,

λn = −2∇σ2
n
Eq(fn)[log p(yn|fn)], (51)

where σ2
n is the predictive variance of fn under the variational posterior.

Proof. Given the variational posterior, the predictive distribution of fn can be computed as,

N (kfuK−1uuµ, kff + kfuK−1uu(S−Kuu)K
−1
uukuf ),

where we denote the predictive variance as σ2
n. The variational posterior is optimized by maximizing the ELBO, which can

be computed as,

L =

N∑
n=1

Eq(fn)[log p(yn|fn)]−KL (N (µ,S)||N (0,Kuu)) ,

We compute the derivatives of L towards S,

∇SL = −1

2

N∑
n=1

λn∇Sσ
2
n −

1

2
(K−1uu − S−1) = −1

2
K−1uu(

N∑
n=1

λnkufnkfnu)K
−1
uu −

1

2
(K−1uu − S−1)

= −1

2
K−1uuKufΛKfuK−1uu −

1

2
K−1uu +

1

2
S−1, (52)

Let the derivative be zero, we obtain the optimal S?,

S? = Kuu(Kuu + KufΛKfu)
−1Kuu.

Proof of Theorem 4.2. Based on Lemma D.4, the optimal posterior covariance is

S? = Kuu (Kuu + KufΛKfu)
−1

Kuu, (53)

Given that Kuu is block diagonal, by the continuous mapping theorem, it remains to prove that KufΛKfu approaches
block diagonal.

Firstly we assume that Hermitian kernels are not resolved, thus Kfu = KH
uf . Because λn only depends on (xn, yn), for the

(zt, zt′) off-diagonal element in KufΛKfu,

1

N

N∑
n=1

λnkt(zt,xn)k
H
t′ (zt′ ,xn)→ Ep(x)p(y|x)[λ(x, y)kt(zt,x)kHt′ (zt′ ,x)] = Ep(x)[Ep(y|x)[λ(x, y)]kt(zt,x)kHt′ (zt′ ,x)],

We let λ̂(x) := Ep(y|x)[λ(x, y)], then the formula can be further computed as,

Ep(x)[λ̂(x)kt(zt,x)kHt′ (zt′ ,x)]

= Ep(x)[λ̂(x)
T−1∑
s=0

T−1∑
s′=0

Ft,sF
H
t′,s′k(x, G

s(zt))k
H(x, Gs

′
(zt′))]

= Ep(x)[λ̂(x)
T−1∑
s=0

T−1∑
s′=0

Ft,sF
H
t′,s+s′k(x, G

s(zt))k
H(x, Gs+s

′
(zt′))]

= Ep(x)[λ̂(Gs(x))
T−1∑
s=0

T−1∑
s′=0

Ft,sF
H
t′,s+s′k(G

s(x), Gs(zt))k
H(Gs(x), Gs+s

′
(zt′))]

= Ep(x)[λ̂(Gs(x))k(x, zt)
T−1∑
s′=0

kH(x, Gs
′
(zt′))

T−1∑
s=0

Ft,sF
H
t′,s+s′ ] = 0,
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In the second equality we used the periodicity of G; In the third equality we used the assumption that Gs(x) has the same
distribution as x; In the last equality we used the property that

∑T−1
s=0 Ft,sF

H
t′,s+s′ = 0 for all t 6= t′.

Furthermore, if the Hermitian kernels are resolved in HVGP, let T be the period, then KufΛKfu is a matrix of (1 +
bT/2c)× (1 + bT/2c). For any off-diagonal element at (t, t′), [KufΛKfu]t,t′ equals to,

1

N

N∑
n=1

λn (kt(zt,xn) + kT−t(zt,xn))
(
kHt′ (zt′ ,xn) + kHT−t′(zt′ ,xn)

)
Given previous results, because t, T − t are both different with t′, T − t′, the formula becomes 0 as well, as N →∞.


