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Abstract

We introduce a new scalable variational Gaus-
sian process approximation which provides a high
fidelity approximation while retaining general ap-
plicability. We propose the harmonic kernel de-
composition (HKD), which uses Fourier series to
decompose a kernel as a sum of orthogonal ker-
nels. Our variational approximation exploits this
orthogonality to enable a large number of induc-
ing points at a low computational cost. We demon-
strate that, on a range of regression and classifi-
cation problems, our approach can exploit input
space symmetries such as translations and reflec-
tions, and it significantly outperforms standard
variational methods in scalability and accuracy.
Notably, our approach achieves state-of-the-art
results on CIFAR-10 among pure GP models.

1. Introduction
Gaussian Processes (GPs) (Rasmussen & Williams, 2006)
are flexible Bayesian nonparametric models which enable
principled reasoning about distributions of functions and
provide rigorous uncertainty estimates (Srinivas et al., 2010;
Deisenroth & Rasmussen, 2011). Unfortunately, exact infer-
ence in GPs is impractical for large datasets because of the
O(N3) computational cost (for a dataset of sizeN ). To over-
come the computational roadblocks, sparse Gaussian pro-
cesses (Snelson & Ghahramani, 2006; Quinonero-Candela
& Rasmussen, 2005) use M inducing points to approxi-
mate the kernel function, reducing the computational cost
to O(NM2 +M3). However, these approaches are prone
to overfitting since all inducing points are hyperparameters.
Sparse variational Gaussian Processes (SVGPs) (Titsias,
2009; Hensman et al., 2015) offer an effective protection
against overfitting by framing a posterior approximation us-
ing the inducing points and optimizing them with variational
inference. Still, the O(M3) complexity prevents SVGPs
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Figure 1. Visualizing the harmonic kernel decomposition. We de-
compose a 2-dimensional RBF kernel as k =

∑3
t=0 kt using the

symmetry group of 90o rotations. We plot the real part of random
functions sampled from each GP(0, kt). Notice that GP(0, k0) is
invariant to 90o rotations; GP(0, k1) takes opposite values under
180o rotations; GP(0, k2) is invariant to 180o rotations but has
opposite values under 90o rotations.

from scaling beyond a few thousand inducing points, creat-
ing difficulties in improving the quality of approximation.

Several approaches impose structure on the inducing points
to increase the approximation capacity. Structured kernel
interpolation (SKI) (Wilson & Nickisch, 2015; Wilson et al.,
2015) approximates the kernel by placing inducing points
over a Euclidean grid and exploiting fast structured matrix
operations. SKI can use millions of inducing points, but
is limited to low-dimensional problems because the grid
size grows exponentially with the input dimension. Other
approaches define approximate posteriors using multiple
sets of inducing points. Cheng & Boots (2017); Salimbeni
et al. (2018) propose to decouple the inducing points for
modelling means and covariances, leading to a linear com-
plexity with respect to the number of mean inducing points.
SOLVE-GP (Shi et al., 2020) reformulates a GP as the sum
of two orthogonal processes and uses distinct groups of in-
ducing points for each; this has the benefit of improving the
approximation at a lower cost than standard SVGPs.

In this paper, we introduce a more scalable variational ap-
proximation for GPs via the proposed harmonic kernel de-
composition (HKD), which decomposes the kernel as a sum
of orthogonal kernels, k(x,x′) =

∑T−1
t=0 kt(x,x

′), using
Fourier series. The HKD reformulates the Gaussian process
into an additive GP, where each subprocess models a Fourier
component of the function (see Figure 1 for a visualization).
We then propose the Harmonic Variational Gaussian Pro-
cess (HVGP), which uses separate sets of inducing points
for the subprocesses. Compared to a standard variational
approximation, HVGPs allow us to use a large number of
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inducing points at a much lower computational cost. More-
over, HVGPs have an advantage over SKI in that they allow
trainable inducing points. Finally, unlike the SOLVE-GP
whose decomposition involves only two subprocesses, our
HVGP is easily applicable to multiple subprocesses and can
be computed efficiently with the discrete Fourier transform.

Empirically, we demonstrate the scalability and general
applicability of HVGPs through a range of problems and
models including using RBF kernels for modelling earth
elevations and using convolutional kernels for image classi-
fication. In these experiments, HVGPs significantly outper-
form standard variational methods by exploiting the input-
space symmetries such as translations and reflections. Our
model can further exploit parallelism to achieve minimal
wall-clock overhead when using 8 groups of inducing points.
In CIFAR-10 classification, we show that our method can
be integrated with deep convolutional structures to achieve
state-of-the-art results for GPs.

2. Background
2.1. Discrete Fourier Transform

Fourier analysis (Baron Fourier, 1878) studies the represen-
tation of functions as sums or integrals of sinusoids. For an
integrable function f on Rd, its Fourier transform is defined
as

f̂(ω) =

∫
Rd
e−2πiω

>xf(x) dx, (1)

where f̂(ω) ∈ C. In kernel theory, Bochner’s Theorem
(Bochner, 1959) is a seminal result that uses the Fourier
transform to establish a bijection between stationary kernels
and positive measures in the spectral domain.

Fourier analysis can be performed over finite sequences as
well, via the discrete Fourier transform (DFT) (Cooley et al.,
1969). Specifically, given a sequence x = [x0, ...,xT−1]

>,
DFT computes the sequence x̂ = [x̂0, ..., x̂T−1]

>, with

x̂t =
1

T

T−1∑
s=0

xse
−i 2πtsT , t = 0, ..., T − 1. (2)

Let F := [ 1T e
−i 2πtsT ]T−1t,s=0 ∈ CT×T denote the DFT matrix.

The DFT can be represented in vector form as x̂ = Fx,
which naturally leads to the inverse DFT: x = F−1x̂.

More generally, if X ∈ CT1×···×Tk is a tensor, the multidi-
mensional DFT computes the tensor X̂ ∈ CT1×···×Tk ,

X̂[t1, ..., tk] =
1

T

∑
s1,...,sk

X[s1, ..., sk]

k∏
j=1

e
−i

2πtjsj
Tj ,

where T =
∏
j Tj . The DFT matrix is then a tensor product

of one-dimensional DFT matrices.

2.2. Gaussian Processes

Given an input domain X , a mean function m, and a kernel
function k : X ×X → R, the Gaussian process (Rasmussen
& Williams, 2006) GP(m, k) is a distribution over func-
tions X → R. For any finite set {x1,x2, . . . ,xN} ⊂ X ,
the function values f = [f(x1), f(x2), ..., f(xN )]> have a
multivariate Gaussian distribution:

f ∼ N (m(X),Kff ),

where m(X) = [m(x1), ...,m(xN )]>, and Kff =
[k(xi,xj)]

N
i,j=1. For simplicity we assume m(·) = 0

throughout the paper. The observations y are modeled with a
density p(y|f(x)), often taken to be Gaussian in the regres-
sion setting: y = f(x) + ε, ε ∼ N (0, σ2). Let (X,y) be
a training set of size N . The posterior distribution p(f?|y)
under a Gaussian observation model is

N (K?f (Kff + σ2I)−1y,K?? −K?f (Kff + σ2I)−1Kf?),

where f? = f(X?) are function values at test locations.
Unfortunately, computing the posterior mean and covariance
requires inverting the kernel matrix, anO(N3) computation.

Sparse variational Gaussian processes (SVGPs) (Titsias,
2009; Hensman et al., 2013) use inducing points for scal-
able GP inference. Let Z = [z1, ..., zM ]> ∈ RM×d be M
inducing locations, and u = f(Z). SVGPs consider an aug-
mented joint likelihood, p(f(·),u) = p(f(·)|u)p(u), and
a variational approximation q(f(·),u) = p(f(·)|u)q(u),
where q(u) = N (µ,S) is a parameterized multivariate
Gaussian with mean µ and covariance S. The variational
approximation is optimized by maximizing the variational
lower bound:

L := Eq(f ,u)[log p(y|f ,X)]−KL (q(u)||p(u)) . (3)

Since log p(y|f ,X) =
∑N
i=1 log p(yi|f(xi)) admits

stochastic optimization, SVGPs reduce the computational
cost to O(M3 +M2B), where B is the minibatch size.

3. Harmonic Kernel Decomposition
In this section, we introduce kernel Fourier series and use
them to form the harmonic kernel decomposition. All proofs
can be found in Appendix D.2.

3.1. Kernel Fourier Series

We first propose a general method for representing a kernel
as a sum of functions. The idea is based on the DFT (see
Sec. 2.1). Let k : X × X → C be a positive definite kernel.
To apply the DFT, we fix the first input x, and construct
a finite sequence of kernel values using a transformation
G : X → X that applies to the second input:

[k(x, G0(x′)), k(x, G1(x′)), ..., k(x, GT−1(x′))], (4)
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where G0(x) := x and Gt := G ◦ Gt−1. Note that in
signal processing, the sequence under DFT usually contains
equally-spaced samples along the time domain. Here, we
adopt a more general form by usingG to exploit symmetries
in the input domain.

Definition 3.1 (Kernel Fourier Series). We define T
complex-valued functions kt : X × X → C, t =
0, . . . , T − 1 using the DFT of the sequence (4):

kt(x,x
′) =

T−1∑
s=0

Ft,sk(x, G
s(x′)), (5)

where F is the DFT matrix (see Sec. 2.1). The kernel Fourier
series of k(x, Gs(x′)) is given by the inverse DFT:

k(x, Gs(x′)) =

T−1∑
t=0

F−1s,t kt(x,x
′). (6)

The inverse DFT matrix is F−1 = TFH , where ·H is the
conjugate transpose.

Given the positive definiteness of k, it is tempting to ask
whether kt is also a (complex-valued) kernel. In the next
section, we will study the conditions when this holds and
use it to form an orthogonal kernel decomposition.

3.2. Harmonic Kernel Decomposition

We first introduce the following definitions.

Definition 3.2 (T -Cyclic Transformation). A function G :
X → X is T -cyclic if T is the smallest integer such that,

∀x ∈ X , GT (x) :=
T︷ ︸︸ ︷

G ◦ · · · ◦G(x) = x. (7)

In group theory, {G0, G1, . . . , GT−1} forms a cyclic group
of order T , and G is the generator of this group. Interest-
ingly, given a T -cyclic G, multiplying kt with ei

2πt
T corre-

sponds to a shift by G in the second input.

Proposition 3.3 (Shift). For any 0 ≤ t ≤ T − 1,

kt(x, G(x
′)) = ei

2πt
T kt(x,x

′). (8)

From Proposition 3.3 we have k0(x, G(x′)) = k0(x,x
′),

and when T is even, kT/2(x, G2(x′)) = kT/2(x,x
′). This

property is illustrated in Figure 1.

Definition 3.4 (G-Invariant kernels). A kernel function k :
X × X → C is G-invariant if,

∀x,x′ ∈ X , k(G(x), G(x′)) = k(x,x′). (9)

For example, a polynomial kernel k(x,x′) = (x>x′ + c)t

is invariant to the rotation transformations.

Theorem 3.5 (Harmonic Kernel Decomposition). Let G be
a T -cyclic transformation, and k be a G-invariant kernel.
Then, the following decomposition holds:

k(x,x′) =

T−1∑
t=0

kt(x,x
′), (10)

where kt, t = 0, . . . , T − 1 are defined as in Eq. (5). More-
over, for any 0 ≤ t ≤ T − 1, kt is a Hermitian kernel.

The equation follows from the kernel Fourier series of
k(x, G0(x′)) by noticing that F−10,: = 1. To prove that
kt is a kernel, we show that kt(x,x′) = FH:,tK(x,x′)F:,t,
where K(x,x′) = [k(Gs1(x), Gs2(x′))]T−1s1,s2=0,

Besides the kernel sum decomposition, we further show that
the kernels kt, t = 0, ..., T −1 are orthogonal to each other,
as identified by the following lemma.
Lemma 3.6 (Orthogonality). For any 0 ≤ t1 6= t2 ≤
T − 1, letHk,Hkt1 ,Hkt2 be the RKHSs corresponding to
the kernel k, kt1 , kt2 , respectively. Then for any f ∈ Hkt1
and g ∈ Hkt2 , 〈f, g〉Hk = 0.

Because theHk inner product of f ∈ H1, g ∈ H2 is always
zero, we immediately obtain that the RKHSs for kt are
disjoint except for the function f ≡ 0.
Proposition 3.7 (Disjoint). For any 0 ≤ t1 6= t2 ≤ T − 1,

Hkt1 ∩Hkt2 = {0}, (11)

The kernel decomposition and orthogonality translate to the
RKHS orthogonal sum decomposition as follows:
Theorem 3.8 (Orthogonal Sum Decomposition of RKHS).
The RKHSHk admits an orthogonal sum decomposition,

Hk =

T−1⊕
t=0

Hkt . (12)

Specifically, for any function f ∈ Hk, f has the unique
decomposition f =

∑T−1
t=0 ft, ft ∈ Hkt , and ft(x) =

〈f, kt(x, ·)〉Hk . The RKHS norm of f is equal to

‖f‖2Hk =

T−1∑
t=0

‖ft‖2Hkt . (13)

3.3. Examples of Harmonic Kernel Decomposition

The HKD relies on the (G, k) pair where G is a T -cyclic
transformation and k is a kernel invariant to G. In this
section we provide examples of such kernels and transfor-
mations. Notably, all inner-product kernels and stationary
kernels1 can be decomposed with the HKD when paired
with an appropriately chosen G.

1This includes, e.g., polynomial, Gaussian, Matérn, periodic,
arccosine, and rational quadratic kernels.
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An opening example. We start with a toy example
to illustrate the kernel decomposition. Let k(θ, θ′) =
e−i(θ−θ

′) + e−2i(θ−θ
′) for θ ∈ [0, 2π). The transforma-

tion G(θ) = (θ + 2π
T ) mod 2π is T -cyclic. Based on

the kernel Fourier series, we obtain k1(θ, θ′) = e−i(θ−θ
′),

k2(θ, θ
′) = e−2i(θ−θ

′), and kt = 0 otherwise. We observe
that the RKHS of k2 contains periodic functions with basic
period π, while the RKHS of k1 contains functions with
basic period 2π. In this way, our method decomposes Hk
into orthogonal RKHSs.

Inner-product kernels are kernels of the form,

k(x,x′) = h(xHx,xHx′,x′Hx′), (14)

where the function h ensures that k is positive semi-definite
(Hofmann et al., 2008). For a matrix R ∈ Cd×d, which is
unitary (i.e. RRH = I), the kernel k is G-invariant:

k(G(x), G(x′))=h(xHRHRx,xHRHRx′,x′HRHRx′)

=h(xHx,xHx′,x′Hx′) = k(x,x′),

Examples include reflections, rotations, and permutations.
Moreover, if R · · ·R︸ ︷︷ ︸

T

= I, the mapping G(x) = Rx is

T -cyclic.

Stationary kernels are kernels of the form,

k(x,x′) = κ(x− x′), (15)

where κ is a positive-type function (Berlinet & Thomas-
Agnan, 2011). Let T = 2 and G(x) = −x; then G is
T -cyclic. For real kernels whose k(x,x′) ∈ R, the kernel is
symmetric (i.e. k(x,x′) = k(x′,x)). Then k is G-invariant:

k(G(x), G(x′)) = κ(x′ − x) = k(x′,x) = k(x,x′).

Similarly, we can prove that inner-product kernels are
negation-invariant. Stationary kernels are also invariant to
the T -cyclic transformationGi(x) = x+ 2π

T ei on a multidi-
mensional torus Td = S1 × · · · × S1︸ ︷︷ ︸

d

, where S1 represents

a one-dimensional circle.

3.4. Resolving Complex-Valued Kernels

From F = [ 1T e
−i 2πtsT ]T−1t,s=0, we know that the DFT intro-

duces complex values whenever T > 2. Therefore, kt is
Hermitian but not necessarily real-valued. For example, the
decomposition in Fig. 1 introduces imaginary values when
t = 1, 3. Since k is real-valued, we can obtain a real-valued
kernel decomposition by pairing up kts. Specifically, for a
T -cyclic transformation G, we have

(kt + kT−t)(x,x
′) =

2

T

T−1∑
s=0

cos(
2πts

T
)k(x, Gs(x′)),

In this way we obtain a real-valued decomposition with
bT/2c+ 1 kernels.

3.5. Multi-Way Transformations

Previously we considered the Fourier series along one trans-
formation orbit: k(x, G0(x′)), ..., k(x, GT−1(x′)). We can
extend it to multi-way transformations, akin to a multidimen-
sional DFT. Let T1, ..., TJ ∈ N and Gj be a Tj-cyclic trans-
formation for j = 1, ..., J , respectively. We further assume
that all transformations commute, i.e., ∀1 ≤ j1, j2 ≤ J ,

∀x ∈ X , Gj1(Gj2(x)) = Gj2(Gj1(x)). (16)

Due to commutativity, we can use the indices (t1, ..., tJ) to
represent applying each Gj for tj times,

G(t1,...,tJ )(x) := Gt11 · · ·G
tJ
J (x), (17)

where G := G1 ⊗ · · · ⊗ GJ . Moreover, if a kernel k is
Gj-invariant for all j = 1, ..., J , then k is G-invariant.

Letting t = (t1, ..., tJ) be a multi-index, we compute the
J-way kernel Fourier series from a multidimensional DFT:

kt(x,x
′) =

(T1−1,...,TJ−1)∑
s=(0,...,0)

J∏
j=1

F
(j)
tj ,sjk(x, G

s(x′)),

where F(j) ∈ CTj×Tj is the DFT matrix of the j-th trans-
formation. Similar to Theorem 3.5, these kts also form an
HKD of k.

Taking a two-dimensional RBF kernel as an example, we
can check that it is invariant to negation along either di-
mension: G1([x1, x2]

>) = [−x1, x2]>, G2([x1, x2]
>) =

[x1,−x2]>. Because G1 and G2 commute, this forms a
2-way transformation G = G1 ⊗G2, which corresponds to
an HKD with 2× 2 = 4 sub-kernels.

4. Harmonic Variational Gaussian Processes
In this section, we explore the implications of the HKD,
and propose a scalable inference strategy for variational
Gaussian processes. All proofs can be found in Sec D.3 in
the appendix.

4.1. Variational Inference for Decomposed GPs

Given the kernel decomposition2 k =
∑T−1
t=0 kt, the Gaus-

sian process can be represented in an additive formulation,

f =

T−1∑
t=0

ft, ft ∼ GP(0, kt). (18)

For t = 0, ..., T − 1, we introduce inducing points Zt and
denote by ut := ft(Zt) the inducing variables. Let pt
represent GP(0, kt). We consider an augmented model,

f =

T−1∑
t=0

ft, pt(ft(·),ut) = pt(ft(·)|ut)pt(ut), (19)

2t can be a multi-index for multi-way transformations.
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and define the variational posterior approximation as

f =

T−1∑
t=0

ft,

ft(·) ∼ pt(ft(·)|ut), u0:T−1 ∼ q(u0:T−1).

(20)

To understand how well this variational distribution approx-
imates the true GP posterior, we compare it with a standard
SVGP, for which the quality of approximation has been
studied extensively by Burt et al. (2019). For simplicity, we
focus our analysis on the case where inducing points are
shared across all subprocesses: Z0 = ... = ZT−1 := Z, and
we assume a complex-valued kernel decomposition without
using the techniques in Section 3.4. Then, we demonstrate
that Eq. (20) is equivalent to an SVGP with inducing points
{Gt(Z)}T−1t=0 .

Theorem 4.1. Consider an SVGP with inducing points
{Gt(Z)}T−1t=0 . Let vt := f(Gt(Z)) be the inducing vari-
ables and V := [v0, ...,vT−1]

> ∈ CT×m. Suppose its
variational distribution is

qsvgp(f(·),V) = p(f(·)|V)N (vec(V)|vec(Mv),Sv),

where Mv ∈ CT×m, Sv ∈ CTm×Tm are the mean and co-
variance, respectively. Let U := [u0, ...,uT−1]

> ∈ CT×m.
Then, Eq. (20) and qsvgp have the same marginal distribu-
tion of f(·) if q(u0:T−1) is defined as

q(vec(U)) = N (vec(FHMv), (I⊗ FH)Sv(I⊗ F)).

The proof is based on showing the bijective linearity U =
FHV. Since the theorem assumes shared inducing points,
our variational approximation in Eq. (20) has a larger capac-
ity than SVGPs with inducing points {Gt(Z)}T−1t=0 . There-
fore, if the inducing points {Gt(Z)}T−1t=0 match the input
distribution well, our variational posterior can approximate
the true posterior accurately.

4.2. Harmonic Variational Gaussian Processes

The additive GP reformulation in Eq. (18) ensures the in-
dependence between u0:T−1 in the prior, and we demon-
strated the orthogonality of the decomposed RKHSs in The-
orem 3.8. Thus it is tempting to modelling the variational
posterior separately within each RKHS. Now we introduce
the Harmonic Variational Gaussian Process (HVGPs), which
enforces independence between ut by letting q(u0:T−1) =∏T−1
t=0 qt(ut). Then the variational posterior becomes

f =

T−1∑
t=0

ft, qt(ft(·),ut) = pt(ft(·)|ut)qt(ut). (21)

In other words, HVGPs use a variational posterior indepen-
dently for each GP. We set qt(ut) = N (µt,St) as Gaus-
sians. In particular, if each qt uses m inducing points, we

0 250 500 750 1000
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0 250 500 750 1000
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0.800

0.825

0.850

0.875

0.900
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Figure 2. Flip-MNIST. We plot how left: train loss and right: test
accuracy evolve with training. We observe the HVGP using FLIP:
4 × 100 perform similarly with the SVGP using 400 inducing
points while the HVGP using NEG: 4× 100 perform substantially
worse.

term the model a T ×m model. The variational posterior
can be optimized by maximizing the ELBO,

Eq({ft}T−1
t=0 )[log p(y|

T−1∑
t=0

ft,X)]−
T−1∑
t=0

KL (qt(ut)||pt(ut)) .

where q({ft(·)}T−1t=0 ) :=
∏T−1
t=0

∫
pt(ft(·)|ut)qt(ut)dut.

How well does
∏T−1
t=0 qt(ut) approximate the optimal Gaus-

sian variational posterior q?(u0:T−1)? q? has a covariance
S? ∈ RTm×Tm, while HVGPs induce block diagonal struc-
tures. Fortunately, we can show that S? is approximately
block diagonal if the input distribution is invariant to G.

Theorem 4.2. If the input distribution p is invariant to G,
i.e., the random variable x ∼ p and the random variable
G(x),x ∼ p are identically distributed, then S? becomes
block diagonal when the training size N →∞.

Theorem 4.2 indicates that the independent variational dis-
tributions

∏T−1
t=0 qt(ut) in HVGPs accurately approximate

q?(u0:T−1) when the input distribution is symmetric under
the transformation G. The symmetry further makes it easy
for {Gt(Z)}T−1t=0 to match the input distribution, which by
Theorem 4.1 renders that the variational approximation in
Eq. (20) with the optimal q?(u0:T−1) would be close to the
true posterior.

We illustrate the gist with a flip-mnist problem, where each
digit in the MNIST dataset is randomly flipped up-and-down
or left-and-right. For a RBF kernel, we consider two varia-
tions of HVGPs in terms of the transformation: 1) Negation.
We split input dimensions into two groups and negate them
separately, resulting in a 4 × 100 model. 2) Flipping the
image up-and-down or left-and-right, resulting in a 4× 100
model. We compare them with SVGPs using 100, 400 induc-
ing points, shown in Figure 2. This experiment highlights
the importance of matching the transformation G with the
data distribution.
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4.3. Computational Cost

Assume that we have a J-way transformation, and each
way is T̃j-cyclic. After decomposition this results in T̃ =∏J
j=1 T̃j complex-valued kernels and subsequently, T =∏J
j=1(bT̃j/2c+1) ≥ T̃ /2J real-valued kernels. Let T ×m

represent using m inducing points for each t ∈ {0, . . . , T −
1}, and assume the mini-batch size B = O(m).

Time Complexity. The computational cost boils down to
the cost of computing kt(Zt,Zt) and the cost of variational
inference. To compute kt(Zt,Zt), we need the kernel val-
ues k(Zt, Gs(Zt)) for s = 0, ..., T̃ − 1. If we assume the
cost of applying G is cG, then computing Ku,u requires
O(Tm × T̃ cG + Tm2 × T̃ ) operations. Variational infer-
ence costsO(Tm3) time. Therefore, the overall complexity
is O(Tm3 + 2JT 2m2 + 2JT 2mcG). We note 2J ≤ T ,
and for a single-way transformation, the cost simplifies to
O(Tm3+T 2m2+T 2mcG). In contrast, a SVGP with Tm
inducing points has the time complexity O(T 3m3). Fur-
thermore, HVGPs support straightforward parallelisms by
locating computations of kt on separate devices.

Space Complexity. For computing kt(Zt,Zt), we need
the kernel values k(Zt, Gs(Zt)) for s = 0, . . . , T̃−1, which
implies the memory costO(Tm2×T̃ ). Adding theO(Tm2)
memory for keeping variational approximations, the overall
space complexity is, O(2JT 2m2).

5. Related Works
The idea of applying Fourier analysis to kernels goes back
at least to Bochner (1959). In machine learning, this led to
a flowering of large-scale kernel methods based on random
features (Rahimi & Recht, 2008; Yu et al., 2016; Dao et al.,
2017). Bochner’s theorem also allows designing stationary
kernels by modeling a spectral density (Wilson & Adams,
2013; Samo & Roberts, 2015; Parra & Tobar, 2017; Benton
et al., 2019). On hyperspheres, zonal kernels are the counter-
part of stationary kernels. Their spectral decomposition is
given by spherical harmonics (Thomson & Tait, 1888; Mori-
moto, 1998). Although closely related, none of these works
have considered the discrete Fourier transform adopted in
our method.

HVGPs share many similarities with the works that pro-
pose decoupled (Cheng & Boots, 2017; Salimbeni et al.,
2018) and orthogonal (Shi et al., 2020) inducing points. In
particular, Shi et al. (2020) is also based on an orthogonal
decomposition of the kernel and uses distinct groups of
inducing points for them. However, their decomposition
involves matrix inversion while ours can be computed using
fast Fourier transforms.

Structured Kernel Interpolation (SKI) (Wilson & Nickisch,

2015; Wilson et al., 2015; Evans & Nair, 2018; Izmailov
et al., 2018) places inducing points on a grid, leading to a
structured Kuu that allows fast matrix-vector multiplica-
tions. For one-dimensional data, SKI exploits the Toeplitz
structure of Kuu generated by stationary kernels. They first
embed the Toeplitz matrix into a circulant matrix C, and
use the fact that circulant matrices can be diagonalized by
the DFT (Tee, 2007) to enable fast computations:

C = F−1diag(Fc)F. (22)

Here F is the DFT matrix, and c is the first column
of C. This equation highlights a connection with our
HKD: If we let C = [k(Gt1(x′), Gt2(x))]T−1t1,t2=0, then
c = [k(x, G0(x′)), ..., k(x, GT−1(x′))] is the sequence we
constructed in Eq. (4), and the eigenvalues Fc recover our
decomposition [kt(x,x

′)]T−1t=0 by the discrete Fourier trans-
form. In other words, our approach generalizes the structure
of one-dimensional equally-spaced grids in SKI into arbi-
trary cyclic groups. Moreover, our method allows trainable
inducing locations, which plays an important role in com-
bating the curse of dimensionality.

Besides inducing points in the data space, a number of
works have investigated inducing features in the frequency
domain. However, these inducing features are either lim-
ited to specific kernels (Lázaro-Gredilla & Figueiras-Vidal,
2009; Hensman et al., 2017) or involve numerical approx-
imations (Dutordoir et al., 2020; Burt et al., 2020). The
implementation of Dutordoir et al. (2020) only supports
data up to 8 dimensions.

Incorporating invariances with respect to input-space trans-
formations into Gaussian processes is also investigated in
a stream of works (Ginsbourger et al., 2016; Van der Wilk
et al., 2019). Our work is orthogonal to them since we are
not designing invariant models. Instead, we proposed a
general inference method for GPs that can benefit from in-
variances in the data distribution. Relatedly, Solin & Särkkä
(2020); Borovitskiy et al. (2020) studied Gaussian processes
on Riemannian manifolds.

6. Experiments
We present empirical evaluations in this section. All re-
sults were obtained using NVIDIA Tesla P100 GPUs,
except in Sec 6.3 we used NVIDIA Tesla T4. Code
is available at https://github.com/ssydasheng/
Harmonic-Kernel-Decomposition.

6.1. Earth Elevation

We adopt GPs to fit the ETOPO1 elevation data of the earth
(Amante & Eakins, 2009). ETOPO1 bedrock models the
Earth’s elevations from the bedrock surface underneath the
ice sheets. A location is represented by the (longitude,

https://github.com/ssydasheng/Harmonic-Kernel-Decomposition
https://github.com/ssydasheng/Harmonic-Kernel-Decomposition
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Figure 3. Predictive means of Earth elevations. We compare left: SVGP (M=1000) and right: HVGP (13× 1000). The transformation in
the HVGP moves each point eastwards by 15o longitude. We observe that the HVGP (13× 1000) fits the data more finely.

Model Test RMSE Test NLL Time

SKI 0.145 1.313 1.18h

1k 0.252 0.040 0.38h
3k 0.208 -0.146 2.47h
5k 0.196 -0.203 8.70h

7x1k 0.189 -0.246 1.55h
13x1k 0.177 -0.314 4.25h

Table 1. Test performances on Earth elevations.

latitude) pair, where longitude ∈ [−180, 180] and latitude
∈ [−90, 90]. We build the dataset by choosing a location
every 0.1 degrees of longitude and latitude, resulting in
6, 480, 000 data points. The dataset is randomly split for
72% training, 8% validating, and 20% testing. We use a
three dimensional RBF kernel between the Euclidean coor-
dinates of any two (longitude, latitude) locations. Because
moving two locations eastwards by the same amount of
longitudes preserves their Euclidean distance, the kernel is
invariant to the T -cyclic longitude translation:

G([lon, lat]>) = [lon +
360

T
, lat]>, (23)

We set the period T = 12 and T = 24, so that G moves a
point eastwards by 30 and 15 degrees, respectively. Then
we resolve Hermitian kernels to obtain b12/2c + 1 =
7, b24/2c+ 1 = 13 real-valued kernels following Sec 3.4.

We compare SVGPs with 1k, 3k, 5k inducing points and the
HVGPs with 7×1k, 13×1k inducing points. We parallelize
HVGPs using 4 GPUs, while SVGPs use only 1 GPU since
it cannot be easily parallelized. All models are optimized
using the Adam optimizer with learning rate 0.01 for 100K
iterations. We also compare with SKI (Wilson & Nickisch,
2015). SKI runs into an out-of-memory error because of
the large dataset, so we train it using a random 600, 000
subset of the training data. The performances are shown in
Table 3 and the predictive means are visualized in Figure 3.
From both the table and the figure, we observe using more
inducing points in variational GP models fits the dataset

0 200 400 600
Epochs

3

4

5

6

7

8
train loss

SVGP : 50
SVGP : 800
NEG : 16 × 50
TRAN : 16 × 50
TRAN− S : 16 × 50

0 200 400 600
Epochs

0.2

0.4

0.6

0.8

test accuracy

Figure 4. Translate-MNIST. We plot how left: train loss and right:
test acc evolve with training. We compare 16×M HVGPs with
1) NEG: negations; 2) TRAN: translations; 3) TRAN-S: transla-
tions with shared inducing points. We observe the HVGPs using
translations even outperform the SVGP with 800 inducing points
while the HVGP using negations performs substantially worse.
Moreover, though the HVGP with TRAN-S has only 50 trainable
inducing points, it performs similarly with the TRAN model.

substantially better. Moreover, because of the decomposed
structures and the parallelisms, HVGPs use more inducing
points but run faster. In comparison, SKI uses 1M inducing
points and achieves the best RMSE, but its NLL is much
worse compared to variational GPs.

6.2. Translate-MNIST

The Elevation experiment uses one-way translations in
HVGPs. In this section, we consider two-way translations
for the Translate-MNIST dataset. The dataset is obtained by
translating every MNIST image leftwards and downwards
by random numbers of pixels. We use an RBF kernel with
shared lengthscales. The HVGP uses a 2-way transforma-
tion G by translating the image leftwards or downwards by
4 pixels. Since the MNIST images are of size 28× 28, G is
(7, 7) cyclic. After resolving Hermitian kernels, we arrive
at (1 + b7/2c)× (1 + b7/2c) = 16 groups.

We compare the 16 × 50 translation HVGP with SVGPs
using 50 and 800 inducing points. We further consider a
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Figure 5. Test negative log-likelihoods on regression benchmarks. We compare using M, 2M, 8 ×M, 8 × 2M for M = 1000. We
observe that the 8×M, 8× 2M outperform the standard M and 2M inducing points for the most datasets.
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Figure 6. Nyström approximation errors measured by trace(Kff −KfuK
−1
uuKuf ). We compare SVGPs using M, 2M inducing points,

and HVGPs with 8×M inducing points. For the transformation in HVGPs, we include both the negation along the standard axes and
along the principal components. We observe that negations along PCA directions usually outperform negations along standard axes,
by demonstrating smaller approximation errors. And both variations of HVGPs perform better than the SVGPs. We also observe a
consistency between the Nyström approximation errors and the regression performances. For example, the SVGP (2M ) performs better
than the HVGP (8×M ) for the buzz dataset in Figure 5, and this is similarly reflected by the Nyström approximation errors.

variation of the HVGP by sharing the inducing points Z as
in Theorem 4.1. We also include a 16 × 50 HVGP with
4-way negations whose transformation does not match the
input-space distribution. We optimize all models using the
Adam optimizer with learning rate 0.001 for 100K iterations.
The results are shown in Figure 4.

6.3. Regression Benchmarks

We also evaluate our method on standard regression bench-
marks, whose training data sizes range from 200 thousand to
1 million. Following Wang et al. (2019), we use the Matérn
3/2 kernel with shared lengthscales. We consider the J-way
composition of negations. Specifically, we conduct nega-
tions over PCA directions. We split the PCA directions
into J subsets, and applying negations over these subsets
results in a 2J ×m model. A visual comparison between
the negation along axes and the negation along principal
directions is shown in Figure 7.

We compare SVGPs using M and 2M inducing points with
HVGPs using 8 × M and 8 × 2M inducing points for
M = 1000. For HVGPs, we use 3-way negations over
PCA directions, and we use 8 GPUs to place the computa-
tions of each GP in parallel. The results for negative log
likelihoods (NLLs) are reported in Figure 5. We also re-
port the root mean squared error (RMSE) performances in
Figure 10 in the Appendix.

In Figure 8 we plot the evolution of the test negative log-

𝑋 𝑋𝐺!,#(𝑋)

𝐺!,!(𝑋) 𝐺#,!(𝑋)

𝐺#,!(𝑋)

𝐺!,!(𝑋)

𝐺!,#(𝑋)

Figure 7. Negation along axes (left) and along principled directions
(right). The shaded area represents the input distribution. We
observe that G1,0(x), G0,1(x) are out of the data distribution when
transforming along axes. In comparison, when transforming along
PCA directions, the whole orbit is in-distribution.

likelihoods during training, and the training time per itera-
tion, for the 3droad dataset. In Figure 8, we observe that
using more inducing points enables learning the dataset
more quickly and converging to a better minima. Further-
more, due to the benefit of parallelism, the 8×M HVGP has
comparable running time compared to the standard SVGP
with M inducing points. And it is much faster compared to
the SVGP with 2M inducing points in spite of the improved
performance. Moreover, the computational bottleneck of
SVGPs lies in the Cholesky decomposition, which does not
support easy parallelism.

The performance of variational GPs relies largely on how
well can the inducing points summarize the dataset, which
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Figure 8. Test negative log-likelihoods during training and the
training time per iteration for the 3droad dataset.

can be measured by the accuracy of Nyström approximation
Kff ≈ KfuK−1uuKuf (Drineas et al., 2005; Titsias, 2009;
Burt et al., 2019). We compare the Nyström approximation
errors with all methods, using the trace norm defined as
trace(Kff −KfuK−1uuKuf ). For HVGPs, the trace norm is
computed as

T−1∑
t=0

trace(Kt,ff −Kt,fuK−1t,uuKt,uf ). (24)

where we use Kt,· to represent the kernel kt. For each
dataset, we randomly sample 3000 points as X and use a
Matérn 3/2 kernel whose lengthscales are set based on the
median heuristic. We initialize the inducing points Z using
K-means and optimize them to minimizing the trace error.
We compare SVGPs, HVGPs with negations along axes,
and HVGPs with negations along principled directions. The
results are shown in Figure 6.

6.4. CIFAR-10 Classification

In this subsection we conduct experiments on the CIFAR10
classification problem using deep convolutional Gaussian
processes (Blomqvist et al., 2019; Dutordoir et al., 2019),
which combine the deep GP with the convolutional inducing
features (Van der Wilk et al., 2017). Following the settings
in Shi et al. (2020), we compare HVGP with SVGP on both
one-layer and multi-layer convolutional GPs.

For HVGPs we use the negation transformations on the in-
ducing filters G(z) = −z. We compare HVGPs using 2xM,
4xM inducing points with SVGPs using M, 2M inducing
points. For the HVGP (4xM), we use 4 GPUs to achieve
parallelism. We also compare with the 2-way decomposed
model in Shi et al. (2020) termed as M+M. The results are
summarized in Table 2. We observe that using more in-
ducing filters results in better performances. In particular,
the HVGP (4xM) achieves the best NLLs. Because of the
parallelism, the HVGP (4xM) also has comparable running
time with the HVGP (2xM), and both are faster than 2M
and M+M for deep models.

M Model ACC NLL sec/iter

384x0, 1K

M 65.70±0.06 1.65±0.00 0.21
2M 67.84±0.07 1.52±0.00 0.39

M+M 67.67± 0.07 1.50 ±0.01 0.39
2xM 66.26±1.11 1.76±0.17 0.45
4xM 67.76±0.05 1.51±0.01 0.52

384x1, 1K

M 76.40±0.02 1.03±0.00 0.16
2M 77.11±0.10 1.00±0.00 0.47

M+M 77.48±0.10 0.98±0.01 0.41
2xM 77.09±0.18 1.00±0.00 0.37
4xM 77.30±0.17 0.95±0.00 0.36

384x2, 1K

M 79.01±0.11 0.86±0.00 0.17
2M 80.27±0.04 0.81±0.00 0.52

M+M 79.98 ±0.21 0.80±0.01 0.46
2xM 80.04±0.04 0.80±0.00 0.37
4xM 80.52±0.20 0.75±0.01 0.37

384x3, 1K

M 82.41±0.08 0.73±0.01 0.40
2M - - -

M+M 83.26±0.19 0.69±0.01 1.24
2xM 84.97±0.08 0.60±0.00 0.90
4xM 84.85±0.11 0.58±0.00 0.90

Table 2. Deep Convolutional GPs for CIFAR-10 classification. Pre-
vious SOTA (Shi et al., 2020) achieves ACC=80.33, NLL=0.82,
and 1.25 sec/iter. We use 384x`, 1K to represent a (`+ 1)-layer
model with a respective number of inducing points in each layer.
We compare M, 2M, M+M, 2xM, 4xM. We used 4 GPUs for
the 4xM model to achieve parallelism. For the four-layer model,
using 2M inducing points did not fit in memory. Instead we
used a model with (700x3, 1600) inducing points and achieved
ACC=82.89± 0.05, NLL=0.73± 0.00, and 1.10 sec/iter.

7. Conclusion
We presented the harmonic kernel decomposition which
exploited input-space symmetries to obtain an orthogonal
kernel sum decomposition, based on which we introduced
a scalable variational GP model and analyzed how well
the model approximates the true posterior of the GP. We
validated its superior performances in terms of scalability
and accuracy through a range of empirical evaluations.
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