
Reasoning Over Virtual Knowledge Bases
With Open Predicate Relations

Haitian Sun * 1 Pat Verga 2 Bhuwan Dhingra 2 Ruslan Salakhutdinov 1 William W. Cohen 2

Abstract
We present the Open Predicate Query Language
(OPQL); a method for constructing a virtual KB
(VKB) trained entirely from text. Large Knowl-
edge Bases (KBs) are indispensable for a wide-
range of industry applications such as question
answering and recommendation. Typically, KBs
encode world knowledge in a structured, readily
accessible form derived from laborious human an-
notation efforts. Unfortunately, while they are ex-
tremely high precision, KBs are inevitably highly
incomplete and automated methods for enriching
them are far too inaccurate. Instead, OPQL con-
structs a VKB by encoding and indexing a set of
relation mentions in a way that naturally enables
reasoning and can be trained without any struc-
tured supervision. We demonstrate that OPQL
outperforms prior VKB methods on two different
KB reasoning tasks and, additionally, can be used
as an external memory integrated into a language
model (OPQL-LM) leading to improvements on
two open-domain question answering tasks.

1. Introduction
Large knowledge bases (KBs) structure information around
triples of entities and relation types that describe the rela-
tionships between the subject and object entities, for exam-
ple, [Charles Darwin, author of, On the Origin of Species].
While KBs have been a key component of artificial intelli-
gence since the field’s inception (Newell & Simon, 1956;
Newell et al., 1959) broad-coverage KBs are inevitably in-
complete (Min et al., 2013), despite efforts to automate
their creation through text extraction (Angeli et al., 2015;
Mitchell et al., 2015).

1Carnegie Mellon University 2Google Research. Correspon-
dence to: Haitian Sun (* Most work done at Google Research)
<haitians@cs.cmu.edu>, Pat Verga <patverga@google.com>,
Bhuwan Dhingra <bdhingra@google.com>, Ruslan Salakhut-
dinov <rsalakhu@cs.cmu.edu>, William W. Cohen <wco-
hen@google.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

An alternative to extracting information to augment existing
KBs relies on directly answering queries using text corpora
(Chen et al., 2017). Recently, Dhingra et al. (2020) pro-
posed DrKIT which answers questions based on a virtual
KB (VKB) constructed automatically from a text corpus.
The key idea behind DrKIT is to greatly simplify the con-
struction of a KB by building a “soft KB”, closely related to
the original text, and compensate for the lack of structure in
the VKB by employing more sophisticated neural methods
to answer questions. In DrKIT, each element of the VKB is
composed of an entity mention and its surrounding context,
encoded into a dense embedding representation. Given a
query, a learned encoder projects that query into the same
embedding space of the VKB mentions. The query vector
is scored amongst all embedded mentions resulting in the
retrieval of relevant mentions, analogous to the retrieval of
a triple from a standard structured KB. Other neural opera-
tions can be used to differentiably reason over the VKB, for
instance by answering “multihop” questions that combine
information from multiple embedded mentions.

A weakness of DrKIT is that constructing the VKB relied
on distant supervision using existing KB triples. This leads
to two limitations: (1) it is unclear if the VKB will cor-
rectly encode relations not present in the original structured
KB used for distant supervision, and (2) the approach is
inapplicable in domains without existing structured KBs
(such as many technical areas.) To address these problems,
we introduce (1) a novel VKB construction method which
can be trained without any distant KB supervision and (2)
a set of differentiable reasoning operations on the VKB,
which we call the Open Predicate Query Language (OPQL).
Hence, unlike DrKIT’s procedure, an OPQL virtual KB can
be created from any entity-linked corpus.

The key idea in constructing the OPQL VKB is to use a
dual-encoder pre-training process. Our process is similar to
that used in (Baldini Soares et al., 2019), which was shown
to be useful for tasks such as relation classification. Here
we show that this pre-training process can also construct
a VKB that effectively supports more complex reasoning
operations, and also that OPQL operations can be tightly
integrated with a neural language model (LM).

To summarize this paper’s contributions: (1) we describe
an effective VKB pre-training method that, unlike previous

Reasoning Over Virtual Knowledge Bases With Open Predicate Relations

methods, does not require an initial structured KB for distant
supervision, and (2) demonstrate that this VKB can be used
to answer multi-hop semi-structured queries effectively—in
fact (3) OPQL outperforms previous state-of-the-art VKB
methods significantly, despite needing less supervision. We
also (4) demonstrate that OPQL can be injected as an exter-
nal memory into a neural LM to obtain a new state-of-the-art
on a widely-studied QA task (Yih et al., 2015). Finally we
(5) extend our VKB-injected LM with the ability to combine
multiple OPQL operations, and demonstrate this leads to a
new state-of-the-art on a QA task requiring compositional
and conjunctive reasoning (Talmor & Berant, 2018), even
outperforming much larger text-to-text models.

2. Model
In this work, we propose OPQL, a method for building a
VKB from text without any structured supervision. OPQL
naturally supports compositional reasoning and can serve as
the knowledge source for a memory augmented LM. Entries
in the OPQL memory encode the relationship between pairs
of entities, described in natural language. For example, a
sentence “Charles Darwin published his book On the Origin
of Species in 1859” describes the authorship of entity On
the Origin of Species.

Importantly, these unstructured relationships expressed in
text can be extremely fine-grained, covering semantics that
would never be included in a pre-defined KB schema. This
is made possible because OPQL has the ability of learning
without any structured supervision. These relationships are
organized into a key-value memory index (§2.4). Each key
is the composition of a topic entity (e.g. On the Origin of
Species) and an associated latent relationship expressed in
text, constructed using pretrained entity embeddings (§2.3
and a pretrained text encoder (§2.2). Its value is the corre-
sponding target entity, in this case, Charles Darwin. When
the memory is queried, the returned value can be used di-
rectly to answer the input query (§3) or it can be integrated
into an LM for further reasoning before producing a final
prediction (§4).

2.1. Background

Input The input to the model used for pretraining OPQL
is a sequence of n tokens C = [c0, c1...cn] for an arbitrary
text span, e.g. “Charles Darwin published his book On the
Origin of Species in 1859”, that contains a set of demarcated
entity mentions M . A mention “Charles Darwin” ∈M is
denoted as m = (ci, cj , em) ∈M , where i and j denote the
first and last token of the mention span and the mention is
linked to entity em in a predefined entity vocabulary E , e.g.
Charles Darwin (Q1035) in Wikidata.

Enity Pairs OPQL learns to encode the relationship be-
tween a pair of entities (e1, e2), where e1 is referred as

topic entity and e2 as target entity. In the example above,
On the Origin of Species is the topic entity e1 and Charles
Darwin is the target entity e2. Potentially1 each distinct
entity pair in a sentence can be encoded. The relationship
between a pair of entities is directional, so the pairs (e1, e2)
and (e2, e1) are encoded differently.

Entity Embeddings A global entity embedding table E ∈
R|E|×de is pretrained using the RELIC strategy (Ling et al.,
2020); here E is the entity vocabulary and de is the embed-
ding dimensionality. Similar to pretraining a masked lan-
guage model (MLM), an entity mention is randomly masked
from the context and the goal is to retrieve the masked entity
from the entity vocabulary E .

Key-Value Memory We structure OPQL as a key-value
memory. A key-value memory (K, V) is a general way
of storing and retrieving knowledge (Miller et al., 2016).
When queried, key embeddings ki ∈ K are matched with
the query vector, and the corresponded value embedding vi
is returned. Each entry in OPQL encodes a pair of entities
(e1, e2), along with a piece of text C that describes the
relationship between e1 and e2. The key-value memory is
constructed from the pretrained entity embedding table E
and relation embeddings precomputed from a pretrained
relation encoder. A key memory holds information from the
topic entity and the relationship, and a value memory holds
the target entity. We will discuss the pretrained entity and
relation embeddings first and then discuss how to construct
the key-value memory using the pretrained embeddings.

2.2. Relation Encoder

Preprocessing Text for the Relation Encoder OPQL en-
codes the relationship between a pair of entities (e1, e2) in
a natural language sentence C where both e1 and e2 are
mentioned. Intuitively C describes the relationship between
e1 and e2 in the context, and we train a relation encoder to
represent the relationship as a vector.

To indicate the location of the topic and target entities e1 and
e2 we introduce two special tokens [R1] and [R2] that are
inserted directly after the mentions of the topic and target
entities in the sentence (e.g., Cr becomes “Charles Darwin
[R2] published his book On the Origin of Species [R1] in
1859”). The contextual encodings of [R1] and [R2] will be
used to compute relation embeddings. We also introduce
another special token [ENT] to mask the topic and target
entity mentions; thus sentence Cr finally becomes “[ENT]
[R2] published his book [ENT] [R1] in 1859”. Masking
the mentions of entities prevents the relation encoder from
memorizing the surface forms of the entities, and helps it
generalize to similar relations involving other entities. The
contextual embeddings at [ENT] tokens are not used by the

1Heuristics for limiting the number of entity pairs derived from
text are discussed in Section 2.5.

Reasoning Over Virtual Knowledge Bases With Open Predicate Relations

Figure 1. OPQL memory structure. The OPQL memory is a key-value memory. Keys are computed from embeddings of the topic
entity, e.g. On the Origin of Species, looked up from the entity embedding table, and relation embeddings from the pretrained relation
encoder. Values are embeddings of target entities. The memory is constructed from any entity-linked text corpus, e.g. Wikipedia.

relation encoder, but will be used for (masked) entity linking
in §4.

Computing Relation Embedding Given this preprocess-
ing of an entity-mention pair (e1, e2), the relation embed-
ding re1,e2 is defined as follows. Let s and t be the location
of tokens [R1] and [R2] in the masked sentence Cr. We
construct a projection of the concatenation of the contextual
embeddings hs and ht at the locations s and t, as follows:

re1,e2 = WT
r [hs;ht] (1)

Training the Relation Encoder We train our relation en-
coder following Baldini Soares et al. (2019), who train
embeddings such that relation mentions containing the same
entity pairs are more similar to each other than relation
mentions that contain different entity pairs.

Specifically, mini-batches are constructed which contain
at least two documents that contain entity pair (e1, e2), as
well as negative documents containing different relation
pairs (see Section 2.5 for details.) Use re1,e2 to denote
the embedding from input C that of (e1, e2), use rei,ej
for embeddings from documents C ′0, . . . , C

′
n of other pairs

(ei, ej)’s, and let Iei=e1,ej=e2 be an equality indicator for
entity pairs in the minibatch. We maximize the inner product
between relation embeddings iff the same pair (e1, e2) is
mentioned in the candidates:

Lrel = cross ent(softmax(re1,e2
T rei,ej), Iei=e1,ej=e2)

(2)

2.3. Entity Linking

Additionally, we use a multi-task training objective to
learn representations of individual entities by learning to
link other mentions in the context—i.e., mentions other
than the topic and target entities—to the correct entity.
For example, in the masked sentence Cr, “[ENT] [R2],
an English naturalist, published his book [ENT] [R1]
in 1859”, the mention English is not part of the pair

(On the Origin of Species,Charles Darwin) and thus not
masked with [ENT], but should be linked to an entity for
“England”. These context entity mentions are represented
as mea = (ci, cj , ea) where ci and cj are the start and end
positions, and ea is the entity to which this mention should
be linked. We construct an embedding of mentions mea

from the contextual embedding hi at the start position ci for
the mention, i.e. mea = WT

e hi. This is used to retrieve the
most similar entity from the embedding table E, scored with
inner product distance, using this loss:

Lel =cross ent(softmax(mea
T ei), Iei=ea) (3)

2.4. Storing OPQL’s VKB as a key-value memory

OPQL stores relationships between pairs of entities in a
key-value memory (K, V). Given an input C that mentions
a pair of entities e1 and e2, the key embedding ke1,e2 for
the pair (e1, e2) is constructed compositionally using the
embeddings of topic entities e1 from the entity embedding
table E ∈ R|E|×de and the pretrained relation embedding
re1,e2 . Wk is a linear projection matrix that will be learned
in the finetuning tasks. The value ve1,e2 is the embedding
of the target entity e2.

ke1,e2 = WT
k [e1; re1,e2] ∈ K, ve1,e2 = e2 ∈ V

We iterate through all sentences in the Wikipedia corpus
that contain two or more entities to construct the OPQL
memory. Note that each entity pair can be mentioned one
or multiple times in the corpus. The memory could keep
all mentions of an entity pair (e1, e2), or instead reduce
multiple mentions of the same entity pair to a single entry,
for example averaging the key embedding of the individual
mentions. This choice can be made based on application,
or computational constraints. In the relational following
task (§3), we keep all mentions of entity pairs in the OPQL
memory. For the open-domain QA task (§4), the text corpus
is larger,2 and keeping all pairs of entities in the memory

2We use the entire Wikipedia as our text corpus for the open-

Reasoning Over Virtual Knowledge Bases With Open Predicate Relations

is not feasible. We randomly select up to 5 mentions for
each entity pair and average their key embedding as the final
entry in the OPQL memory. (Note the the value embeddings
of an entity pair are the same across multiple mentions).

2.5. Pretraining Data

Entity Linking Data We use Wikipedia passages with hy-
perlinks as our pretraining. The hyperlinks link a span of
tokens to a Wikipedia page for an entity e. The spans of
tokens that are linked are considered as mentions m, and
entity e is the corresponding entity. We take the top 1M
entities that are most frequently mentioned in Wikipedia as
our entity vocabulary E . Passages are split into text pieces
of 128 tokens. Entity linking is trained on the mentions of
entities in the context, excluding the ones that are treated
as topic and target entities. The pretraining corpus contains
93.5M mentions of the top 1M entities in the vocabulary.

Relation Encoder Data We first construct the vocabulary
of entity pairs (e1, e2) from the Wikipedia corpus. We count
the pairs of entities that co-occur in the same text piece, and
discard the that appears less than 5 times. The pairs are
sorted by their point-wise mutual information (PMI). The
top 800k pairs of entities are selected as our candidates for
training. During training, an input with pair (e1, e2) will
be paired with 2 positive examples that mentions the same
pair of entities, and 8 hard negative examples (ei, ej) that
mention either the same topic or target entity, i.e. ei = e1
or ej = e2, but not both. Batch negatives are also included
in pretraining. 30.6M training data on the top 800k entity
pairs are constructed from the Wikipedia corpus.

Pretraining Loss The relation encoder is pretrained with
entity linking loss Lel in Eq. 3 and relation encoder loss Lrel
in Eq. 2, i.e. L = Lel + Lrel.

3. Relation Following with OPQL
In the previous section we introduced the method for pre-
training the representations in the VKB. Here we describe an
application of the VKB to answering multi-hop questions.

Background A relation following operation Y =
X.follow(R) maps a set of entities X and a set of relations
R to a set of entities Y such that Y = {y | ∃x ∈ X, r ∈ R :
r(x, y)}. One common application of the relation follow-
ing operation is to solve QA tasks (Cohen et al., 2020; Sun
et al., 2020). For example, a question “Who is the author
of On the Origin of Species?” can be answered by com-
puting X.follow(R) with X = {On the Origin of Species}
and R = {author of}. In a learning task, R is a weighted
set of relations, and the model learns to predict the relation
weights from the question.3 The resulting relation following

domain QA tasks.
3The set of entities X is the topic entities in the question, which

query is then executed with a key-value lookup into the
OPQL memory.

Preprocessing Data for Fine-Tuning We finetune the pre-
trained relation encoder to compute the queries for the rela-
tion following task as follows. Let Q be a question, which
we will assume contains one known topic entity e1. We let
X = {e1} contain that entity. The model must predict a
weighted set of target entities Y that answer the question.
Answers are always appended to the question, e.g. “Who is
the author of On the Origin of Species? Charles Darwin”.
To encode the relation embeddings rX,Y for the prepro-
cessed question/answer pair, [R1] and [R2] are inserted
after the mentions of the topic entity X and target (answer)
entity Y, and both mentions are masked with [ENT]. In the
example above, the masked question thus becomes “Who is
the author of [ENT] [R1]? [ENT] [R2]”. This transforma-
tion ensures that the masked question has similar form to
the input of the relation encoder, so the pretrained relation
encoder can be easily finetuned for relation following tasks.

Relation Following for OPQL Recall that a follow query is
executed with a key-value lookup from the OPQL memory.
Specifically, a query vector qX,Y is composed using the
embedding of the topic entity X and the relation embedding
rX,Y of the question:

eX =
∑
i

αi · exi
, xi ∈ X (4)

qX,Y = WT
q [eX ;WT

t rX,Y] (5)

where in general eX is the weighted average of embeddings
of entities exi

∈ X (this general case applies for multi-hop
questions), αi is the weight of xi in X , and Wt is a learned
projection matrix.

The query qX,Y is then used to retrieve against the key
memory K, returning the top k entries with the largest inner
product scores (kei,ej , ej).

4 The Tk set of top-k retrieved
values {ej} are the answers Y . The weights βei,ej of entity
ej is the softmax of scores of the top k retrieval result,
denoted as topk(qX,Y ,K).

βei,ej =

{
softmax(qT

X,Y kei,ej for (ei, ej) ∈ Tk)
0, else

To improve retrieval accuracy, we also apply a sparse filter
on the retrieval result to ensure the topic entity of the re-
trieved pair (ej , ek) is in X (Seo et al., 2019; Dhingra et al.,
2020). To train the parameters of the relation following
operation we optimize the retrieved set of answers against
the ground truth using the loss

Lfollow = cross ent(βei,ej , Iej∈Ans)

in the experiments below is either provided, or easily obtained.
4The value vei,ej of the entry is always ej , so we write it as

(kei,ej , ej) for short.

Reasoning Over Virtual Knowledge Bases With Open Predicate Relations

Multi-hop Relational Following Relation following op-
erations can be chained to answer multi-hop questions:
e.g., two-hop question can be decomposed into Y =
X.follow(R1).follow(R2). In this case, the predicted set
of intermediate entities from the previous hop X(t) =
X(t−1).follow(Rt−1) becomes the input to the next hop,
i.e. X(t+1) = X(t).follow(Rt). In our model we use a
single relation embedding rX,Y for the question but learn
a different projection matrix W(t+1)

t for each hop: e.g. we
use

q(2)
X,Y = WT

q [eX(1) ;W(2)
t

T
rX,Y]

to form the query q(2)
X,Y for the second hop. In the multi-

hop setting, the loss is only computed at the last step. The
number of hops is a hyper-parameter and in our experiments
it is given for each dataset.

Finetuning Details For the relational following task, the
relation embeddings of entity pairs in the memory is precom-
puted and fixed at finetuning time. The pretrained relation
encoder is finetuned to compute rX,Y in Eq.5 for the query
vector qX,Y . We also trained the projection matrices Wq

and W(·)
t , but fixed the entity embedding table E. The fine-

tuning job is only trained with the loss Lfollow, since entity
and relation embeddings are fixed in this task.

3.1. Experiments: Reasoning Over VKB

3.1.1. DATASETS

MetaQA (Zhang et al., 2018) is a multi-hop QA dataset
that extends the WikiMovies dataset to 2-hop and 3-hop
questions in the movie domain. The questions are generated
from templates, e.g. ”Who starred in the movies directed
by Christopher Nolan”. Questions in MetaQA are answer-
able by the corpus in the original WikiMovies dataset. The
corpus contains 18k passages that describes 7 different rela-
tions between 43k entities. We extracted 106k entity pairs
from the corpus whose topic entity is the Wikipedia page
title and target entity is one of the mentions in the passage.
Reverse pairs are included, for a total of 213k entity pairs.

Multi-hop Slot Filling (MSF) (Dhingra et al., 2020)
presents a large scale multi-hop reasoning dataset con-
structed from WikiData that contains 120k passages, 888
relations, and more than 200k entities. Queries are con-
structed from multi-hop paths in WikiData and turned into
natural language questions by concatenating the head en-
tity with a series of relations, e.g. (“Steve Jobs, founder,
headquarter in, ?”). Similar to MetaQA, we constructed
entity pairs by taking the Wikipedia page title as the topic
entity and the entities mentioned in the passages as target
entities. We extracted 1.3m and 781k entity pairs for 2-hop
and 3-hop questions respectively.

MetaQA MSF
Model 2Hop 3Hop 2Hop 3Hop

KVMem 7.0 19.5 3.4 2.6
DrQA 32.5 19.7 14.1 7.0
GRAFT-Net 36.2 40.2 - -
PullNet 81.0 78.2 - -
PIQA - - 36.9 18.2
DrKIT 86.0 87.6 46.9 24.4

OPQL-pretrained 84.7 84.3 48.5 28.1
OPQL 88.5 87.1 49.2 29.7

Table 1. Hits@1 results on multi-hop relational following task.

3.1.2. BASELINES

GRAFT-Net (Sun et al., 2018) is a GCN based model that
can perform reasoning jointly over text and knowledge bases.
PullNet (Sun et al., 2019) extends GRAFT-NET by intro-
ducing an iterative retrieve-and-classify mechanism to solve
multi-hop questions. PIQA (Seo et al., 2018) and DrKIT
(Dhingra et al., 2020) build mention-level indexes using a
pretrained encoder. Training the DrKIT index requires dis-
tant supervision using artificial queries constructed from KB.
KV-Mem (Miller et al., 2016) and DrQA (Chen et al., 2017)
are another two widely-used open-domain QA baselines.

3.1.3. RESULTS

We experiment on the relational following task on both
a pretrained memory (OPQL-pretrained) and a finetuned
memory (OPQL). The Hits@1 results of the model are
listed in Table 1. The OPQL-pretrained memory directly
applies the pretrained relation encoder on entity pairs ex-
tracted from the dataset corpus, without any finetuning of
the relation encoder. OPQL-pretrained achieves the state-of-
the-art performance on both MSF 2-hop and 3-hop datasets,
though OPQL-pretrained is slightly lower than DrKIT on
the MetaQA. This is because DrKIT finetuned its mention
encoder on MetaQA corpus. The MetaQA corpus only
contains 14 relations (including their inverse) in the movie
domain, so it’s easy for the model to learn only capturing
these relationship between entities. To mitigate this bias,
we finetune the OPQL relation encoder on MetaQA cor-
pus. The finetuning data is distantly constructed from 1-hop
questions in the MetaQA dataset, by masking the topic en-
tity from the question and inserting a placeholder for the
target entity at the end of the question. We end up with 10K
finetuning data for MetaQA and 19K for MSF. OPQL with
finetuned memory outperforms DrKIT on 2-hop questions
by 2.5 points and is very comparable on 3-hop questions.

3.1.4. GENERALIZATION TO NOVEL RELATIONS

The previous state-of-the-art model, DrKIT, uses training
data in its pretraining procedure that is distantly constructed
from KB. This restricts the capacity of DrKIT to only en-

Reasoning Over Virtual Knowledge Bases With Open Predicate Relations

code KB relations observed at pretraining time. However,
pretraining OPQL does not require any signal from knowl-
edge bases, so it can also encode relations that are out of the
relation vocabulary in KB. To demonstrate this difference,
we hold out some portions of relations in the pretraining
phase of DrKIT but evaluate on queries where at least one
of the held-out relations is required to answer the queries.
This simulates a scenario where KBs are incomplete and
limited in their relation vocabularies. We compare DrKIT to
the pretrained OPQL memory. The result is shown in Figure
2. The performance of DrKIT drops significantly when eval-
uated on queries with novel relations not seen at pretraining
time, while the performance of OPQL is consistent.

Figure 2. Hits@1 on multi-hop queries containing at least one
novel relation. The dashed lines represent the accuracy on the full
dataset from Table 1.

4. Augmenting OPQL with a LM
Recent advances in LM architectures have incorporated
large external memories which can lead to better perfor-
mance given fewer activated parameters (retrieved memo-
ries are only sparsely activated, rather than dense models
which utilize nearly every parameter on every input). Verga
et al. (2020) proposed Facts-as-Experts (FaE) which injected
an external fact memory into an LM, increasing its perfor-
mance on open-domain QA. However, this approach relied
on a structured KB, suffering from many of the shortcom-
ings discussed in previous sections such as limited coverage
and applicability. In this section, we address these issues by
replacing the KB-based fact memory of FaE with our OPQL
memory.

Background A memory injected language model, e.g. FaE
(Verga et al., 2020), learns to retrieve relevant entries from
an external memory and mix the retrieved information into
the language model to make its final predictions (see Figure
3). OPQL follows the same implementation as FaE but
utilizes the pre-computed OPQL memory as the external
memory. The relation embedding in the OPQL memory
is both more diverse and fixed during training, leading to
retrieval from the OPQL memory being harder than the
fact-based memory from FaE. To address this, we make
several key changes to the original FaE architecture. First,

the query vector is constructed as a function of the topic
mention embedding and relation embedding. Second, we
modify the learned a mixing weight between the memory
retrieval results and language model predictions. Third, we
extend OPQL-LM to answer multi-hop questions. We will
elaborate these changes in the rest of this section.5

Figure 3. OPQL-LM model architecture. A query vector qX,Y

is constructed from the contextual embedding of the topic mention
me1 and the relation embedding rX,Y , and retrieves the top few en-
tries from the OPQL memory. The retrieval results are aggregated
into a single vector eY , and mixed with the contextual embedding
of the masked mention (answer) me2 to make the final prediction.

Input Similar to §3, the special tokens [R1] and [R2] are
inserted directly after the mentions of topic entity e1 and
target entity (answer) e2. But the mention of topic entity e1
will not be masked with [ENT], e.g. “Who published the
book On the Origin of Species [R1] in 1859? [ENT] [R2]”.
We denote the mention of topic entity as me1 . The mention
me1 is used to extract contextual mention embedding me1

for the topic entity e1, which will be used for entity linking
(§2.3), as well as constructing the query to retrieve from the
OPQL memory. The training objective of OPQL-LM is to
predict the masked target entity (answer) e2.

Query Embedding The query qX,Y is computed compositi-
noally by concatenating the contextual mention embedding
me1 of the topic mention me1 (as described by entity link-
ing §2.3) and the relation embedding rX,Y . Ideally, me1

should be close to the embedding of the oracle topic entity
e1, which is supervised with entity linking loss (Eq. 3). The
relation embedding rX,Y comes from the relation encoder
(Eq. 1) that operates on special tokens [R1] and [R2].6

qX,Y = WT
q [me1 ;WT

t rX,Y]

Mixing with LM Let eY be the retrieved embedding re-

5Please refer to the appendix and the Verga et al. (2020) for
more details.

6Since the mention of entity e1 is not masked from the input,
the relation embedding rX,Y may contain some leaked information
from the topic entity e1. One could encode the relation embedding
rX,Y separately from an input where both e1 and e2 are masked.
We do not take this solution as it doubles the computation cost of
the expensive Transformer layers.

Reasoning Over Virtual Knowledge Bases With Open Predicate Relations

turned from the OPQL memory and me2 be contextual em-
bedding of the masked mention [ENT] predicted from the
language model. eY and me2 are mixed with a mixing fac-
tor λ. λ decides whether retrieved embedding should be
included to make final predictions. λ should be large if
there is a relevant entry with pair (e1, e2) in the memory,
so retrieving this pair can help predict the masked entity e2.
Different from Verga et al. (2020)7, OPQL-LM introduced
a null relation to the OPQL memory, whose embedding
rnull is a learned variable, and constructed a null entry
with key embedding knull = WT

k [me1 ; rnull] and value
embedding vnull =

−→
0 . The query is encouraged to re-

trieve the null entry if no relevant pair of (e1, e2) exists in
the OPQL memory. We re-use the memory key projection
matrix Wk to compute the key embedding knull.

m′e2 = me2 + (1− λ) · eY , λ = softmax(qT
X,Y knull)

(6)

Multi-hop OPQL-LM Some open-domain questions re-
quire multi-hop reasoning to find the answers, e.g. “Where
is the author of On the Origin of Species educated?”. To an-
swer such questions, the model should first find the answer
of the first-hop of the question, and use the it as topic entity
to answer the second-hop of the questions. OPQL-LM can
naturally solve this problem by repeating the retrieval and
mixing steps.

Let m′e2
(t) from Eq. 6 be the memory-injected contextual

embedding that was used to predict the answer of the t’th
hop. In the second hop, m′e2

(t) becomes the embedding
of the topic entities and used to compute query q(t+1)

X,Y for
the (t + 1)’th hop. Again, we keep the relation embed-
ding rX,Y unchanged, but learn another projection matrix
W(t+1)

t . m′e2
(t+1) will be computed accordingly with up-

dated m(t+1)
e2 , λ(t+1) and e(t+1)

Y at the (t+ 1)’th hop.

q(t+1)
X,Y = WT

q [m
′
e2

(t)
;W(t+1)T

t rX,Y]

4.1. Pretraining OPQL-LM

We propose a second stage pretraining for OPQL-LM that
learns to retrieve from the OPQL memory and compute the
mixing weight λ. Relation embeddings re1,e2 are precom-
puted and fixed at the second stage pretraining. We continue
training Transformer layers and the entity embedding table
E for entity linking. The second stage pretraining is not
required for the relational following task (§3).

Data We use Wikipedia passages as our pretraining data.
Given an input C that contains M mentions, we randomly
select one mention as our target entity e2 and mask it with

7FaE (Verga et al., 2020) introduced a null fact whose em-
bedding knull is a learned variable.

[ENT]. All other mentions are considered topic entities
{e1}. Special tokens [R1] and [R2] are inserted after men-
tions of topic and target entities. Mentions of the topic
entities will not be masked. Each entity pair (e1, e2) will
be treated independently. In an example with three men-
tions, “[ENT] [R2], an English [R1] naturalist, published
his book On the Origin of Species [R1] in 1859.”, the men-
tion Charles Darwin is selected as the target entity e2. Re-
trieval and mixing steps are performed on both topic enti-
ties English and On the Origin of Species independently to
predict the masked entity Charles Darwin. OPQL-LM is
trained on 85.6M text pieces with a length of 128 tokens.

Please refer to the paper by Verga et al. (2020) for more
discussion on the loss terms and finetuning details. Besides
the parameters in Verga et al. (2020), we additionally train
the null relation embedding rnull and finetune the relation
projection matrix W(·)

t .

4.2. Experiments: Integrating VKB with LMs
Next, we experiment with OPQL in another realistic sce-
nario – open-domain QA. In the relational following task
(§3) where questions are often semi-structured and oracle
topic entities are provided. In open-domain QA, questions
are more diverse natural language and do not contain oracle-
linked entities. In our experiments, we make a weaker
assumption that mention detection has been run on the in-
put providing boundaries of entity mentions to the model.
OPQL can effectively solve open-domain QA by retrieving
relevant entries from the memory and return the correspond-
ing values as answers and the retrieval results from the
memory can be mixed with language model predictions to
further improve the performance. We call this OPQL-LM.

4.2.1. DATASET

WebQuestionSP (WebQSP) (Yih et al., 2015) is an open-
domain Question Answering dataset that contains 4737 fac-
tual questions posed in natural languages. Answers to the
questions are labeled with entities in Freebase. Since the
pretraining was performed on Wikidata, we convert the Free-
base entity ids (MIDs) to Wikidata ids (QIDs). After the
conversion, 88.2% questions are answerable by QIDs.

ComplexWebQuestions (ComplexWebQ) (Talmor & Be-
rant, 2018) extends WebQuestionsSP to multi-hop ques-
tions. The ComplexWebQuestions dataset contains 34,689
complex questions, including 45% composition questions,
45% conjunction questions8, and 10% others. Similar to
the WebQuestionsSP dataset, we convert Freebase MIDs to
Wikidata QIDs. 94.2% of the questions are answerable.

4.2.2. BASELINES

We compare OPQL with several strong open-domain QA
baselines. GRAFT-Net and PullNet (Sun et al., 2018; 2019)

8See Appendix for details of solving conjunction questions.

Reasoning Over Virtual Knowledge Bases With Open Predicate Relations

are Graph-CNN based models that are introduced in the
previous experiments. BART (Lewis et al., 2019) and T5
(Raffel et al., 2019) are large pretrained text-to-text Trans-
former models.9 EaE (Févry et al., 2020) is trained to pre-
dict masked entities, but without an external (virtual) KB
memory. EaE does not have an external reasoning mod-
ule, so it requires the reasoning process performed all from
the Language Model. DPR (Karpukhin et al., 2020) is a
retrieve-and-read approach that pairs a dense retriever in the
embedding space with a BERT based reader. To extend DPR
to handle multi-hop questions, we concatenate answers from
the previous hops to the question as the query for the next
hop. This is referred as DPR-cascade.10 We also include
results of FaE though its external memory is built from KB.

4.2.3. RESULTS

OPQL-LM outperforms the baseline models on both
datasets (Table 2). We also experimented with an ablated
model OPQL-follow that only performs multi-hop relational
following on questions,11 i.e. retrieved embeddings eY is
directly used to make predictions. In WebQuestionsSP, the
accuracy of retrieving the relevant pair is 85.4% and that
leads to 46.6% accuracy of the WebQuestionsSP dataset.
However, in ComplexWebQuestions, the coverage of OPQL
memory to answer both hops of the questions is only 22.1%
for compositional questions.12 So the accuracy of OPQL-
follow is bounded. Mixing OPQL with LM can further
improve the performance of OPQL-follow by 5.3% on We-
bQuestionsSP and 22.4% on ComplexWebQuestions.

The entity-dependent null embedding knull is crucial for
OPQL-LM. In an ablation study that the null embedding
does not depend on the topic entity e1, i.e. knull is a learned
variable shared by all entities, the performance on WebQues-
tions drops from 51.9 to 46.3 with the retrieval accuracy
dropping from 85.4 to 69.5. The accuracy on Complex
WebQuestions drops from 40.7 to 19.3.

4.2.4. INJECTING ENTRIES INTO THE OPQL MEMORY

We show that OPQL can efficiently injecting new pairs to
the memory to improve the coverage of knowledge at fine-
tuning time, without having to retrain the relation encoder
or LM. In the WebQuestionsSP experiment above, the pre-
trained OPQL memory that contains 1.6M popular entity

9WebQuestionsSP is finetuned on T5-11B (Verga et al., 2020).
Due to hardware constraint, we finetune T5-3B for ComplexWe-
bQuestions.

10We run DPR and DPR-cascade with the pretrained checkpoint
on Natural Questions (Kwiatkowski et al., 2019). Finetuned DPR
reader on ComplexWebQuestions only gets 18.2% Hits@1.

11We do not assume oracle entity linking here. The model use
the contextual embedding of the topic entity to construct the query.

12This number is computed from the intermediate answers pro-
vided in the dataset. We do not use the intermediate answers in
training.

Model WebQSP ComplexWebQ (dev)

GRAFT-NET 25.3 10.6
PullNet 24.8 13.1
BART-Large 30.4 -
EaE 47.4 31.3
DPR 48.6 24.6
DPR-cascade - 25.1
T5 49.7 38.7

OPQL-follow 46.6 18.5
OPQL-LM 51.9 40.7

+ webqsp pairs 53.7 41.1

FaE 54.7 -
SoA (KB) 69.0 (F1) 47.2

Table 2. Hits@1 performance on open-domain QA datasets.
OPQL+webqsp pairs injects additional data specific memories.
The state-of-the-art model on WebQSP (NSM (Liang et al., 2017))
and ComplexWebQ (PullNet-KB (Sun et al., 2019)) both use Free-
base to answer the questions. FaE (Verga et al., 2020) has an
external memory with KB triples.

pairs (800k pairs plus their inverse) only covers 54.6% of
the questions, and each question entity was only included in
8.4 pairs in the memory of pre-selected entity pairs. To im-
prove the coverage, we added 100 pairs per question entity
with the highest PMI to the memory. The updated memory
contains 1.8M pairs and the coverage increases to 82.9%.

The result with the updated memory is presented in Table
2. The retrieval accuracy on questions that has relevant
pairs in the memory drops from 85.4% to 62.2% as a result
of adding 10 times more pairs for each question entities,
but the overall Hits@1 accuracy of the model improves
from 51.9% to 53.7%. We also finetune OPQL-LM on
ComplexWebQuestions dataset. The improvement is less
significant since retrieval is harder on complex questions.

5. Related Work
Automatically extracting triples from a text corpus has been
pursued for many years as a means of improving the cover-
age of KBs (Mitchell et al., 2015). Rather than extracting
triples into a predefined vocabulary, OpenIE (typically) uses
linguistic patterns to extract open vocabulary relations from
text (Etzioni et al., 2008; Fader et al., 2011). Gupta et al.
(2019)) build an Open Knowledge Graph over Open IE
extractions similar to a VKB.

A few methods (Seo et al., 2018; Dhingra et al., 2020) have
built pre-computed memories of mention embeddings which
are used directly to answer questions. These methods are
most similar to our work though OPQL differs by embed-
ding mention pairs, rather than single mentions, and ad-
ditionally, our method requires no structured supervision.
Another related of work proposed to build a passage level
index (Karpukhin et al., 2020) to improve retrieval accu-

Reasoning Over Virtual Knowledge Bases With Open Predicate Relations

racy in the “retrieve and read” pipeline. Multi-hop retrieval
models (Qi et al., 2020) are proposed for complex questions.
Other approaches propose to retrieve embedded passages
which are then passed to an LM to reason over (Karpukhin
et al., 2020; Lewis et al., 2020; Guu et al., 2020; Lee et al.,
2019). In contrast OPQL does not include a separate model
for reading retrieved documents.

Other work has shown that injecting an external memory
constructed from KB into a LM can help training LMs (Pe-
ters et al., 2019), improve generation tasks, (Logan et al.,
2019b), and enable reasoning over an updated memory
(Verga et al., 2020). Additionally, our model’s memory
scales to millions of entries, whereas most prior systems
that use KB triples have been with only a few hundreds of
triples in the model at any point, necessitating a separate
heuristic process to retrieve candidate KB triples (Ahn et al.,
2016; Henaff et al., 2016; Weissenborn et al., 2017; Chen
et al., 2018; Mihaylov & Frank, 2018; Logan et al., 2019a).

6. Conclusion
We proposed OPQL that can construct a virtual knowledge
base from a text corpus without any supervision from ex-
isting KB. The pretrained OPQL can effectively solve rela-
tional following task, achieving the state-of-the-art perfor-
mance on two multi-hop relational following datasets. The
improvement is more significant if evaluated on queries with
relations not seen at training time. OPQL can be injected
into a language model to answer open-domain questions. It
outperforms several large pretrained language models on
two benchmark open-domain QA datasets.

7. Acknowledgement
This work was supported in part by NSF IIS1763562.

References
Ahn, S., Choi, H., Pärnamaa, T., and Bengio, Y. A

neural knowledge language model. arXiv preprint
arXiv:1608.00318, 2016.

Angeli, G., Premkumar, M. J. J., and Manning, C. D. Lever-
aging linguistic structure for open domain information
extraction. In Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pp. 344–354, 2015.

Baldini Soares, L., FitzGerald, N., Ling, J., and
Kwiatkowski, T. Matching the blanks: Distributional
similarity for relation learning. In Proceedings of the
57th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 2895–2905, Florence, Italy, July
2019. Association for Computational Linguistics. doi: 10.

18653/v1/P19-1279. URL https://www.aclweb.
org/anthology/P19-1279.

Chen, D., Fisch, A., Weston, J., and Bordes, A. Reading
wikipedia to answer open-domain questions. In Proceed-
ings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp.
1870–1879, 2017.

Chen, Q., Zhu, X., Ling, Z.-H., Inkpen, D., and Wei, S.
Neural natural language inference models enhanced with
external knowledge. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 2406–2417, 2018.

Cohen, W. W., Sun, H., Hofer, R. A., and Siegler, M. Scal-
able neural methods for reasoning with a symbolic knowl-
edge base. International Conference on Learning Repre-
sentations, 2020.

Dhingra, B., Zaheer, M., Balachandran, V., Neubig, G.,
Salakhutdinov, R., and Cohen, W. W. Differentiable
reasoning over a virtual knowledge base. In International
Conference on Learning Representations, 2020.

Etzioni, O., Banko, M., Soderland, S., and Weld, D. S. Open
information extraction from the web. Communications of
the ACM, 51(12):68–74, 2008.

Fader, A., Soderland, S., and Etzioni, O. Identifying rela-
tions for open information extraction. In Proceedings
of the 2011 conference on empirical methods in natural
language processing, pp. 1535–1545, 2011.

Févry, T., Soares, L. B., FitzGerald, N., Choi, E., and
Kwiatkowski, T. Entities as experts: Sparse memory
access with entity supervision. Conference on Empirical
Methods in Natural Language Processing, 2020.

Gupta, S., Kenkre, S., and Talukdar, P. CaRe: Open knowl-
edge graph embeddings. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pp.
378–388, Hong Kong, China, November 2019. Asso-
ciation for Computational Linguistics. doi: 10.18653/
v1/D19-1036. URL https://www.aclweb.org/
anthology/D19-1036.

Guu, K., Lee, K., Tung, Z., Pasupat, P., and Chang, M.-
W. Realm: Retrieval-augmented language model pre-
training. arXiv preprint arXiv:2002.08909, 2020.

Henaff, M., Weston, J., Szlam, A., Bordes, A., and LeCun,
Y. Tracking the world state with recurrent entity networks.
arXiv preprint arXiv:1612.03969, 2016.

https://www.aclweb.org/anthology/P19-1279
https://www.aclweb.org/anthology/P19-1279
https://www.aclweb.org/anthology/D19-1036
https://www.aclweb.org/anthology/D19-1036

Reasoning Over Virtual Knowledge Bases With Open Predicate Relations

Karpukhin, V., Oğuz, B., Min, S., Wu, L., Edunov, S.,
Chen, D., and Yih, W.-t. Dense passage retrieval
for open-domain question answering. arXiv preprint
arXiv:2004.04906, 2020.

Kwiatkowski, T., Palomaki, J., Redfield, O., Collins, M.,
Parikh, A., Alberti, C., Epstein, D., Polosukhin, I., Kel-
cey, M., Devlin, J., Lee, K., Toutanova, K. N., Jones,
L., Chang, M.-W., Dai, A., Uszkoreit, J., Le, Q., and
Petrov, S. Natural questions: a benchmark for question
answering research. Transactions of the Association of
Computational Linguistics, 2019.

Lee, K., Chang, M.-W., and Toutanova, K. Latent retrieval
for weakly supervised open domain question answering.
In Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pp. 6086–6096,
2019.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mo-
hamed, A., Levy, O., Stoyanov, V., and Zettlemoyer, L.
Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehen-
sion. arXiv preprint arXiv:1910.13461, 2019.

Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V.,
Goyal, N., Küttler, H., Lewis, M., Yih, W.-t., Rocktäschel,
T., et al. Retrieval-augmented generation for knowledge-
intensive nlp tasks. arXiv preprint arXiv:2005.11401,
2020.

Liang, C., Berant, J., Le, Q., Forbus, K. D., and Lao, N.
Neural symbolic machines: Learning semantic parsers on
freebase with weak supervision, 2017.

Ling, J., FitzGerald, N., Shan, Z., Soares, L. B., Févry,
T., Weiss, D., and Kwiatkowski, T. Learning cross-
context entity representations from text. arXiv preprint
arXiv:2001.03765, 2020.

Logan, R., Liu, N. F., Peters, M. E., Gardner, M., and Singh,
S. Barack’s wife hillary: Using knowledge graphs for
fact-aware language modeling. Proceedings of the 57th
Annual Meeting of the Association for Computational Lin-
guistics, 2019a. doi: 10.18653/v1/p19-1598. URL http:
//dx.doi.org/10.18653/v1/P19-1598.

Logan, R., Liu, N. F., Peters, M. E., Gardner, M., and Singh,
S. Barack’s wife hillary: Using knowledge graphs for fact-
aware language modeling. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pp. 5962–5971, 2019b.

Mihaylov, T. and Frank, A. Knowledgeable reader: Enhanc-
ing cloze-style reading comprehension with external com-
monsense knowledge. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pp. 821–832, Melbourne,

Australia, July 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/P18-1076. URL https:
//www.aclweb.org/anthology/P18-1076.

Miller, A., Fisch, A., Dodge, J., Karimi, A.-H., Bordes,
A., and Weston, J. Key-value memory networks for di-
rectly reading documents. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language
Processing, pp. 1400–1409, 2016.

Min, B., Grishman, R., Wan, L., Wang, C., and Gondek,
D. Distant supervision for relation extraction with an
incomplete knowledge base. In Proceedings of the 2013
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, pp. 777–782, 2013.

Mitchell, T., Cohen, W., Hruschka, E., Talukdar, P., Bet-
teridge, J., Carlson, A., Dalvi, B., Gardner, M., Kisiel,
B., Krishnamurthy, J., Lao, N., Mazaitis, K., Mohamed,
T., Nakashole, N., Platanios, E., Ritter, A., Samadi, M.,
Settles, B., Wang, R., Wijaya, D., Gupta, A., Chen, X.,
Saparov, A., Greaves, M., and Welling, J. Never-ending
learning. In Proceedings of the Twenty-Ninth AAAI Con-
ference on Artificial Intelligence (AAAI-15), 2015.

Newell, A. and Simon, H. The logic theory machine–a com-
plex information processing system. IRE Transactions
on information theory, 2(3):61–79, 1956.

Newell, A., Shaw, J. C., and Simon, H. A. Report on a
general problem-solving program. In Proceedings of
the International Conference on Information Processing,
1959.

Peters, M. E., Neumann, M., Logan, R., Schwartz, R., Joshi,
V., Singh, S., and Smith, N. A. Knowledge enhanced con-
textual word representations. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pp.
43–54, 2019.

Qi, P., Lee, H., Sido, O., Manning, C. D., et al. Retrieve,
rerank, read, then iterate: Answering open-domain ques-
tions of arbitrary complexity from text. arXiv preprint
arXiv:2010.12527, 2020.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. arXiv preprint arXiv:1910.10683, 2019.

Seo, M., Kwiatkowski, T., Parikh, A., Farhadi, A., and
Hajishirzi, H. Phrase-indexed question answering: A
new challenge for scalable document comprehension.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pp. 559–564,

http://dx.doi.org/10.18653/v1/P19-1598
http://dx.doi.org/10.18653/v1/P19-1598
https://www.aclweb.org/anthology/P18-1076
https://www.aclweb.org/anthology/P18-1076

Reasoning Over Virtual Knowledge Bases With Open Predicate Relations

Brussels, Belgium, October-November 2018. Associ-
ation for Computational Linguistics. doi: 10.18653/
v1/D18-1052. URL https://www.aclweb.org/
anthology/D18-1052.

Seo, M., Lee, J., Kwiatkowski, T., Parikh, A., Farhadi,
A., and Hajishirzi, H. Real-time open-domain ques-
tion answering with dense-sparse phrase index. In Pro-
ceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pp. 4430–4441, Flo-
rence, Italy, July 2019. Association for Computational
Linguistics. doi: 10.18653/v1/P19-1436. URL https:
//www.aclweb.org/anthology/P19-1436.

Sun, H., Dhingra, B., Zaheer, M., Mazaitis, K., Salakhutdi-
nov, R., and Cohen, W. Open domain question answering
using early fusion of knowledge bases and text. In Pro-
ceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pp. 4231–4242, 2018.

Sun, H., Bedrax-Weiss, T., and Cohen, W. Pullnet: Open
domain question answering with iterative retrieval on
knowledge bases and text. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pp.
2380–2390, 2019.

Sun, H., Arnold, A., Bedrax Weiss, T., Pereira, F., and
Cohen, W. W. Faithful embeddings for knowledge base
queries. Advances in Neural Information Processing
Systems, 33, 2020.

Talmor, A. and Berant, J. The web as a knowledge-base for
answering complex questions. In North American Asso-
ciation for Computational Linguistics (NAACL), 2018.

Verga, P., Sun, H., Soares, L. B., and Cohen, W. W. Facts as
experts: Adaptable and interpretable neural memory over
symbolic knowledge. arXiv preprint arXiv:2007.00849,
2020.

Weissenborn, D., Kočiskỳ, T., and Dyer, C. Dynamic inte-
gration of background knowledge in neural nlu systems.
2017.

Yih, W.-t., Chang, M.-W., He, X., and Gao, J. Semantic
parsing via staged query graph generation: Question an-
swering with knowledge base. In Proceedings of the 53rd
Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long Pa-
pers), pp. 1321–1331, Beijing, China, July 2015. As-
sociation for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P15-1128.

Zhang, Y., Dai, H., Kozareva, Z., Smola, A. J., and Song,
L. Variational reasoning for question answering with
knowledge graph. In AAAI, 2018.

https://www.aclweb.org/anthology/D18-1052
https://www.aclweb.org/anthology/D18-1052
https://www.aclweb.org/anthology/P19-1436
https://www.aclweb.org/anthology/P19-1436
http://www.aclweb.org/anthology/P15-1128
http://www.aclweb.org/anthology/P15-1128

Reasoning Over Virtual Knowledge Bases With Open Predicate Relations

8. Appendix
8.1. OPQL-ML Retrieval and Mixing Details

Retrieval from OPQL Memory Retrieving from the
OPQL memory is analogous to running a relational follow-
ing operation Y = X.follow(R) with a learned set of rela-
tions R, but the set of topic entities X is also unknown. Re-
call that the relational following task uses the weightedX to
compute its query embedding qX,Y = WT

q [eX ;WT
t rX,Y].

In the open-domain QA task, we do not assume oracle en-
tity linking is provided, and thus not able to compute eX
explicitly from set X . Instead, we consider the contextual
mention embedding me1 as an approximation of the cen-
troid eX . Ideally, me1 should be close to the embedding
e1 of the oracle topic entity. The query qX,Y is computed
compositinoally by concatenating the contextual mention
embedding me1 and the relation embedding rX,Y . The rela-
tion embedding rX,Y comes from the relation encoder (Eq.
1) that operates on special tokens [R1] and [R2].

qX,Y = WT
q [me1 ;WT

t rX,Y]

Since the mention of entity e1 is not masked from the input,
the relation embedding rX,Y may contains some leaked
information from the topic entity e1. One potential fix is
to encode the relation embedding rX,Y separately from an
input where both e1 and e2 are masked. We do not take this
solution as it doubles the computation cost of the expensive
Transformer layers.

As discussed in §3, the result of the relational operation Y =
X.follow(R) contains values {ej} of the top k retrieved
pairs {(ei, ej)}, s.t. (ei, ej) ∈ topk(qX,Y ,K). The weight
βei,ej is the softmax of the retrieval score. We aggregate the
embeddings of the retrieved entities ej ∈ Y into a single
vector eY . eY will be mixed with the contextual embedding
of the masked mention [ENT] to predict the masked target
entity e2.

eY =
∑

(ei,ej)

βei,ej ej , (ei, ej) ∈ topk(qX,Y ,K) (7)

Lre = cross entropy(βei,ej , Iej∈Ans) (8)

Mixing with LM The language model computes the con-
textual embedding of the masked entity e2. Let me2 =
(ci, ci, e2) be the masked mention [ENT] of the target en-
tity (answer) e2 that locates at the i’th token of the input
sequence. The contextual embedding me2 is a projection of
Transformer output hi at the token ci, that shares the same
projection matrix We with the entity linking task in §2.3.

me2 = WT
e hi (9)

The retrieved embeddings eY (Eq. 7) and contextual em-
beddings me2 (Eq.9) of the masked mention are mixed with

a mixing factor λ. λ decides whether retrieved memory
should be added to the contextual embedding. λ should
be large if there is a relevant entry with pair (e1, e2) in the
memory, so retrieving this pair can help predict the masked
entity e2. As suggested by Verga et al. (2020), we introduced
a null relation to the OPQL memory, whose embedding
rnull is a learned variable, and constructed a null entry
with key embedding knull = WT

k [me1 ; rnull] and value
embedding vnull =

−→
0 . The query is encouraged to retrieve

the null pair if no relevant pair of (e1, e2) exists in the
OPQL memory. We re-use the projection matrix Wk to
compute the key embedding knull.

λ = softmax(qT
X,Y knull) (10)

m′e2 = me2 + λ · eY (11)

The memory-injected contextual embedding m′e2 is used to
predict the masked entities e2.

Lmel = cross entropy(softmax(m′e2
T ei), Iei∈Ans) (12)

Loss Besides the entity linking loss on masked mention m′e2
(Eq. 12), we jointly train entity linking on topic entity e1
(Eq. 3), and also provide supervision on OPQL memory
retrieval (Eq. 8).

LOPQL-LM = Lel + Lre + Lmel

8.2. OPQL-LM for Conjunction Questions

A conjunction questions, e.g. “Which English author pub-
lish his book On the Origin of Species?”, contains more
than one topic entity English and On the Origin of Species.
Both topic entities can potentially help to predict the answer,
e.g. with pairs (English, Charles Darwin) that describes his
nationality and (On the Origin of Species, Charles Darwin)
that describes his publications. We convert the input by
appending the masked answer to the end of the question and
inserting the special tokens [R1] and [R2] accordingly, e.g.
“Which English [R1] author publish his book On the Origin
of Species [R1]? [ENT] [R2]”.

A query vector qX,Y,ei
is constructed for each topic entity

ei, with the retrieval results eY,ei returned from the memory.
All retrieved embeddings are mixed with the contextual
embedding me2 to predict the final answer

m′e2 = me2 +
∑
ei

λi · eY,ei

where λi is the mixing weight that is determined by each
query independently.

