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A. Additional discussion on related work
The work of (Hardt et al., 2016) is most relevant to our work—they introduced a Stackelberg game framework to model the
interaction between the learner and the test data. Our model can be viewed as a generalization of (Hardt et al., 2016) by
allowing heterogeneous preferences over classification outcomes. (Hardt et al., 2016) assume a special class of separably
cost functions, and prove that the optimal classifier is always a threshold classifier. Essentially, the assumption of separable
cost functions reduces the feature space to a low dimension, which is also why the strategic VC dimension in this case
is at most 2 as we proved. Despite this clean characterization, it appears a strong and somewhat unrealistic requirement.
For example, one consequence of separable cost functions is that for any two features x, z, the manipulation cost from
either x to z or from z to x must be 0.4 This appears unrealistic in reality. For example, a high-school student with true
average math grade 80 and true average literature grade 95 is likely to incur cost if she/he wants to appear as 95 for math
and 80 for literature, and vice versa. This is because different students are good at different aspects. Our model imposes less
assumptions on the cost functions. For example, in our study of strategic linear classification, the cost functions are induced
by arbitrary semi-norms.

(Brückner & Scheffer, 2011) is one of the first to consider the Stackelberg game formulation of strategic classification,
motivated by spam filtering; however they do not study generalization bounds. (Zhang & Conitzer, 2021) provide the sample
complexity result for strategic PAC-learning under the homogeneous preference setting and in particular study the case under
the incentive-compatibility constraints, i.e., subject to no data points will misreport features. These two works all assume
the positive labels are always and equally preferred. There has also been work on understanding the social implications of
strategically robust classification (Akyol et al., 2016; Milli et al., 2019; Hu et al., 2019b); these works show that improving
the learner’s performance may lead to increased social burden and unfairness. (Dong et al., 2018; Chen et al., 2020) extend
strategic linear classification to an online setting where the input features are not known a-priori, but instead are revealed
in an online manner. They both focused on the optimization problem of regret minimization. Our setting however is in
the more canonical PAC-learning setup and our objective is to design statistically and computationally efficient learning
algorithms. All these aforementioned works, including the present work, consider gaming behaviors. A relevant but quite
different line of recent works study strategic improvements where the manipulation does really change the inherent quality
and labels (Kleinberg & Raghavan, 2019; Miller et al., 2019; Ustun et al., 2019; Bechavod et al., 2020; Shavit et al., 2020).
The question there is mainly to design incentive mechanisms to encourage agents’ efforts or improvements.

Finally, going beyond classification, strategic behaviors in machine learning has received significant recent attentions,
including in regression problems (Perote & Perote-Peña, 2004; Dekel et al., 2010; Chen et al., 2018), distinguising
distributions (Zhang et al., 2019a;b), and learning for pricing (Amin et al., 2013; Mohri & Munoz, 2015; Vanunts & Drutsa,
2019). These are similar in spirit to us, but study a completely different set of problems using different techniques. Their
results are not comparable to ours.

B. Omitted Proofs from Section 3
B.1. Proof of Theorem 1

Proof. Let Y = {+1,−1}. Define another binary hypothesis class H̃ = {κc(h) : h ∈ H}, where κc : (X −→ Y) −→
(X ×R −→ Y) is a mapping such that κc(h)(x, r) = h(∆c(x, r;h)),∀(x, r) ∈ X ×R. Note that the input of classifier κc(h)
consists of both the feature vector x and the preference r. By the definition of SVC, we have VC(H̃) =SVC(H, R, c) = d.

Given any distribution D, cost function c, and h ∈ H, the strategic 0-1 loss of h is Lc(h,D) = E(x,y,r)∼D

[
I
[
κc(h)(x, r) 6=

y
]]

= L(κc(h),D), where L(h̃,D) is the standard expected risk of the newly defined h̃ ∈ H̃ under the distribution
D in the non-strategic setting. Therefore, studying the PAC sample complexity upper bound for H under the strategic
setting 〈R, c〉 is equivalent to studying the sample complexity for H̃ in the non-strategic setting. The latter problem can
be addressed by employing the standard PAC learning analysis. From the Fundamental Theorem of Statistical Learning
(Theorem 6.8 in (Shalev-Shwartz & Ben-David, 2014)), we know H̃ is agnostic PAC learnable with sample complexity
O(ε−2(VC(H̃) + log 1

δ )), meaning that there exists a constant C such that for any (δ, ε) ∈ (0, 1)2 and any distribution D
4A cost function c(z;x) is separable if there exists two functions c1, c2 : X → R such that c(z;x) = max{c2(z)− c1(x), 0}. Since

c(x;x) = 0, we have c2(x) ≤ c1(x) for any x. Therefore, c2(x)+c2(z)−c1(x)−c1(z) ≤ 0. Consequently, either c2(x)−c1(z) ≤ 0
or c2(z)− c1(x) ≤ 0, yielding either c(z;x) = 0 or c(x;z) = 0.
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for (x, y, r), as long as n ≥ C · ε−2(VC(H̃) + log 1
δ ), with at least probability 1− δ, we have

L(h̃∗,D)− inf
h̃∈H̃

L(h̃,D) ≤ ε,

where h̃∗ is the solution of ERM with n i.i.d. samples from D as input. Let h∗ be the solution of the corresponding SERM
conditioned on the same n i.i.d. samples from D. By the definition of H̃ and Lc, we have Lc(h∗,D) = L(h̃∗,D), and
infh∈H Lc(h,D) = inf h̃∈H̃ L(h̃,D). Therefore, with probability 1− δ, we have

Lc(h
∗,D)− inf

h∈H
Lc(h,D) ≤ ε,

which implies STRAC〈H, R, c〉 is agnostic PAC learnable with sample complexity O(ε−2[d+ log( 1
δ )]) by the SERM.

B.2. Proof of Proposition 1

Proof. The adversarial VC-dimension defined in (Cullina et al., 2018) relies on an auxiliary definition of corrupted classifier
h̃ = κR(h) of any classifier h for the standard non-adversarial setting such that h̃(x) = h(x) if all the points in N(x) have
the same label as x and otherwise, h̃(x) =⊥. Recall thatN(x) = {z ∈ X : (z;x) ∈ B} = {z ∈ X : c(z;x) ≤ r} denotes
the set of all possible adversarial features x can move to. Given this auxiliary definition, the adversarial VC-dimension is
defined as AVC(H,B) = sup{n : σn(F ,B) = 2n}, where

σn(F ,B) = max
(x,y)∈Xn×{+1,−1}n

|{(f(x1, y1;h), . . . , f(xn, yn;h)) : h ∈ H}| (7)

is the shattering coefficient, and f(xi, yi) = I(h̃(xi) 6= yi) is the loss function of the corrupted classifier h̃ = κR(h).

Since B and c are r-consistent, we have B = {(z;x) : c(z;x) ≤ r}. Let R = {+r,−r}. We now prove the proposition by
arguing

sup{n ∈ N : σn(H, R, c) = 2n} = sup{n : σn(F ,B) = 2n}. (8)

1. If sup{n ∈ N : σn(H, R, c) = 2n} = n, by Definition 1, there exists (x′i, r
′
i) ∈ X × R, i = 1, · · · , n such that

|{(h(∆c(x
′
1, r
′
1;h)), · · · , h(∆c(x

′
n, r
′
n;h)) : h ∈ H}| = 2n. Since Definition 1 does not rely on the true labels of

x′i, we may let the true labels of x′i be y′i = −r′i/r for any i. In this case, each x′i’s strategic preference is against
its true label, which corresponds to the loss function f in Equation (7) for the adversarial setting. Therefore, taking
(xi, yi) = (x′i, y

′
i) in Equation (7) gives σn(F ,B) = 2n. This implies sup{n ∈ N : σn(H, R, c) = 2n} ≤ sup{n :

σn(F ,B) = 2n}.

2. Conversely, if sup{n : σn(F ,B) = 2n} = n, from Equation (7), there exists (xi, yi) ∈ X × R, i = 1, · · · , n such
that |{(f(x1, y1), . . . , f(xn, yn)) : f ∈ F}| = 2n. Similarly, taking ri = −ryi ∈ R gives σn(H, R, c) = 2n, which
implies sup{n ∈ N : σn(H, R, c) = 2n} ≥ sup{n : σn(F ,B) = 2n}.

Therefore, we have AVC(H,B) =SVC(H, {+r,−r}, c) for any r-consistent pair (B, c).

B.3. Proof of Corollary 1.1

Proof. Since {+r,−r} ⊆ B, we have σn(H, R, c) ≥ σn(H, {+r,−r}, c) by Definition 1. As a result,
SVC(H, R, c) ≥SVC(H, {+r,−r}, c). Then by applying Proposition 1 we have
SVC(H, R, c) ≥SVC(H, {+r,−r}, c) =AVC(H,B).

B.4. Proof of Proposition 2

Given any positive integer n, let [n] denotes {1, 2, · · · , n}, and S be the power set of [n], i.e., the set that contains all the
subsets of [n]. Let X = [n] ∪ S be the sample space of size n+ 2n, and the hypothesis class H is the set of all the point
classifiers with points from S, i.e.,H = {hs : s ∈ S}, where point classifier hs only classifies the point s ∈ S as positive.
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The cost function c(z;x) is a metric defined as follows. Since metric is symmetric, i.e., c(z;x) = c(x; z), we will use the
notation c(x, z) instead throughout this proof.

c(x, z) =



x, if x ∈ [n], z ∈ S, x ∈ z
x+ 1, if x ∈ [n], z ∈ S, x /∈ z
c(z, x), if x ∈ S, z ∈ [n]

x+ z, if x, z ∈ [n], x 6= z

1, if x, z ∈ S, x 6= z

0, if x = z,

(9)

and R is set to be [−n,−1] ∪ [1, n].

First, we verify that c(·, ·) is indeed a metric. Given the Definition (9), it is easy to see that c(x, z) = 0 iff x = z, and
c(x, z) = c(z, x),∀x, z ∈ X . It remains to check the triangle inequality, i.e., for any x, y, z ∈ X , c(x, y)+c(y, z) ≥ c(x, z).
Consider the case when x, y, z are different elements in X . By enumerating all the possibility that whether each x, y, z is in
[n] or S, it suffices to discuss the following 8(= 23) cases:

1. if x, y, z ∈ [n], c(x, y) + c(y, z) = x+ y + y + z > x+ z = c(x, z).

2. if x, y, z ∈ S, c(x, y) + c(y, z) = 2 > 1 = c(x, z).

3. if x, z ∈ [n], y ∈ S, then c(x, y) ≥ x, c(y, z) ≥ z. =⇒ c(x, y) + c(y, z) ≥ x+ z = c(x, z).

4. if x, y ∈ [n], z ∈ S, we need to show that c(x, y) ≥ c(x, z)− c(y, z). Conditioned on the relationship between x, y
and set z, the maximum value of c(x, z) − c(y, z) is x − y + 1 when y ∈ z, x /∈ z. Therefore, c(x, y) = x + y ≥
x− y + 1 ≥ c(x, z)− c(y, z).

5. if x, z ∈ S, y ∈ [n], then c(x, y) + c(y, z) ≥ y + y > 1 ≥ c(x, z).

6. if x, y ∈ S, z ∈ [n], then the maximum value for c(x, z) − c(y, z) is z + 1 − z = 1 when z /∈ x, z ∈ y. Therefore,
c(x, y) ≥ 1 ≥ c(x, z)− c(y, z).

7. if x ∈ S, y, z ∈ [n], it is equivalent to case 4.

8. if y, z ∈ S, x ∈ [n], it is equivalent to case 6.

Next, we show VC(H) = 1, AVC(H,Bc(r)) = 1, and SVC(H, R, c) ≥ n. Observe that VC(H) = 1 follows easily since
no point classifier hs ∈ H can generate the label pattern (+1,+1) for any pair of distinct data points.

Next we prove AVC(H,Bc(r)) = 1. We first show AVC(H,Bc(r)) ≤ 1 by arguing that under binary nearness relation
Bc(r) = {(z;x) : c(z, x) ≤ r} with r ≥ 1, any two elements x1, x2 in X cannot be shattered byH.

1. If at least one of r1, r2 equals −r, e.g., r1 = −r, we show that x1 can never be classified as +1 by contradiction.
Suppose some hs ∈ H classifies (x1,−r) as +1: if x1 6= s, since r1 = −r < 0, x1 will not manipulate its feature and
be classified as −1; if x1 = s, x1 can move to any z ∈ S with cost 1 ≤ r, and will also be classified as −1. Therefore,
(x1, x2) can not be shattered.

2. If r1 = r2 = r, consider the following two cases:

(a) If at least one of x1, x2 belongs to S, e.g., x1 ∈ S, then x1 can move to any s ∈ S as c(x1, s) = 1 ≤ r for any
s ∈ S. Therefore x1 can never be classified as −1 by any point classifier inH.

(b) if x1, x2 ∈ [n], we may w.l.o.g. assume x1 < x2, i.e., x1 + 1 ≤ x2. Observe that when r < x1, any hs ∈ H
will classify x1 as -1 because c(x1, s) = x1 > r,∀s ∈ S; when r ≥ x1 + 1, any hs ∈ H will classify x1 as
+1 because c(x1, s) = x1 + 1 ≤ r, ∀s ∈ S. Therefore, in order to shatter (x1, x2), r must lie in the interval
[x1, x1 + 1) ∩ [x2, x2 + 1) = ∅, which draws the contradiction.
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To see that AVC(H,Bc(r)) ≥ 1, for any x ∈ [n] with r > 0, it can be classified as either +1 or −1 as long as r ∈ [x, x+ 1).
We thus have AVC(H, c) = 1.

Finally, we prove that SVC(H, R, c) = n. Consider the subset [n] ⊂ X of size n, with each element i equipped with a
strategic preference ri = i. For any label pattern L ∈ {+1,−1}n, let sL = {i ∈ [n] : Li = +1} be an element in S. We
claim that hsL ∈ H gives exactly the label pattern L on [n]. To see this, consider any i ∈ [n]:

1. If i ∈ sL, i will move to sL ∈ S and be classified as +1, as the cost c(i, sL) = i ≤ ri = i.

2. If i /∈ sL, i will not move to sL ∈ S and be classified as −1, as the cost c(i, sL) = i+ 1 > ri = i.

Therefore, any label pattern L ∈ {+1,−1}n can be achieved by some hsL ∈ H. This implies SVC(H, R, c) ≥ n. On the
other hand, it’s easy to seeH cannot shatter n+ 1 points, because any subset of size n+ 1 must contain an element s0 in S ,
and no matter what strategic preference s0 has, it will either be classified as +1 by all hs ∈ H, or be classified as +1 by
only one classifier inH, i.e., hs0 . Either case renders the shattering for n+ 1 points impossible.

B.5. Proof of Proposition 3

Proof. Define the adversarial region for an adversary (x, r) as N(x, r) = {z ∈ X : c2(z) ≤ c1(x) + |r|} ⊇ {x}. Since
staying with the same feature has no cost, this implies c(x;x) = 0 or equivalently c2(x) ≤ c1(x) for any x ∈ X . Then, the
best response function for (x, r) can be characterized by

1. if h(x) = sgn(r), then h(∆(x, r;h)) = sgn(r);

2. if h(x) = −sgn(r), then

h(∆(x, r;h)) =

{
−sgn(r), ∀z ∈ N(x, r) : h(z) = −sgn(r)

sgn(r), ∃z ∈ N(x, r) : h(z) = sgn(r)
(10)

Suppose there are three points {(xi, ri)}3i=1 that can be shattered byH. Let bi = c1(xi) + ri and w.l.o.g. let b1 ≤ b2 ≤ b3.
From b1 ≤ b2 ≤ b3, we have N(x1, r1) ⊆ N(x2, r2) ⊆ N(x3, r3).

By Pigeonhole principle, there must exists two elements in {r1, r2, r3} which have the same sign. Suppose these two
elements are r1, r2 and consider the following two cases:

1. r1 > 0, r2 > 0. From Equation 10, for any h ∈ H, h(∆(x2, r2;h)) = −1 means h(z) = −1,∀z ∈ N(x2, r2). Note
that N(x1, r1) ⊆ N(x2, r2), we also have h(z) = −1,∀z ∈ N(x1, r1). As a result, h(∆(x1, r1;h)) = −1, meaning
the sign pattern {+,−} cannot be achieved by any h ∈ H for {(x1, r1), (x2, r2)}.

2. r1 < 0, r2 < 0. From Equation 10, for any h ∈ H, h(∆(x2, r2;h)) = 1 means h(z) = 1,∀z ∈ N(x2, r2). Similarly,
from N(x1, r1) ⊆ N(x2, r2) we conclude h(z) = 1,∀z ∈ N(x1, r1) and h(∆(x1, r1;h)) = 1, meaning the sign
pattern {−,+} cannot be achieved by any h ∈ H for {(x1, r1), (x2, r2)}.

Therefore, {(xi, ri)}3i=1 cannot be shattered byH, which implies SVC(H, R, c) ≤ 2.

C. Proof of Theorem 2
Proof. Let X = R2, and consider the linear hypothesis class on X : H = {h = sgn(w · x + b) : (w, b) ∈ R3,x ∈ X}. We
show that for any n ∈ Z+ and R = {+1}, there exist n points {xi}ni=1 ∈ Xn and corresponding cost functions {ci}ni=1,
such that the n’th shattering coefficients σn(H, R, {ci}ni=1) = 2n (see Definition 1 for σn). Note that the cost function is
instance-wise. For convenience, here we equivalently think of it as each data point i has a different cost function ci.

Let xi = (0, 0),∀i ∈ [n] be the set of data points. The main challenge of the proof is a very careful construction of the cost
function for each data point. To do so, we first pick a set of 2n different points S = {sj}2

n

j=1 lying on the unit circle, i.e.,
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S ⊂ {(x, y) : x2 + y2 = 1}. The number 2n is not arbitrarily chosen — indeed, we will map each point sj to one of the
2n subsets of [n] in a bijective manner so that each sj corresponds to a unique subset of [n]. What are these 2n different
points will not matter to our construction neither it matters which point is mapped to which subset so long as it is a bijection.
Moreover, let S̄ = {(−x,−y) : (x, y) ∈ S} be the set that is origin-symmetric to S such that S̄ ∩ S = ∅. S̄ is chosen to
“symmetrize” our construction to obtain a norm and needs not to have any interpretation. For any xi, we now define its cost
function ci through the following steps :

1. Let Si = {s ⊆ [n] : i ∈ s} ⊂ S contains all the 2n−1 subsets of [n] that include the element i.

2. Let S̄i = {(−x,−y) : (x, y) ∈ Si} ⊆ S̄ be the set that is origin-symmetric to Si.

3. Let Gi be the convex, origin-symmetric polygon with the vertex set being Si ∪ S̄i.

4. The cost function of xi is defined as ci(z;x) = ‖x − z‖Gi
, where ‖ · ‖Gi

= inf{ε ∈ R≥0 : x ∈ εGi} is a norm
derived from polygon Gi (note the origin-symmetry of Si ∪ S̄i and thus Gi).

Next we show that for any label pattern L ∈ {+1,−1}n, there exists some linear classifier h ∈ H2 such that
(h(∆c1(x1,+1;h), · · · , h(∆cn(xn,+1;h)) = L.

With slight abuse of notation, let sL = {i ∈ [n] : Li = +1} ∈ S be the point in S that corresponds to the set of the indexes
of L with Li = 1. Let hL be any linear classifier whose decision boundary intersects the unit circle centered at xi and
strictly separates sL from all the other elements in S ∪ S̄. We will use hL to denote both the linear classifier and its decision
boundary (i.e., a line in R2) interchangeably. Due to the convexity of Gi, such hL must exist. We further let hL give
prediction result +1 for the half plane that contains sL and −1 for the other half plane. Figure 3 illustrates the geometry of
this example.

We now argue that hL induces the given label pattern L for instances {(xi, 1, ci)}ni=1. To see this, we examine
hL(∆ci(xi, 1;h)) for each i:

1. If i ∈ sL, then sL ∈ Si and xi can move to sL with cost ci(sL;xi) < 1. This is because Gi is convex and there exist a
point x′i on hL such that ci(x′i;xi) < ci(sL;xi) = 1 = ri (e.g., choose x′i as the intersection point of the segment
[xi, sL] and hL). Therefore, hL will classify xi as positive. This case is shown in the left panel of Figure 3.

2. If i /∈ sL, then sL /∈ Si and Gi does not intersect hL. In this case, hL(x) = −1, and moving across hL always induces
a cost strictly larger than 1. Therefore, the best response for xi is to stay put and hL will classify xi as negative. This
case is shown in the right panel of Figure 3.

Now we have shown that the n’th shattering coefficients σn(H, {+1,−1}, {ci}ni=1) = 2n. Since n can take any integer, we
conclude the strategic VC-dimension in this case is +∞.

D. Proof of Theorem 3
The following lemma from advanced linear algebra is widely known and will be useful for our analysis.

Lemma 1. For any seminorm l : Rd −→ R≥0, and the cost function c(z;x) = l(z − x) induced by l, the minimum
manipulation cost for x to move to the hyperplane w · x + b = 0 is given by the following:

min
x′
{c(x′;x) : w · x′ + b = 0} =

|w · x + b|
l∗(w)

where l∗(w) = supz∈B{w · z} ∈ R≥0 ∪ {+∞}, and B = {z : l(z) ≤ 1} is the unit ball induced by l.

The proof is divided into the following two parts. The first part is the more involved one.

Proof of SVC(Hd, R, c) ≤ d+ 1− dim(Vl):
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Figure 3. Left: If i ∈ sL, hL intersects with Gi, and xi can manipulate its feature within Gi to cross hL. Right: If i /∈ sL, hL and
Gi are disjoint; xi cannot manipulate its feature within Gi to cross hL. Given any label pattern L ∈ {+1,−1}n, Gi is the convex,
origin-symmetric polygon associated with xi’s cost function. The linear classifier hL is chosen to separate sL from all other elements in
S̄ ∪ S and classifies sL as +1. The left/right panel shows the two situations, depending on i ∈ sL or i 6∈ sL.

It suffices to show that for any n > d + 1 − dim(Vl) and n data points (xi, ri) ∈ Rd × R,∀i = 1, · · · , n, there exists a
label pattern L ∈ {+1,−1}n, such that for any h ∈ Hd cannot induce L, i.e.,

(h(∆c(x1, r1;h), · · · , h(∆c(xn, rn;h))) 6= L.

The first step of our proof derives a succinct characterization about the classification outcome for a set of data points.
For any seminorm l, it is known the set B = {x : l(x) ≤ 1} is nonempty, closed, convex, and origin-symmetric. Let
l∗(w) = supz∈B{w · z}. We have l∗(w) > 0 for all w 6= 0 since 0 is an interior point of B. According to Lemma 1,
for any x ∈ Rd and any linear classifier h = (w, b) ∈ Hd, the minimum manipulation cost for x to move to the decision
boundary of h is |w · x + b|/l∗(w). Note that we may w.l.o.g. restrict to w’s such that l∗(w) = 1 since the sign function
sgn(w · x + b) does not change after re-scaling. For any data point (x, r) ∈ X ×R and linear classifier h ∈ Hd, we define
the signed manipulation cost to the classification boundary as

δ(h,x) = h(x) · |w · x + b|
l∗(w)

= w · x + b,

using the condition l∗(w) = 1. We claim that h(∆c(x, r;h)) = 2I(w · x + b ≥ −r)− 1. This follows a case analysis:

1. If r ≤ 0, then h(∆c(x, r, h)) = 1 if and only if h(x) = 1 and x cannot move across the decision boundary of h within
cost |r| = −r. This implies h(∆c(x, r;h)) = 2I(w · x + b ≥ −r)− 1.

2. If r > 0, then h(∆c(x, r, h)) = −1 if and only if h(x) = −1 and x cannot move across the decision boundary of h
within cost r. In this case, h(∆c(x, r;h)) = −(2I(−(w · x + b) > r)− 1) = 2I(w · x + b ≥ −r)− 1. Note that the
first inequality holds strictly because we assume h always gives +1 for those x on the decision boundary.

For a set of samples (X, r) where X = (x1, · · · ,xn), r = (r1, · · · , rn), define the set of all possible vectors (over the
choice of linear classifiers (w, b) ∈ Hd) of signed manipulation costs as

D(Hd,X) = {(w · x1 + b, · · · ,w · xn + b) : h ∈ Hd}, (11)

there is a h ∈ Hd that achieves a label pattern L on (X, r) if and only if there exist an element in D(Hd,x) + r with the
corresponding sign pattern L.

Recall that a linear classifier is described by (w, b) ∈ Rd+1. The second step of our proof rules out “trivial” linear classifiers
under strategic behaviors, and consequently allows us to work with only linear classifiers in a linear space of smaller
dimension. Let B = {x : l(x) ≤ 1} and Vl be the largest linear space contained in B. We argue that it suffice to consider
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only linear classifiers (w, b) with w ⊥ Vl. This is because for any w that is not orthogonal to the subspace Vl, we can
find z̄ ∈ Vl such that c(z̄;x) = 0 and w · z̄ →∞ since Vl is a linear subspace. This means any data point can induce its
preferred label sgn(r) with 0 cost, by moving to z̄ if sgn(r) = + and −z̄ otherwise. Any such linear classifier will result in
the same label pattern, simply specified by sgn(r). As a consequence, we only need to focus on linear classifiers (w, b) with
w ⊥ Vl. Let H̃d = {(w, b) : w ⊥ Vl} denote all such linear classifiers.

Next, we argue that when restricting to the non-trivial class of linear classifiers H̃d, the D(H̃d,X) defined in Equation (11)
lies in a linear subspace with dimension at most d+ 1− dim(Vl). Consider the linear mapping GX : H̃d → Rn determined
by the data features X , defined as

GX(w, b) = (w · x1 + b, · · · ,w · xn + b), ∀(w, b) ∈ H̃d.

Since w ⊥ Vl, w is from a linear subspace of d− dim(Vl). Linear mapping will not increase the dimension of the image
space, therefore D(H̃d,X) lies in a space with dimension at most d+ 1− dim(Vl).

Finally, we prove that there must exist label patterns that cannot be induced by linear classifiers whenever the number of
data points n > d+ 1− dim(Vl). Let span

(
D(H̃d,X)

)
denote the smallest linear space that contains D(H̃d,X). Since

span
(
D(H̃d,X)

)
has dimension at most d + 1 − dim(Vl) < n but span

(
D(H̃d,X)

)
⊂ Rn, there must exist a non-zero

vector ū ∈ Rn such that: (1) ū 6= 0; (2) ū ⊥ span
(
D(H̃d,X)

)
(i.e., ū · v = 0,∀v ∈ span

(
D(H̃d,X)

)
); and (3) ū · r ≤ 0

(if ū · r ≥ 0, simply takes its negation). Note that this implies ū · v ≤ 0,∀v ∈ span
(
D(H̃d,X)

)
+ r.

We argue that the sign pattern of the vector ū, denoted as sgn(ū), and the sign pattern of all negatives (L = (−1, · · · ,−1))
cannot be achieved simultaneously by H̃d. Suppose sgn(ū) can be achieved by H̃d, then there must exist v1 ∈
span(D(H̃d,X)) + r such that sgn(ū) = sgn(v1) and ū · v1 ≤ 0. Since sgn(ū) = sgn(v1) also implies ū · v1 ≥ 0, we
thus have ū · v1 =

∑
j=1 ūjv

1
j = 0. We claim that there must exist j such that ūj > 0. First of all, we cannot have ūj < 0

for any j since that implies v1
j < 0 (only strictly less v1

j ’s will be assigned −1 pattern due to our tie breaking rule) and
consequently, ū · v1 < 0, a contradiction. Also note that ū 6= 0, so there exist j ∈ [n] such that ūj > 0.

Utilizing the above property of ū, we show that the sign pattern L = (−1, · · · ,−1) cannot be achieved by H̃d. Suppose, for
the sake of contradiction, that this is not true. Then there exists another v2 = (v2

1 , · · · , v2
n) ∈ span

(
D(H̃d,X)

)
+ r with

all its elements being strictly negative. Now consider v = v1 − v2 ∈ span(D(H̃d,X)), we have ū · v = ū · v1 − ū · v2 =
0 − ū · v2 > 0. Here the inequality holds because ūj ≥ 0, v2

j < 0 for all j and there exists some j such that ūj > 0.
Therefore, we draw a contradiction to the fact that ū · v = 0 for any v ∈ span(D(H̃d,X)).

Now we proved that sgn(ū) and L = (−1, · · · ,−1) cannot be achieved simultaneously by non-trivial classifiers H̃d, and
the only achievable sign pattern for trivial classifiers is sgn(r). Note that r ∈ span

(
D(H̃d,X)

)
+ r, sgn(r) is thus also

achievable by H̃d. Therefore, the trivial classifiers has no contributions to the shattering coefficient, and we conclude at least
one of sgn(ū) and L = (−1, · · · ,−1) cannot be achieved byHd.

Proof of SVC(Hd, R, c) ≥ d+ 1− dim(Vl):

The second step of the proof shows SVC(H, R, c) ≥ d+ 1− dim(Vl) by giving an explicit construction of (X, r) that can
be shattered byHd. Let x0 = 0, and (x1, · · · ,xt) be a basis of the subspace orthogonal to Vl, (xt+1, · · · ,xd) be a basis
of the subspace Vl, where t = d− dim(Vl).

We claim that the t+ 1 = d+ 1− dim(Vl) data points in {0, 1, · · · , t} can be shattered byHd. In particular, for any given
subset S ⊆ {0, 1, · · · , t}, consider the linear system


xi ·wS + bS = 1, if i ∈ S
xi ·wS + bS = −1, if i ≤ t, and i /∈ S
xi ·wS = 0, t+ 1 ≤ i ≤ d.

Because (x1, · · · ,xd) has full rank, the solution (wS , bS) must exist. Therefore, the half-plane h = wS · x + bS separates
S and {x0, · · · ,xd}/S. Now consider the case when each xi has a strategic preference ri ∈ R. Since wS is chosen to be
orthogonal to Vl, wS ·xi is bounded when xi ∈ {z : c(z;xi) ≤ ri}. Let δS = max0≤i≤t{sup{wS · (z−xi) : c(z;xi) ≤
ri}}, and δ = max(1, 2δS). Then the data set {δx0, · · · , δxt} can be shattered by Hd for any given c,R, because the
classifier (δwS , δbS) separates the subset S and the other points regardless their strategic responses.
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E. Proof of Theorem 4
Proof of Theorem 4. For any data point (x, y, r), let the manipulation cost for the data point be c(z;x) = lx(z − x) where
lx is any seminorm. Since the instance is separable, there exists a hyperplane h : w · x + b = 0 that separates the given n
training points (x1, y1, r1), · · · , (xn, yn, rn) under strategic behaviors. The SERM problem is thus a feasibility problem,
which we now formulate. Utilizing Lemma 1 about the signed distance from xi to hyperplane h under cost function
c(z;xi) = lxi

(z − xi), we can formulate the SERM problem under the separability assumption. Concretely, we would like
to find a hyperplane h : w · x + b = 0 such that it satisfies the following for any (xi, yi, ri):

1. If yi = 1 and ri ≥ 0, we must have either w · xi + b ≥ 0 or w · xi + b ≤ 0 and −(w·x+b)
l∗xi

(w) ≤ ri;

2. If yi = 1 and ri ≤ 0, we must have w·x+b
l∗xi

(w) ≥ −ri (this implies w · xi + b ≥ 0);

3. If yi = −1 and ri ≤ 0, we must have either w · xi + b ≤ 0 or w · xi + b > 0 and w·x+b
l∗xi

(w) < −ri;

4. If yi = −1 and ri ≥ 0, we must have −(w·x+b)
l∗xi

(w) > ri (this implies w · xi + b < 0);

Note that we classify any point on the hyperplane as +1 as well, which is why the strict inequality for Case 3 and 4. Case 1
can be summarized as w·x+b

l∗xi
(w) ≥ −ri. Similarly, Case 3 can be summarized as w·x+b

l∗xi
(w) < −ri. To impose the strict inequality

for Case 3 and 4, we may introduce an ε slack variable. These observations lead to the following formulation of the SERM
problem.

find w, b, ε > 0

subject to w·xi+b
l∗xi

(w) ≥ −ri, for points (xi, yi, ri) with yi = 1.
w·xi+b
l∗xi

(w) ≤ −ri − ε, for points (xi, yi, ri) with yi = −1.
(12)

We now consider the two settings as described in the theorem statement. We first consider Situation 1, i.e., the essentially
adversarial case with min− ≥ max+ and an instance-invariant cost function induced by the same seminorm l, i.e.,
c(z;x) = l(x− z) for any x. In this case, System (12) is equivalent to the following

find w, b, ε > 0
subject to w · xi + b ≥ −ri, for points (xi, yi, ri) with yi = 1.

w · xi + b ≤ −(ri + ε), for points (xi, yi, ri) with yi = −1.
l∗(w) = 1

(13)

This system is unfortunately not a convex feasibility problem. To solve System (13), we consider the following optimization
program (OP), which is a relaxation of System (13) by relaxing the non-convex constraint l∗(w) = 1 to the convex constraint
l∗(w) ≤ 1.

maximize ε
subject to w · xi + b ≥ −ri, for points (xi, ri) with label 1.

w · xi + b ≤ −ri − ε, for points (xi, ri) with label -1.
l∗(w) ≤ 1

(14)

Note that OP (14) is a convex program because the objective and constraints are either linear or convex. Therefore, OP
(14) can be efficiently solved in polynomial time.5 Note that this relaxation is not tight in general as we will show later that
solving System (13) is NP-hard in general.

Our main insight is that under the assumption of min− ≥ max+, the above relaxation is tight — i.e., there always exists
an optimal solution to the above problem with l∗(w) = 1. This solution is then a feasible solution to System (13) as well,

5Note that convex programs can only be solved to be within precision ε in poly(1/ε) time sine it may have irrational solutions. In this
case, we simply say it can be “solved” efficiently.
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thus completing our proof. Concretely, given any optimal solution (w∗, b∗, ε∗) to OP (14), we construct another solution
(w̄, b̄, ε̄) as follows:

w̄ =
w∗

α
, b̄ =

b∗

α
+ (

1

α
− 1)

min−+ max+

2
, ε̄ =

ε∗

α
, where α = l∗(w∗) ≤ 1.

We claim that the constructed solution above remains feasible to OP (14). Note that for data point with label 1, we have: (1)
min− + max+

2 ≥ ri by assumption ri ≤ max+ ≤ min−; (2) xi ·w∗ + b∗ ≥ −ri by the feasibility of (w∗, b∗, ε∗). Therefore

xi ·
w∗

α
+
b∗

α
≥ −ri

α

⇒ xi ·
w∗

α
+
b∗

α
+ (

1

α
− 1)

min−+ max+

2
≥ −ri

α
+ (

1

α
− 1)ri

⇔ xi · w̄ + b̄ ≥ −ri

This proves that the constructed solution is feasible for data points with label 1. Similar argument using the inequality
min− + max+

2 ≤ ri for any negative label data point shows that it is also feasible for negative data points. It is easy to see that
the solution quality is as good as the optimal solution ε∗ since α ≤ 1. This proves the optimality of the constructed solution.

Finally, we consider the Situation 2 where the instance is adversarial, i.e, min− ≥ 0 ≥ max+. In this case, ri in the first
constraint of System (12) is always non-positive whereas ri in the second constraint is always non-negative. After basic
algebraic manipulations, the SERM problem becomes the following optimization problem.

find w, b, ε > 0
subject to w · xi + b ≥ (−ri) · l∗xi

(w), for points (xi, yi, ri) with ri ≤ 0.
−(w · xi + b) ≥ (ri + ε) · l∗xi

(w), for points (xi, yi, ri) with ri ≥ 0.
(15)

This is again not a convex feasibility problem due to the non-convex term (ri + ε) · l∗xi
(w), however for any fixed ε > 0 both

constraints are convex. Moreover, if the system is feasible for some ε0 > 0 and it is feasible for any 0 < ε ≤ ε0. Therefore,
we can determine the feasibility of the (convex) system for any fixed ε and then binary search for the feasible ε. Therefore,
the feasibility problem in System (12) can be solved in polynomial time.

F. Proof of Theorem 5
Proof. We start with Situation 1, i.e., the preferences are arbitrary but the cost function is c(z;x) = ‖x− z||22. We will
show later that the second situation can be reduced from the first. In the first situation, the feasibility problem is System (13)
with l as the l2 norm. Our reduction starts by reducing this system to the following optimization problem (OP)

maximize ||w||22
subject to xi ·w + b ≥ −ri, for points (xi, ri) with label 1.

xi ·w + b ≤ −ri − ε, for points (xi, ri) with label -1.
||w||22 ≤ 1

(16)

Formally, we claim that for any fixed ε, system (13) is feasible if and only if OP (16) has optimal objective value 1. The “if”
direction is simple. That is, if OP (16) has optimal objective value 1, then the optimal solution (w∗, b∗) is automatically
a feasible solution to System (13) because ||w∗||2 = 1. For the “only if” direction, let (w̄, b̄) be any feasible solution to
System (13), then it is easy to verify w∗ = w̄

||w||2 and b∗ = b̄
||w||2 must also be feasible to System (13). Moreover, it is an

optimal solution to OP (16) with objective value 1, as desired.

We now prove that determining whether the optimal objective value of OP (16) equals 1 or not is NP-complete. We reduce
from the following well-known NP-complete problem called the partition problem:

Given d positive integers c1, · · · , cd, decide whether there exists a subset S ⊂ [d] such that∑
i∈S ci =

∑
i 6∈S ci
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We now reduce the above partition problem to solving OP (16). Given any instance of partition problem, construct the
following SERM instance.

The Constructed Hard SERM Instance for Situation 1: We will have n = 2d+ 3 data points with feature vectors from
Rd. For convenience, we will use ei to denote the basis vector in Rd whose entries are all 0 except that the i’th is 1. For
each i ∈ [d], there is a data point (x, y, r) = (2

√
d · ei, 1, 4) as well as a data point (

√
d · ei,−1, 1 − ε). The remaining

three data points are (c, 1, 2), data point (2c,−1, 2− ε), and data point (3c, 1, 2).

We claim that OP (16) instantiated with the above constructed instance has an optimal objective value 1 if and only if the
answer to the given partition problem is Yes. We first prove the “if” direction. If the partition problem is a Yes instance, then
there exists an S such that

∑
i∈S ci −

∑
i 6∈S ci = 0. We argue that the following construction is an optimal solution to OP

(16) with optimal objective value 1:

b∗ = −2, wi =
1√
d
∀i ∈ S, wi = − 1√

d
∀i 6∈ S.

Clearly, ||w∗||22 = 1. We only need to prove feasibility of (w∗, b∗). For any label 1 point (x, r) = (2
√
d · ei, 4), we have

x ·w∗ + b∗ = 2
√
dei ·w∗ − 2 = −4 ≥ −r, as desired. Similarly, for any label −1 point (x, r) = (

√
d · ei, 1 − ε), we

have x · w∗ + b∗ =
√
dei · w∗ − 2 = −1 ≤ −r − ε. The feasibility of point (c, 2) with label 1 is argued as follows:

x ·w∗ + b∗ = c ·w∗ − 2 = −r. Feasibility of (2c, 2− ε) and (3c, 2) are similarly verified.

We now prove the “only if” direction. In particular, we prove that that if OP (16) has some optimal solution (w∗, b) with
||w∗||22 = 1, then the partition instance must be Yes.

Let us first examine the feasibility of OP (16).

1. By the constraints with respect to positive-label data points (2
√
d · ei, 4), we have 2

√
dei ·w + b ≥ −4 or equivalently

wi
√
d ≥ − b

2 − 2.

2. By the constraints with respect to negative-label data points (
√
d ·ei, 1−ε), we have

√
dei ·w+b ≤ −1 or equivalently

wi
√
d ≤ −b− 1.

3. By the constraints with respect to data point (c, 2) with label 1, we have c ·w+b ≥ −2, or equivalently−2−b ≤ c ·w.

4. By the constraints with respect to data point (2c, 2 − ε) with label -1, we have 2c · w + b ≤ −2, or equivalently
−2− b ≥ 2c ·w.

5. By the constraints with respect to data point (3c, 2) with label 1, we have 3c · w + b ≥ −2, or equivalently
−2− b ≤ 3c ·w.

Point 3–5 implies 2c ·w ≤ −2− b ≤ min{c ·w, 3c ·w}. This must imply c ·w = 0 as any non-zero c ·w cannot satisfy
2c ·w ≤ min{c ·w, 3c ·w}. As a consequence, the only feasible b value is b = −2. Plugging b = −2 into Point 1 and 2,
we have

− 1√
d
≤ wi ≤

1√
d
.

Since the optimal objective value is 1 =
∑d
i=1(w∗i )2, it is easy to see that this optimal objective is achieved only when

each w∗i equals either − 1√
d

or 1√
d

. Now define S = {i : w∗i = 1√
d
} to be the set of i such that w∗i is positive. It is easy to

verify that S will be a solution to the partition problem, implying that it is a Yes instance. This proves the NP-hardness for
Situation 1 stated in the theorem.

Finally, we consider Situation 2 which can be reduced from the first situation. In particular, the constructed hard instance
above has reward preferences all being positive (in fact, drawn from only three possible values {1, 2, 4}), but do not satisfy
the essentially adversarial condition. However, if we are allowed to use instant-wise cost functions, we can simply scale
down the reward preference for point with label 1 but propositionally scale down its cost function so that the right-hand-side
of the first constraint in System (13) remains the same. Concretely, we now modify our constructed instance above to be the
follows.
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The Constructed Hard SERM Instance for Situation 2: We still have n = 2d+ 3 data points with feature vectors from
Rd. For each i ∈ [d], there is a data point (x, y, r) = (2

√
d · ei, 1, 0.5) with cost function c(z;x) = 1

8 |z −x||22 as well as a
data point (

√
d · ei,−1, 1− ε) with cost function c(z;x) = |z − x||22. The remaining three data points are: (1) data point

(c, 1, 0.5) with cost function c(z;x) = 1
4 |z − x||22; (2) data point (2c,−1, 2− ε) with cost function c(z;x) = |z − x||22;

(3) data point (3c, 1, 0.5) with cost function c(z;x) = 1
4 |z − x||22.

It is easy to verify that the above instance satisfy situation 1 in the theorem statement and is equivalent to the instance we
constructed for the second situation and thus is also NP-hard.


